Random Projections for
Probabilistic Inference
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Recent progress in Artificial Intelligence

What can | help you with?
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Latent Variable Model

() Ethnicity

Image X

p(x,z) = p(x|z) p(2)
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Learning Latent Variable Models

() Ethnicity

p(x,z) = p(x|z) p(2)

Image X

Choose parameters to maximize the (log) likelihood of the data:

maxg logp(x; 0) = maxg logz p(x,z;0)
Z



Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

og ). plu)=logy. a2
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Approach: maximize the (log) likelihood of the data:
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Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

og ). plu)=logy. a2

logz p(x,z) = 2 q(z) logp;(c’zj) ldea: choose g to be simple




Marginal likelihood

m—  True likelihood

= = RP estimate
ELBO estimate




Learning Latent Variable Models

Approach: maximize the (log) likelihood of the data:

og ). plu)=logy. a2
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Variational Inference

Approximate a complex distribution p using a simpler (tractable) distribution g*

(e.g., a Gaussian distribution)
N . N i f/
p=Blue, g*=Red (two equivalently good solutions!)
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Variational Methods and Random Projections

Random projection p’

Complex, intractable p /

model @
(probability distribution)

I-projection
Family of “simple”

R distributions Q
Cannot boundirébistsléstitsdbution

Key issue withtall sariatiasaals
methods: theRAspRIRiIAStion can be
Rrkiiteasilyapaibm projection of p:

1.  Properties of p are preserved
2. p’is “simpler” and therefore “closer” to Q

Idea: take a random projection first, then an I-projection [AISTATS-16, NIPS-16]

Main result (informal): good approximation with high probability



Marginal likelihood

m—— True likelihood

= = RP estimate
ELBO estimate




Outline

Probabilistic inference by hashing and optimization
l.  Formalism

. Random Projections

Combining random projections and I-projections
Other classes of random projections

Conclusions
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Probabilistic Inference in High Dimensions

We are given 2" configurations

— aset of 2" configurations (= assignments of z vars) 1)(4) (1 3
— non-negative weights w
* from Bayes Net, factor graph, weighted CNF..

Goal: compute total weight Z p(x,z) = z w(z)
VA Z

Example 1: n=2 binary variables, sum over 4 configurations

P[Face]
0 .15 .29 .002
= 2x=th 2y=(rr PlGender=x, Pose=y, Image=Face]
Gender=F Gender=F Gender=T  Gender=T = 0+0.15+0.29+0.002 = 0.442
Pose=F Pose=T Pose =F Pose=T

Example 2: n=100 variables, sum over 2199 =103° terms (curse of dimensionality)

w(z) € {0,1}



How Might One Count?

Analogy: How many people are present in the hall?

24

Problem characteristics:

Space naturally divided into
rows, columns, sections, ...

Many seats empty

Uneven distribution of people
(e.g. more near door, aisles,
front, etc.)



From Counting People to Marginal Inference

— Auditorium . search space
— Seats : 2" truth assignments of the z variables
— Occupiedseats : assignments with non-zero weight

.1 :occupied seats (47) = assignments with non-zero weight
B : empty seats (49)
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#1: Brute-Force Counting
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21 :occupied seats (47)
W : empty seats (49)

ldea:

— Go through every seat

— If occupied, increment counter
Advantage:

— Simplicity, accuracy
Drawback:

— Scalability




#2: Branch-and-Bound (DPLL-style)

Framework used in DPLL-based

systematic exact counters
e.g. Cachet [Sang-et]

ldea:

Split space into sections
e.g. front/back, left/right/ctr, ...

Use smart detection of
full/empty sections

Add up all partial counts

Advantage:

Relatively faster, exact

Drawback:

Still “accounts for” every single
person present. need
extremely fine granularity

Scalability

Approximate model counting?

Related to compilation approaches [Darwiche et. al]



#3: Estimation By Sampling -- Naive

—

ldea:
— Randomly select a region
— Count within this region
— Scale up appropriately

Advantage:
- Quite fast

Drawback:

— Robustness: can easily under-
or over-estimate

— Scalability in sparse spaces:
e.g. 1090 solutions out of 103
means need region much larger
than 10240 to “hit” any solutions



Let’s Try Something Different ...
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Does this work?

e On average, Yes!

*  With M people present, need roughly log,M
rounds for a unique hand to survive

A Distributed Coin-Flipping Strategy
(Intuition)

ldea:
Everyone starts with a hand up
— Everyone tosses a coin

— If heads, keep hand up,
if tails, bring hand down

— Repeat till no one hand is up
Return 2#(rounds)



Making the Intuitive Idea Concrete

How can we make each configuration “flip” a coin?

How do we transform the average behavior into a robust method with
provable correctness guarantees?

Many approaches based on this idea (originated from theoretical work
due to [Stockmeyer-83, Valiant-Vazirani-86, etc.]):

Mbound, XorSample [Gomes et al-2007]

WISH, PAWS [Ermon et al-2013]

ApproxMC, UniWit,UniGen [Chakraborty et al-2014,2016]
Achilioptas et al UAI-15 (error correcting codes)

Belle et al. at UAI-15 (SMT solvers)



Random parity constraints

*  XOR/parity constraints:
— Example: a® b ® ¢ ® d =1 satisfied if an odd number of a,b,c,d are set to 1

Clause m

Clause 1

var 10

Each variable added
with prob. 0.5

Randomly generated parity constraint X
X1 ©X3 X, ®X; DXy = 1

* Each solution satisfies this random constraint with probability %%

* Pairwise independence: For every two configurations A and B,
“A satisfies X ” and “B satisfies X ” are independent events



The Desired Effect

If each XOR cut the solution space roughly in half, would
get down to a unique solution in roughly log, M steps!
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Hashing for Weighted Problems

Given a weight function w(z) = p(x, z)

1. Add some XOR constraints to w to get w’
(this reduces the degrees of freedom)

Find MAX-weight assignment of w’
Conclude “something” about the total weight z w(z)
Z

weight function
W ——

‘Projected” [MMMNY  Off-the-shelf Deduce

XOR BN problem Optimizer
constraints

repeat a few times



Optimization to

n times

find the mode

1 random parity

nd%m parity 3 random parity
: ind§ the mode :
WeightNunction constraint constraints constraints
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Accuracy Guarantees

Result (stated informally):

With high probability WISH (Weighted-Sums-Hashing) computes a constant factor
approximation to the total weight and it requires solving 8(n log n) optimization
instances.



Hashing as a random projection

*  XOR/parity constraints:
— Example: a® b ® ¢ ® d =1 satisfied if an odd number of a,b,c,d are set to 1

Each variable added —
with prob. 0.5 configurations

Randomly generated parity constraint X
X1 ©X3 X, ®X; DXy = 1 Random projection
Set weight to zero if constraint is not satisfied

This random projection:

1. “simplifies” the model
2. preserves its “key properties”

configurations



Outline

3. Combining random projections and |-projections
4. Other classes of random projections
5. Conclusions
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Variational Inference

P‘\DKL(K*IIp)



Variational Inference with
Random Projections

Degenerate
distributions
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Variational Inference with
Random Projections
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Variational Inference with
Random Projections



Variational Inference with Random Projections

P [ “preserves the information”

R(p) @

Continuous optimization problem!

R

Qt ract

Result (informal statement): after the random projection (e.g., using the right
number of XORs), the resulting distribution can be well approximated using
standard variational inference (with accuracy guarantees)



Algorithm: Mean Field with
Random Projections

Fully factored distribution:
a(z) = alz,) a(z,) ... alz,)

visible

hidden

Randomly-projected mean field:

Variational objective is

e coordinate-wise concave
* has fewer variables

CISIOIO.
D)) E)E)

If we find global optimum, then accuracy guarantees



Ising Model

/
/
500 /
"o
5

400 // #
/g

()]
o
o

o

]

2

C

©

Q

=

o

.

5 J ; |
= 36l ¢t J — Mean Field
£ & MFRP

H .

4 200l A -A Junction Tree
© B-B TRW-BP
2 100} ®-® WISH

o

g o 1 , , . ,

- 9 10 20 30 40 50 60

Grid Size



Boltzmann Machines

- Discrete graphical model:
) p(h, v)=f(h, ) /Z




RBMs

No. Hidden Nodes 100 100 100 200 200 200
CD-k | 5 15 15
MF log Z 501 348 297 293
MERP log Z 501 433 342 313

MF u

MFRP 11
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Variational Autoencoders
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Denoising results
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Outline

Introduction v/
Probabilistic inference by hashing and optimization v/

|.  Formalism
Il. Random Projections

Combining random projections and I-projections v/
Other classes of random projections
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Random Constraints for Probabilistic Inference

Function f(a,b,c,d)

e.g., f(a,b,c,d)=XOR(a,b,c,d)

X Randoml
: Y f(a,b,c,d)=(a AND b) OR ¢

wire inputs to

—X, (negated)

variables Would this work well as a hash function? 50



Noise sensitivity

Qo 0O
_
2 ]
r*

f (a,b,c,d)

Performance of this family of hash functions depends on the noise sensitivity of f
(a,b,c,d)

* Given a random input x, e.g. x=(0, 1,1,0)

* Randomly flip each bit of x with probability p =2 x'=(1, 1,1,0)

* How likely is that f(x) = f(x’)?

Result (informal statement): The more noise sensitive a function f is, the better the
corresponding family of hash functions (with random wiring) behaves. [ICML-16]



Random Constraints for Probabilistic Inference and Model Counting

[
° f (a,b,c,d)
B5-

* Noise sensitivity can be computed in closed form from the Fourier
spectrum of f. Known for many common functions!
* Intuitively, the more “oscillatory” f is, the more noise sensitive it is

2-D sine ‘ﬂ - - 2-D parity
wave °7( ‘ - - function




Experimental results

INSTANCE GT | LBiriv | LByor | tirib | tzor
LS10 24 18 19 1 209
Lsl1 33 25 24 28 623
LS12 — 32 29 34 658
LS13 — 33 34 3 74
LS4 — 36 34 12 761
LS5 — 39 34 51 829

20RDR45 — 29 29 1 523

23RDR45 — 27 10 7 800

Tribes: One or two orders of magnitude faster!

(X1 A X5 A =X3)
\V4 (_l X4 VAN —|X5)
v (= Xg %3x7)




Conclusions

Random projections and hashing have been extremely useful
in Information Retrieval and Machine Learning

Can also be applied to more complex objects, like probability
distributions

New algorithms with improved guarantees and practical
performance

Exciting ML applications: learning generative models of data

54



