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Worst-Case Analysis

Worst-case analysis: cost(A):= supz cost(A,z)
–  cost(A,z) = performance of algorithm A on input z

Pros of WCA: relatively analytically tractable
•  universal applicability (no input assumptions)
•  countless killer applications

Cons of worst-case analysis: overly pessimistic
•  can rank algorithms inaccurately (LP, paging)
•  no data model (rather: “Murphy’s Law” model)
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Average-case analysis: cost(A):= Ez cost(A,z)
–  for some distribution over inputs z

•  well motivated if:
–  (i) detailed and stable understanding of distribution; 
–  and (ii) don’t need a general-purpose solution

Concern: advocates brittle solutions overly tailored 
to input distribution.

–  which might be wrong, change over time, or be 
different in different applications

Average-Case Analysis
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Hybrid Models

Thesis: for many problems there is a “sweet spot” 
between worst- and average-case analysis.

–  where unknown distribution D lies in some known set 

supx cost(A,x) Ex[cost(A,x)]
worst-case average-case

supD Ex~D[cost(A,x)]
hybrid models
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Hybrid Models

Thesis: for many problems there is a “sweet spot” 
between worst- and average-case analysis.

–  where unknown distribution D lies in some known set 

Benefits: 
•  robust near-optimality guarantees
•  via natural algorithms

supD Ex~D[cost(A,x)]
hybrid models
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Hybrid Models

Thesis: for many problems there is a “sweet spot” 
between worst- and average-case analysis.

–  where unknown distribution D lies in some known set 

Examples: smoothed analysis, semi-random 
models, random-order models (secretary), etc.

supD Ex~D[cost(A,x)]
hybrid models



7 

Case Study: Single-Item Auctions

Question: what opening bid maximizes revenue?

Issue: depends on what bidders are willing to pay 
(which is unknown).
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Worst-Case Analysis Fails

Single-item auction setup:
•  1 seller with 1 item; n bidders
•  bidder i has private valuation vi

•  goal: maximize revenue

Example: suppose one bidder with valuation v.
•  optimal opening bid = v  (=> revenue = v)
•  no opening bid guaranteed to obtain near-

optimal revenue for all possible values of v
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Bayesian Approach (Economics)

Bayesian assumption: bidders’ valuations v1,...,vn 
drawn independently from distributions F1,...,Fn.
–  Fi’s known to seller, vi’s unknown
–  need minor conditions on Fi’s (won’t discuss)

Goal: find auction with most expected revenue.
•  collect one bid per bidder
•  decide on a winner (if any) and a selling price
•  ex: eBay = second-price auction with a reserve



Optimal Single-Item Auctions

[Myerson 81]: characterized the optimal 
auction, as a function of the prior distributions 
F1,...,Fn.

I.i.d. case: (F1=F2=...=Fn) optimal auction =   
2nd-price auction with suitable reserve price.
–  reserve = monopoly price (argmaxp p(1-F(p))

General case: complicated, depends in detailed 
way on F1,...,Fn.
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Perils of Average-Case Analysis

Recall concern: average-case analysis might 
advocate brittle solutions specific to distribution.

Wilson’s doctrine: auction theory should 
advocate “robust” solutions that do not 
depend on the details of the knowledge 
assumptions.

“Only by repeated weakening of common knowledge 
assumptions will the theory approximate reality.”     
(Robert Wilson, 1987)
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Models of Partial Knowledge
Idea: design near-optimal auctions that require 

only “minimal” distributional knowledge.
•  simple statistics (median, etc.), or samples

Interpretations:
1.  Don’t have detailed distributional knowledge.
2.  Want simple and robust auctions that don’t 

exploit detailed distributional knowledge.
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Reserve Price-Based Auctions
Interpretations of [Hartline/Roughgarden 09]: 
1.  Want to use reserve price-based auctions.
2.  Only know monopoly prices of distributions.

–  I.i.d. case => already enough to implement opt
–  non-i.i.d. case => not enough to implement opt

Goal: reserve price-based auction with 
expected revenue close to optimal (no matter 
what the prior F1,...,Fn is).
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Simple vs. Optimal Auctions
Theorem: [Chawla/Hartline/Kleinberg 07]  [Hartline/

Roughgarden 09] second-price auction with 
(bidder-specific) monopoly reserve prices has 
expected revenue at least 50% of optimal.
–  best-possible guarantee for reserve-price-based 

auctions (for worst-case prior F1,...,Fn )

Techniques: uses analytical tools from traditional 
optimal auction theory.  (“virtual values”)
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Statistics as Partial Knowledge
•  [Alaei/Hartline/Niazadeh/Pountourakis/Yuan 15]  

guarantee of 36% for anonymous reserve 
price (eBay)

•  [Azar/Micali 12] assume knowledge only of mean 
and variance of distributions

•  [Azar/Daskalakis/Micali/Weinberg 13] assume 
knowledge only of median of distributions

•  many more papers on more complex problems
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Samples as Partial Knowledge
A PAC Model: [Cole/Roughgarden 14]
•  inspired by learning theory                     

[Vapnik/Chervonenkis 71, Valiant 84]
•  given i.i.d. samples from unknown 

distributions F1,...,Fn   (e.g., past bids)
•  goal: (1-ε)-approximation of optimal revenue

Question: How much data (# of samples) is 
necessary and sufficient?

•  relevant to practice [Ostrovsky/Schwarz 09]
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Formalism
Step 1: seller gets s samples v1,...,vs from F

–  each vi an n-vector (one valuation per bidder)
Step 2: seller picks single-item auction A = A(v1,...,vs)
Step 3: A run on a fresh sample vs+1 from F

Goal: design A so     
close to OPT (for F).
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m samples
v1,...,vs 

auction
A(v1,...,vs)

revenue of
A on vs+1

Ev1,...,vs
[Evs+1

[Rev(A(v1,...,vs )(vs+1))]]
new sample vs+1



Representative Results
Good news: [Huang/Manour/Roughgarden 15] 
I.i.d. case: Polynomial (in ε-1 only) samples 
suffice for a (1-ε)-approximation.

Mixed news: [Cole/Roughgarden 14], [Morgenstern/
Roughgarden 15], [Devanur/Huang/Psamos 16]
Non-i.i.d. case: poly(n,ε-1) samples necessary 
and sufficient for a (1-ε)-approximation.

Corollary (of proof): near-optimal auctions 
require detailed distributional knowledge.
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Bulow-Klemperer Theorem
Setup: single-item auction, valuations i.i.d. from F.

Theorem [Bulow-Klemperer 96]:  for every n ≥ 1: 

   Vickrey's revenue               ≥       OPTF's revenue
    [with (n+1) i.i.d. bidders]                                  [with n i.i.d. bidders]

Interpretation: small increase in competition more 
important than running optimal auction.
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Prior-Independent Auctions
Goal: [Dhangwotnotai/Roughgarden/Yan 10] prior-
independent auction = expected revenue almost 
as good as if distribution was known up front
•  no matter what the distribution is
•  distribution used only in the analysis of the auction, not 

in its design

supD Ex~D[cost(A,x)]
hybrid models
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The Setup

•  n bidders, known partition into groups G1,...,Gt
–  let k = minh |Gh|; provably need k ≥ 2 

•  valuations of bidders in Gh drawn IID from 
unknown distribution Fh
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The Single Sample Mechanism

1.  for each group Gh, pick a reserve bidder ih 
uniformly at random

2.  let i = highest non-reserve bidder

3.  sell item to i if and only if her bid is at least 
that of the reserve bidder from her group

Theorem: [Dhangwotnotai/Roughgarden/Yan 10] 
expected revenue at least a ½◦(k-1)/k fraction of 
optimal (recall k = minh |Gh|)
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Toward Worst-Case Analysis
Goal: prior-free auction. (input-by-input guarantees)

”Desired Theorem: for every valuation profile v:                
auction A's revenue on v is at least OPT(v)/α."
(for a hopefully small constant α)

Question: how to define OPT(v)?
–  recall failure of worst-case analysis

Idea: [Goldberg/Hartline/Wright 01] define suitable 
revenue benchmarks.
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Template for Benchmarks
Result: [Hartline/Roughgarden 08] general template   
for meaningful worst-case auction benchmarks.

Average-case thought experiment: suppose    
every valuation drawn i.i.d. from a distribution F.

–  optimal = 2nd-price auction with suitable reserve 

Benchmark: define OPT(v) = max revenue 
obtained on v by auction that is optimal for some F.

–  deterministic proxy for i.i.d. bidders
–  analogs: no-regret learning, static optimality
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Template for Benchmarks
Benchmark: define OPT(v) = max revenue 
obtained by an auction that is optimal for some F.

–  regenerates previously studied benchmarks [Goldberg/
Hartline/Wright 01]

–  gives new benchmarks for more general problems 
[Hartline/Roughgarden 08], [Devanur/Hartline 09], [Hartline/Yan 
11], [Leonardi/Roughgarden 12]

Meaning: approximate benchmark input-by-input 
=> approximate all Bayesian optimal auctions.  
(i.e., prior-free => prior-independent)



29 

•  worst-case analysis: can be overly pessimistic, 
give no advice about which auction to run

•  average-case analysis: can be overly brittle, 
advocate overly complex solutions

•  outposts on the road in between:
–  assume knowledge only of simple statistics 

(monopoly price, median, mean + variance)
–  assume only a polynomial number of samples
–  prior-independent auctions
–  prior-free auctions w.r.t. revenue benchmarks

Summary


