
Random Projections for
Probabilistic Inference

Stefano Ermon

Recent progress in Artificial Intelligence

2

Supervised Learning

~ p(x)

200k photos of celebrities

Ethnicity

Eye color PoseGender Hair color

Image

x

z

p(x,z) = p(x|z) p(z)

z1 zk

x

Latent Variable Model

A

B

C

D

E

F

G

H

I

J

K

L

True/sample?

True/sample?

“Seeds”

A

B

Ethnicity

Eye color PoseGender Hair color

Image

x

z

p(x,z) = p(x|z) p(z)

z1 zk

x

Learning Latent Variable Models

Choose parameters to maximize the (log) likelihood of the data:

𝑚𝑎𝑥θ log 𝑝(𝑥; 𝜃) = 𝑚𝑎𝑥θ log
𝑧
𝑝(𝑥, 𝑧; 𝜃)

x

z

Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

log
𝑧
𝑝 𝑥, 𝑧 = log

𝑧
𝑞(𝑧)
𝑝 𝑥, 𝑧

𝑞(𝑧)

Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

log
𝑧
𝑝 𝑥, 𝑧 = log

𝑧
𝑞(𝑧)
𝑝 𝑥, 𝑧

𝑞(𝑧)

log
𝑧
𝑝 𝑥, 𝑧 ≥

𝑧
𝑞 𝑧 log

𝑝 𝑥, 𝑧

𝑞(𝑧)
x

z

Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

log
𝑧
𝑝 𝑥, 𝑧 = log

𝑧
𝑞(𝑧)
𝑝 𝑥, 𝑧

𝑞(𝑧)

log
𝑧
𝑝 𝑥, 𝑧 ≥

𝑧
𝑞 𝑧 log

𝑝 𝑥, 𝑧

𝑞(𝑧)
Idea: choose q to be simple

Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

log
𝑧
𝑝 𝑥, 𝑧 = log

𝑧
𝑞(𝑧)
𝑝 𝑥, 𝑧

𝑞(𝑧)

log
𝑧
𝑝 𝑥, 𝑧 ≥

𝑧
𝑞 𝑧 log

𝑝 𝑥, 𝑧

𝑞(𝑧)

log
𝑧
𝑝 𝑥, 𝑧 =

𝑧
𝑞 𝑧 log

𝑝 𝑥, 𝑧

𝑞(𝑧)
+ 𝐾𝐿(𝑞, 𝑝(𝑧|𝑥))

x

z

Variational Inference
Approximate a complex distribution p using a simpler (tractable) distribution q*
(e.g., a Gaussian distribution)

Variational Methods and Random Projections

Family of “simple”
distributions Q

I-projection

p’Random projection

pComplex, intractable
model

(probability distribution)

I-projection

Tractable distribution
that is as close as
possible to p

Cannot bound this distance
Key issue with all variational
methods: the approximation can be
arbitrarily bad Taking a random projection of p:

1. Properties of p are preserved
2. p’ is “simpler” and therefore “closer” to Q

Idea: take a random projection first, then an I-projection [AISTATS-16, NIPS-16]

Main result (informal): good approximation with high probability

Outline

1. Introduction

2. Probabilistic inference by hashing and optimization

I. Formalism

II. Random Projections

3. Combining random projections and I-projections

4. Other classes of random projections

5. Conclusions

22

Probabilistic Inference in High Dimensions

• We are given
– a set of 2n configurations (= assignments of z vars)
– non-negative weights w

• from Bayes Net, factor graph, weighted CNF..

• Goal: compute total weight

• Example 1: n=2 binary variables, sum over 4 configurations

• Example 2: n=100 variables, sum over 2100 ≈1030 terms (curse of dimensionality)

1 4 …

2n configurations

P[Face]

= ∑x={T,F} ∑y={T,F} P[Gender=x, Pose=y, Image=Face]

= 0 + 0.15 + 0.29 + 0.002 = 0.442

.002

Gender=F
Pose=F

Gender=F
Pose=T

Gender=T
Pose =F

Gender=T
Pose=T

1 3

.29.150

𝑧
𝑝 𝑥, 𝑧 =

𝑧
𝑤 𝑧

𝑤 𝑧 ∈ {0,1}

24

How Might One Count?

Problem characteristics:

 Space naturally divided into
rows, columns, sections, …

 Many seats empty

 Uneven distribution of people
(e.g. more near door, aisles,
front, etc.)

Analogy: How many people are present in the hall?

25

From Counting People to Marginal Inference

– Auditorium : search space

– Seats : 2n truth assignments of the z variables

– Occupied seats : assignments with non-zero weight

: occupied seats (47) = assignments with non-zero weight

: empty seats (49)

#1: Brute-Force Counting
Idea:

– Go through every seat

– If occupied, increment counter

Advantage:

– Simplicity, accuracy

Drawback:

– Scalability

: occupied seats (47)

: empty seats (49)

#2: Branch-and-Bound (DPLL-style)

Idea:

– Split space into sections

e.g. front/back, left/right/ctr, …

– Use smart detection of

full/empty sections

– Add up all partial counts

Advantage:

– Relatively faster, exact

Drawback:

– Still “accounts for” every single

person present: need

extremely fine granularity

– Scalability

Framework used in DPLL-based

systematic exact counters

e.g. Cachet [Sang-et]

Related to compilation approaches [Darwiche et. al]

Approximate model counting?

#3: Estimation By Sampling -- Naïve

Idea:

– Randomly select a region

– Count within this region

– Scale up appropriately

Advantage:

– Quite fast

Drawback:

– Robustness: can easily under-

or over-estimate

– Scalability in sparse spaces:

e.g. 1060 solutions out of 10300

means need region much larger

than 10240 to “hit” any solutions

A Distributed Coin-Flipping Strategy

(Intuition)

Idea:

Everyone starts with a hand up

– Everyone tosses a coin

– If heads, keep hand up,

if tails, bring hand down

– Repeat till no one hand is up

Return 2#(rounds)
Does this work?

• On average, Yes!

• With M people present, need roughly log2M

rounds for a unique hand to survive

Let’s Try Something Different …

Making the Intuitive Idea Concrete

• How can we make each configuration “flip” a coin?

• How do we transform the average behavior into a robust method with
provable correctness guarantees?

• Many approaches based on this idea (originated from theoretical work
due to [Stockmeyer-83, Valiant-Vazirani-86, etc.]):

– Mbound, XorSample [Gomes et al-2007]

– WISH, PAWS [Ermon et al-2013]

– ApproxMC, UniWit,UniGen [Chakraborty et al-2014,2016]

– Achilioptas et al UAI-15 (error correcting codes)

– Belle et al. at UAI-15 (SMT solvers)

Random parity constraints
• XOR/parity constraints:

– Example: a b c d = 1 satisfied if an odd number of a,b,c,d are set to 1

• Each solution satisfies this random constraint with probability ½

• Pairwise independence: For every two configurations A and B,
“A satisfies X ” and “B satisfies X ” are independent events

Randomly generated parity constraint X

Each variable added
with prob. 0.5

x1 x3 x4 x7 x10 = 1

Clause 1 Clause m

var 1 var 10

The Desired Effect

M = 50 22 survive

7 survive

13 survive

3 surviveunique solution

If each XOR cut the solution space roughly in half, would

get down to a unique solution in roughly log2 M steps!

Hashing for Weighted Problems
Given a weight function

1. Add some XOR constraints to w to get w’
(this reduces the degrees of freedom)

2. Find MAX-weight assignment of w’

3. Conclude “something” about the total weight

“Projected”

problem

weight function

w

XOR

constraints

Off-the-shelf

Optimizer

Deduce

repeat a few times

𝑧
𝑤 𝑧

𝑤 𝑧 = 𝑝 𝑥, 𝑧

𝑧
𝑤 𝑧

34

….

median M1

1 random parity
constraint

2 random parity
constraints

…. ….

3 random parity
constraints

median M2 median M3

….

Mode M0 + + +×1 ×2 ×4 + …

Weight function

n times

Log(n) times

Optimization to
find the mode optimization

finds the mode

Final estimate for the total weight

xnx1

Accuracy Guarantees

Result (stated informally):

With high probability WISH (Weighted-Sums-Hashing) computes a constant factor
approximation to the total weight and it requires solving θ(n log n) optimization
instances.

Hashing as a random projection

• XOR/parity constraints:

– Example: a b c d = 1 satisfied if an odd number of a,b,c,d are set to 1

Randomly generated parity constraint X

Each variable added
with prob. 0.5

x1 x3 x4 x7 x10 = 1

configurations

w
ei

gh
t

Set weight to zero if constraint is not satisfied

configurations

w
ei

gh
t

0 50 100
0

1

2

3

Configurations
W

e
ig

h
t Random projection

This random projection:

1. “simplifies” the model

2. preserves its “key properties”

Outline

1. Introduction

2. Probabilistic inference by hashing and optimization

I. Formalism

II. Random Projections

3. Combining random projections and I-projections

4. Other classes of random projections

5. Conclusions

37

Variational Inference

p

Qtract

q*

DKL(q*||p)

Variational Inference with
Random Projections

39

p

Qtract

q*

R(p)

Random projection

Information projection

Degenerate
distributions

Variational Inference with
Random Projections

40

p

Qtract

q*

R(p)

Variational Inference with
Random Projections

41

p

Qtract

q*

R(p)

Variational Inference with Random Projections
p

Qtract

q*

R(p)

Result (informal statement): after the random projection (e.g., using the right
number of XORs), the resulting distribution can be well approximated using
standard variational inference (with accuracy guarantees)

Continuous optimization problem!

“preserves the information”

Algorithm: Mean Field with
Random Projections

hidden
0

1

1

0

1

0

0

1

0

0

visible

0

1

1

0

1

0

0

1

0

0

Fully factored distribution:
q(z) = q(z1) q(z2) … q(zn)

Randomly-projected mean field:

Variational objective is

• coordinate-wise concave
• has fewer variables

If we find global optimum, then accuracy guarantees

Ising Model

Boltzmann Machines

Discrete graphical model:
p(h, v) = f(h, v) / Z

visible

hidden
0

1

1

0

1

0

0

1

0

0

RBMs

Variational Autoencoders

N
eu

ral N
et

N
eu

ra
l N

et

Denoising results

Outline

1. Introduction

2. Probabilistic inference by hashing and optimization

I. Formalism

II. Random Projections

3. Combining random projections and I-projections

4. Other classes of random projections

49

Random Constraints for Probabilistic Inference

50

1
¬x1

x2

¬x2

x3

¬x3

x4

¬x4

e.g., f(a,b,c,d)=XOR(a,b,c,d)
f(a,b,c,d)=(a AND b) OR c

a

b

c

d

Function f(a,b,c,d)

Randomly
wire inputs to
(negated)
variables Would this work well as a hash function?

x1

0

Noise sensitivity

Performance of this family of hash functions depends on the noise sensitivity of f
(a,b,c,d)

• Given a random input x, e.g. x=(0, 1,1,0)
• Randomly flip each bit of x with probability p x’=(1, 1,1,0)
• How likely is that f(x) = f(x’)?

Result (informal statement): The more noise sensitive a function f is, the better the
corresponding family of hash functions (with random wiring) behaves. [ICML-16]

f (a,b,c,d)

a

b

c

d

Random Constraints for Probabilistic Inference and Model Counting

• Noise sensitivity can be computed in closed form from the Fourier
spectrum of f. Known for many common functions!

• Intuitively, the more “oscillatory” f is, the more noise sensitive it is

f (a,b,c,d)

2-D sine
wave

2-D parity
function

Experimental results

53

Tribes: One or two orders of magnitude faster!

(x1 x2 x3)

 (x4 x5)
 (x6 x7)

Conclusions

• Random projections and hashing have been extremely useful
in Information Retrieval and Machine Learning

• Can also be applied to more complex objects, like probability
distributions

• New algorithms with improved guarantees and practical
performance

• Exciting ML applications: learning generative models of data

54

