Pufferfish Privacy Mechanisms for Correlated Data

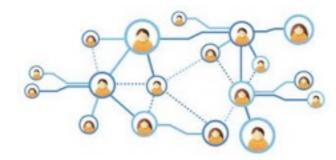
Kamalika Chaudhuri
UC San Diego

Sensitive Data

Medical Records

Search Logs

Social Networks



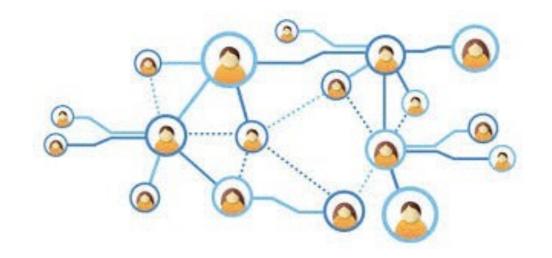
Talk Agenda:

How do we analyze sensitive data while still preserving privacy?

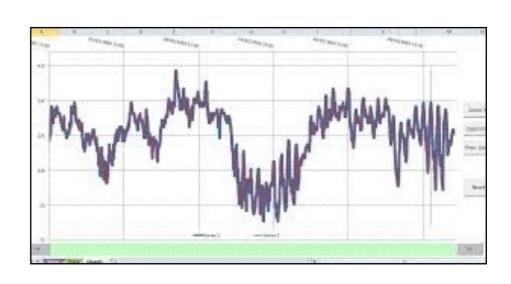
(Focus on correlated data)

Correlated Data

User information in social networks



Physical Activity
Monitoring



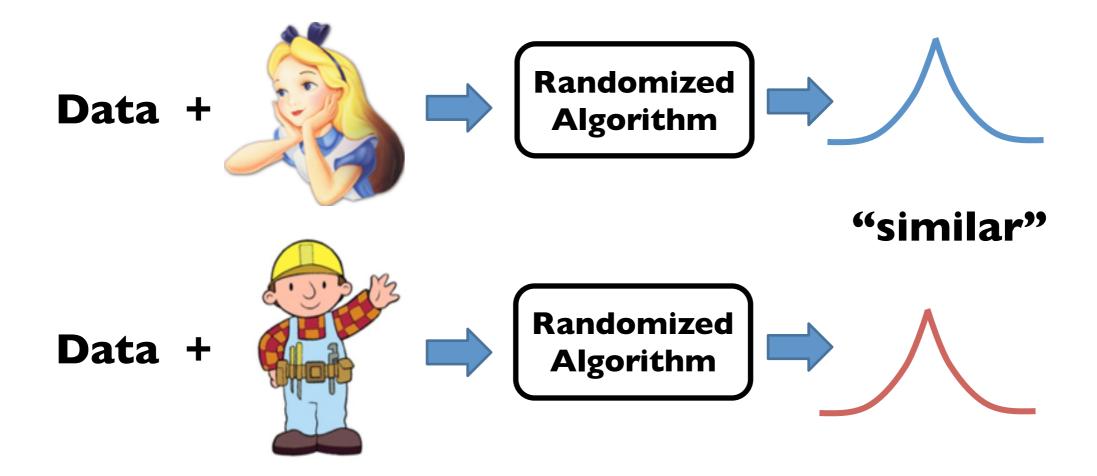
Why is Privacy Hard for Correlated Data?

Because neighbor's information leaks information on user

Talk Agenda:

- I. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)

Differential Privacy [DMNS06]

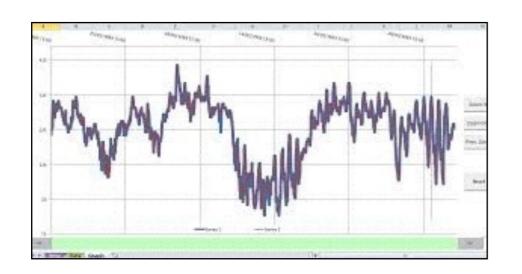


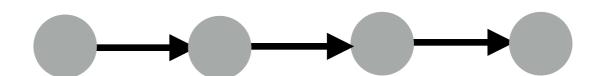
Participation of a single person does not change output

Differential Privacy: Attacker's View

- Note: a. Algorithm could draw personal conclusions about Alice
 - b. Alice has the agency to participate or not

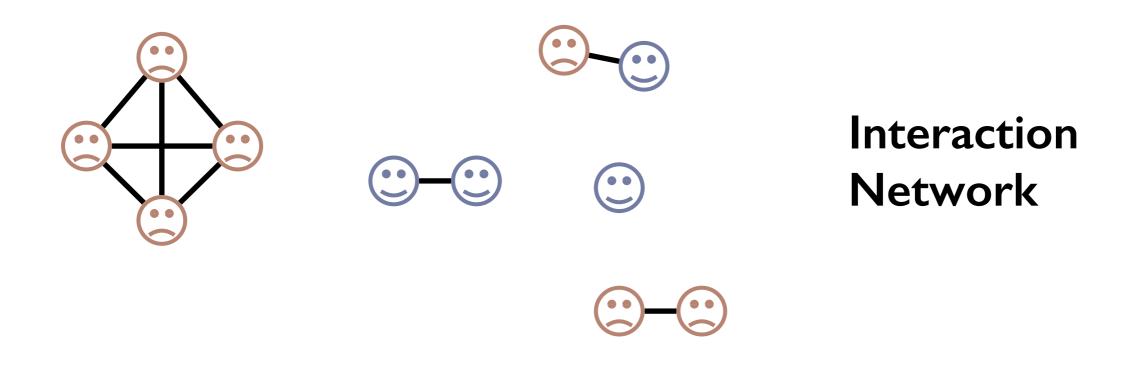
What happens with correlated data?





Goal: Share aggregate data on physical activity with doctor, while hiding activity at each specific time. Agency is at the individual level.

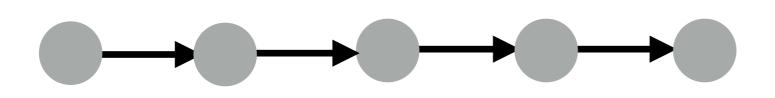
Example 2: Spread of Flu in Network



Goal: Publish aggregate statistics over a set of schools, prevent adversary from knowing who has flu. Agency at school level.

Why is Differential Privacy not Right for Correlated data?

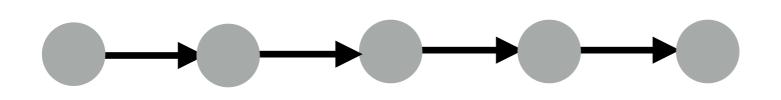
$$D = (x_1, ..., x_T), x_t = activity at time t$$



Correlation Network

- Goal: (I) Publish activity histogram
 - (2) Prevent adversary from knowing activity at t

$$D = (x_1, ..., x_T), x_t = activity at time t$$

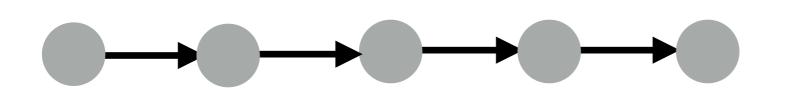


Correlation Network

- Goal: (I) Publish activity histogram
 - (2) Prevent adversary from knowing activity at t

Agency is at individual level, not time entry level

 $D = (x_1, ..., x_T), x_t = activity at time t$

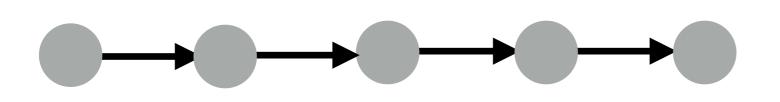


Correlation Network

I-DP: Output histogram of activities + noise with stdev T

Too much noise - no utility!

$$D = (x_1, ..., x_T), x_t = activity at time t$$

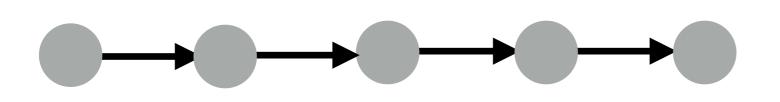


Correlation Network

I-entry-DP: Output histogram of activities + noise with stdey I

Not enough - activities across time are correlated!

$$D = (x_1, ..., x_T), x_t = activity at time t$$



Correlation Network

I-Entry-Group DP: Output histogram of activities + noise with stdey T

Too much noise - no utility!

Secret Set S

S: Information to be protected

e.g: Alice's age is 25, Bob has a disease

Secret Set S

Secret Pairs
Set Q

Q: Pairs of secrets we want to be indistinguishable

e.g: (Alice's age is 25, Alice's age is 40)

(Bob is in dataset, Bob is not in dataset)

Secret Set S

Secret Pairs
Set Q

Distribution Class (-)

 Θ : A set of distributions that plausibly generate the data

e.g: (connection graph G, disease transmits w.p [0.1, 0.5]) (Markov Chain with transition matrix in set P)

May be used to model correlation in data

Secret Set S

Secret Pairs
Set Q

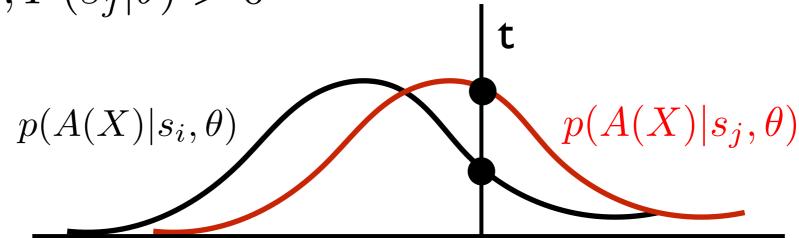
Distribution Class (-)

An algorithm A is ϵ -Pufferfish private with parameters

 (S,Q,Θ) if for all (s_i, s_j) in Q, for all $\theta \in \Theta$, $X \sim \theta$, all t,

$$p_{\theta,A}(A(X) = t|s_i, \theta) \le e^{\epsilon} \cdot p_{\theta,A}(A(X) = t|s_j, \theta)$$

whenever $P(s_i|\theta), P(s_j|\theta) > 0$



Pufferfish Generalizes DP [KMI2]

```
Theorem: Pufferfish = Differential Privacy when:

S = \{ s_{i,a} := \text{Person i has value a, for all i, all a in domain } X \}

Q = \{ (s_{i,a} s_{i,b}), \text{ for all i and (a, b) pairs in } X \times X \}

\Theta = \{ \text{ Distributions where each person i is independent } \}
```

Pufferfish Generalizes DP [KMI2]

Theorem: Pufferfish = Differential Privacy when:

```
S = \{ s_{i,a} := Person i has value a, for all i, all a in domain X \}
```

$$Q = \{ (s_{i,a} s_{i,b}), \text{ for all } i \text{ and } (a,b) \text{ pairs in } X \times X \}$$

 $\Theta = \{ \text{ Distributions where each person i is independent } \}$

Theorem: No utility possible when:

```
\Theta = \{ All possible distributions \}
```

Talk Agenda:

- 1. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
 - How to define privacy (for correlated data)
- 2. Privacy Mechanisms
 - A General Pufferfish Mechanism

How to get Pufferfish privacy?

Special case [KM12, HMD12, LCM16, GK16]

Is there a more general Pufferfish mechanism analogous to the sensitivity mechanism in DP?

Our work: Yes, the Wasserstein Mechanism

Intuition

Sensitivity Method:

Find the worst case "distance" |F(D) - F(D)| where D, D' differ in one person's value

For our case:

We have $p(F(X)|s_i,\theta)$ vs. $p(F(X)|s_j,\theta)$

What is the relevant "distance"?

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)}$$

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)}$$

Given measures p and q,

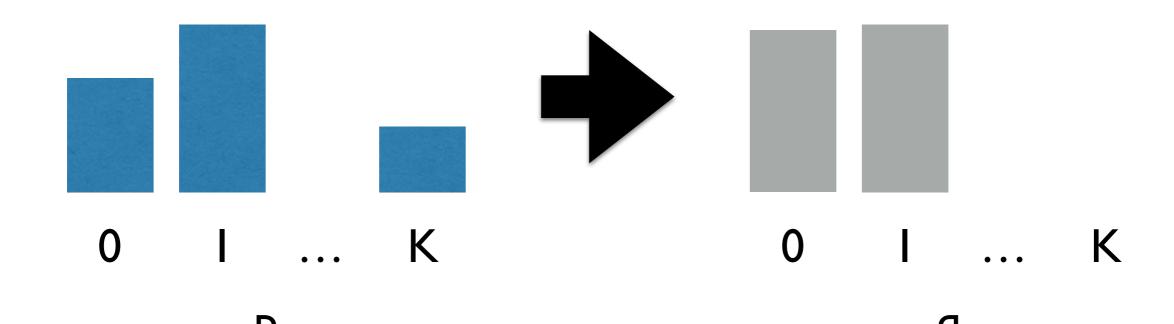
G(p,q) = all joint distributions with p and q as marginals

$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$

Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

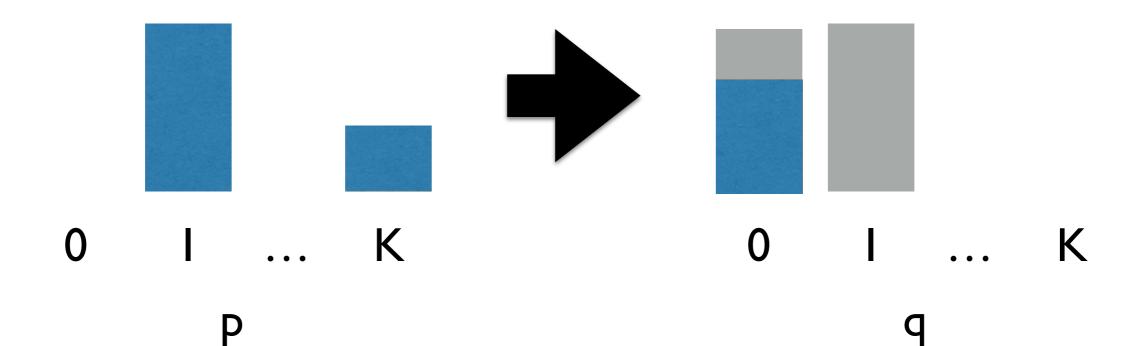
$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$



Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

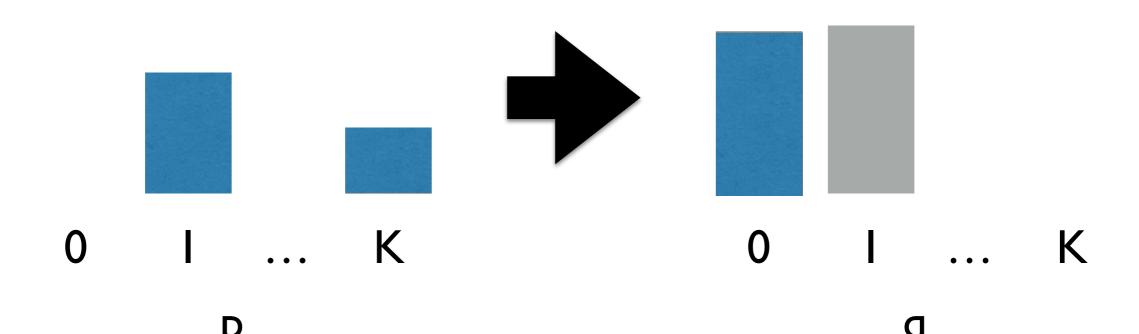
$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$



Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

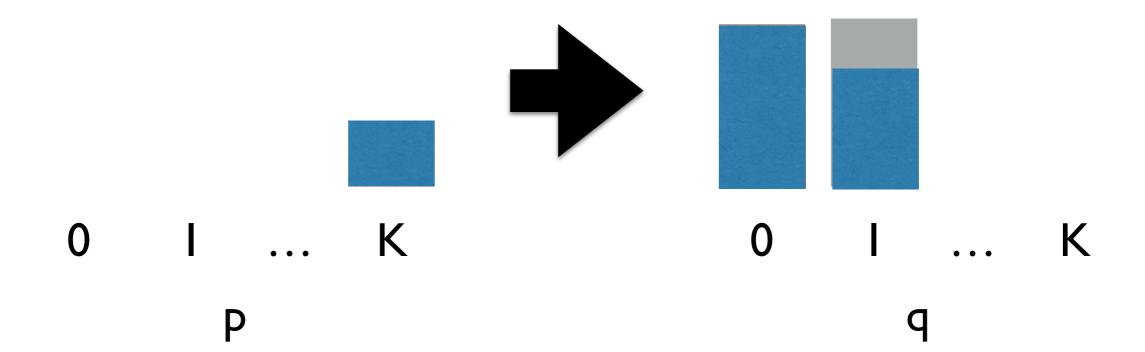
$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$



Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

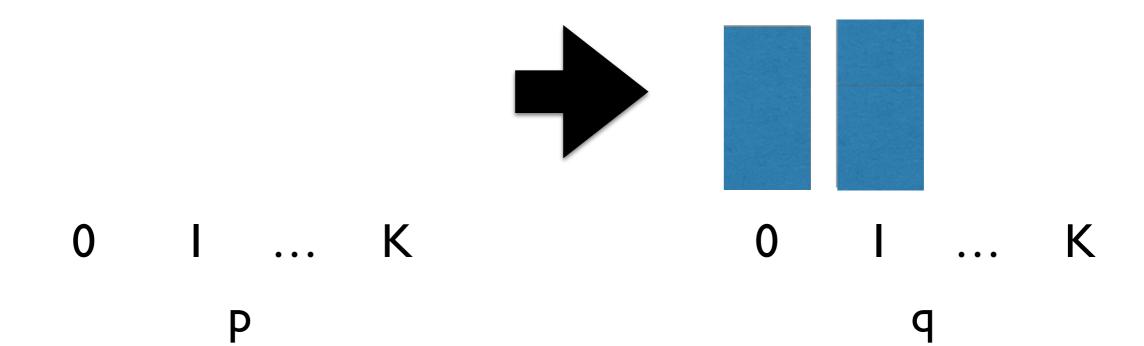
$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$



Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$



Given measures p and q,

G(p,q) = all joint distributions with p and q as marginals

$$W_{\inf}(p,q) = \inf_{\gamma \in G(p,q)} \max_{(x,y) \in supp(\gamma)} d(x,y)$$

$$W_{inf}(p,q) = K - I$$

O I ... K

Wasserstein Mechanism

Inputs:

Function F, Pufferfish framework (S, Q, Θ), Data D

Wasserstein Mechanism

Inputs:

Function F, Pufferfish framework (S, Q, Θ), Data D

I. For each (s_i, s_j) in Q, θ in Θ , define:

$$\mu_{i,\theta} = P(F(X)|s_i,\theta), \qquad \mu_{j,\theta} = P(F(X)|s_j,\theta)$$
 when $P(s_i|\theta) > 0, P(s_j|\theta) > 0$

Wasserstein Mechanism

Inputs:

Function F, Pufferfish framework (S, Q, ⊕), Data D

I. For each (s_i, s_j) in Q, θ in Θ , define:

$$\mu_{i,\theta}=P(F(X)|s_i,\theta), \qquad \mu_{j,\theta}=P(F(X)|s_j,\theta)$$
 when $P(s_i|\theta)>0, P(s_j|\theta)>0$

2. Find:
$$W^* = \sup_{i,j,\theta} W(\mu_{i,\theta}, \mu_{j,\theta})$$

Wasserstein Mechanism

Inputs:

Function F, Pufferfish framework (S, Q, ⊕), Data D

I. For each (s_i, s_j) in Q, θ in Θ , define:

$$\mu_{i,\theta} = P(F(X)|s_i,\theta), \qquad \mu_{j,\theta} = P(F(X)|s_j,\theta)$$
 when $P(s_i|\theta) > 0, P(s_j|\theta) > 0$

- 2. Find: $W^* = \sup_{i,j,\theta} W(\mu_{i,\theta}, \mu_{j,\theta})$
- 3. Output: F(D) + Z, where $Z \sim \frac{W^*}{\epsilon} Lap(1)$

Wasserstein Mechanism: Properties

- 1. ϵ -private in any Pufferfish framework
- 2. Reduces to sensitivity mechanism for DP

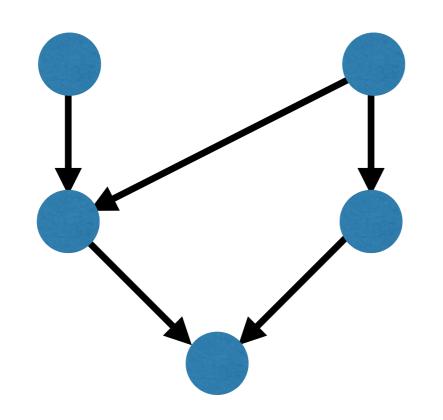
Problem: Computational efficiency

Can we do better?

Talk Agenda:

- I. Privacy for Correlated Data
 - How to define privacy (for uncorrelated data)
 - How to define privacy (for correlated data)
- 2. Privacy Mechanisms
 - A General Pufferfish Mechanism
 - A Computationally Efficient Mechanism

Correlation Measure: Bayesian Networks



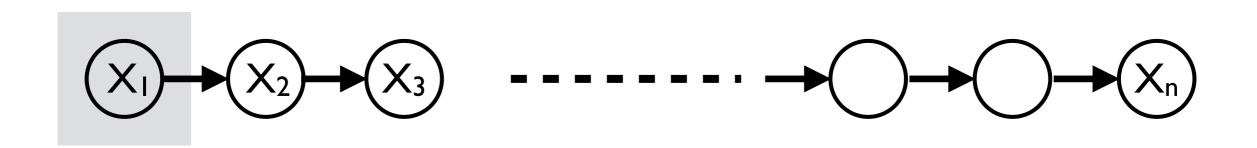
Node: variable

Directed Acyclic Graph

Joint distribution of variables:

$$\Pr(X_1, X_2, \dots, X_n) = \prod_i \Pr(X_i | \text{parents}(X_i))$$

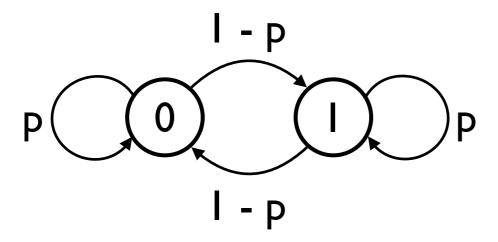
A Simple Example



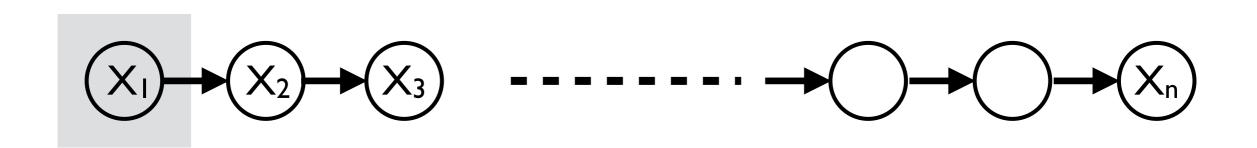
Model:

$$X_i$$
 in $\{0, 1\}$

State Transition Probabilities:



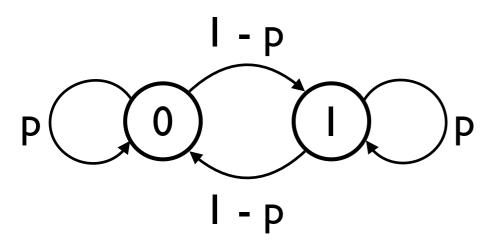
A Simple Example



Model:

$$X_i$$
 in $\{0, 1\}$

State Transition Probabilities:

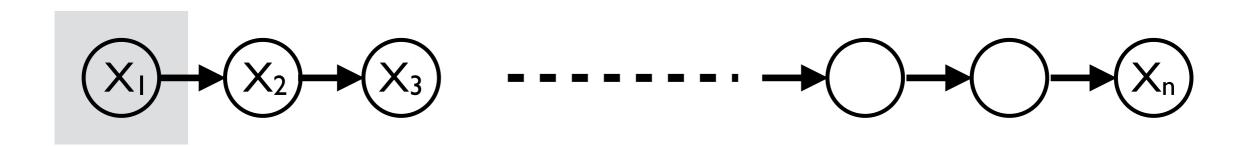


$$Pr(X_2 = 0 | X_1 = 0) = p$$

 $Pr(X_2 = 0 | X_1 = 1) = I - p$

• • • •

A Simple Example

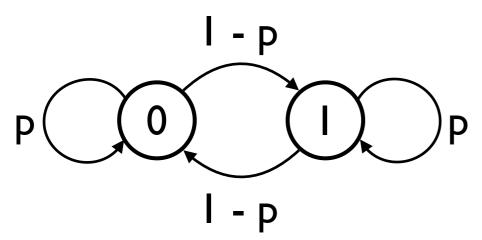


Model:

 X_i in $\{0, 1\}$

$Pr(X_2 = 0 | X_1 = 0) = p$ $Pr(X_2 = 0 | X_1 = 1) = I - p$

State Transition Probabilities:

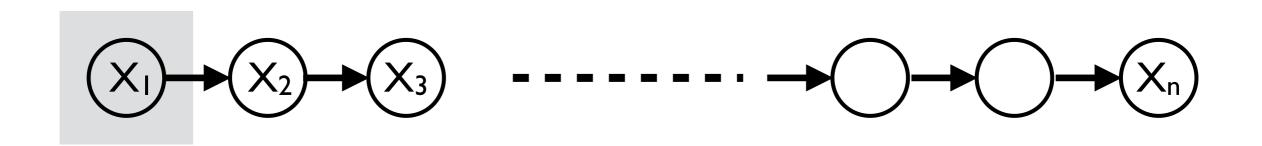


Pr(X_i = 0| X_I = 0) =
$$\frac{1}{2} + \frac{1}{2}(2p-1)^{i-1}$$

Pr(X_i = 0| X_I = I) = $\frac{1}{2} - \frac{1}{2}(2p-1)^{i-1}$

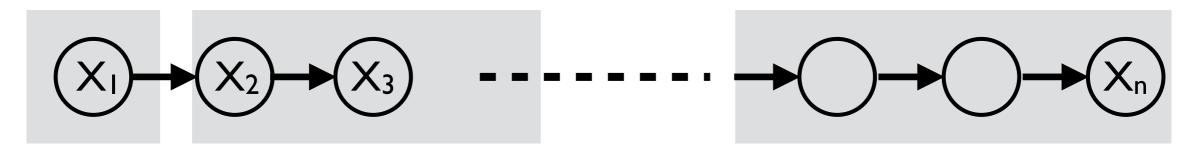
Influence of X₁ diminishes with distance

Algorithm: Main Idea



Goal: Protect X₁

Algorithm: Main Idea

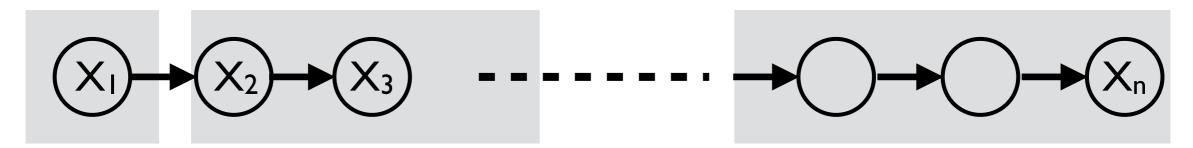


Local nodes (high correlation)

Rest (almost independent)

Goal: Protect X_I

Algorithm: Main Idea



Local nodes (high correlation)

Rest (almost independent)

Goal: Protect X_I

Add noise to hide local nodes

Small correction for rest

Measuring "Independence"

Max-influence of X_i on a set of nodes X_R :

$$e(X_R|X_i) = \max_{a,b} \sup_{\theta \in \Theta} \max_{x_R} \log \frac{\Pr(X_R = x_R|X_i = a, \theta)}{\Pr(X_R = x_R|X_i = b, \theta)}$$

Low $e(X_R|X_i)$ means X_R is almost independent of X_i

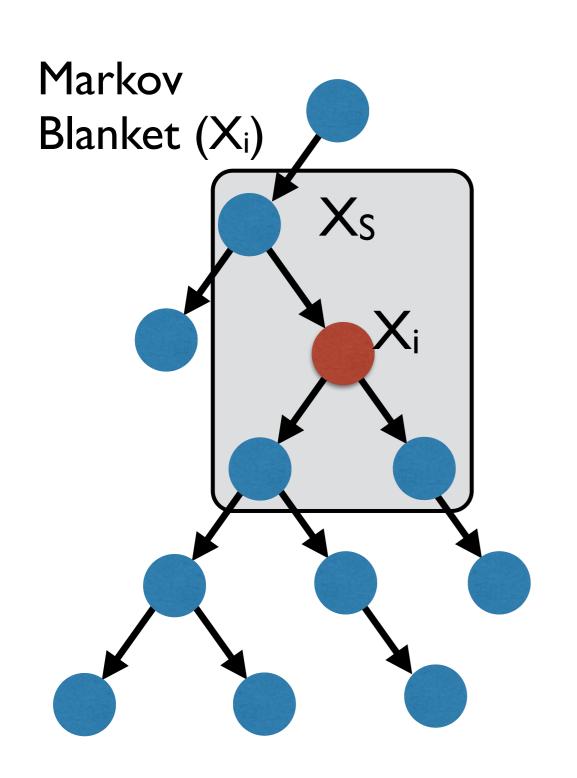
To protect X_i , correction term needed for X_R is $\exp(e(X_R|X_i))$

How to find large "almost independent" sets

Brute force search is expensive

Use structural properties of the Bayesian network

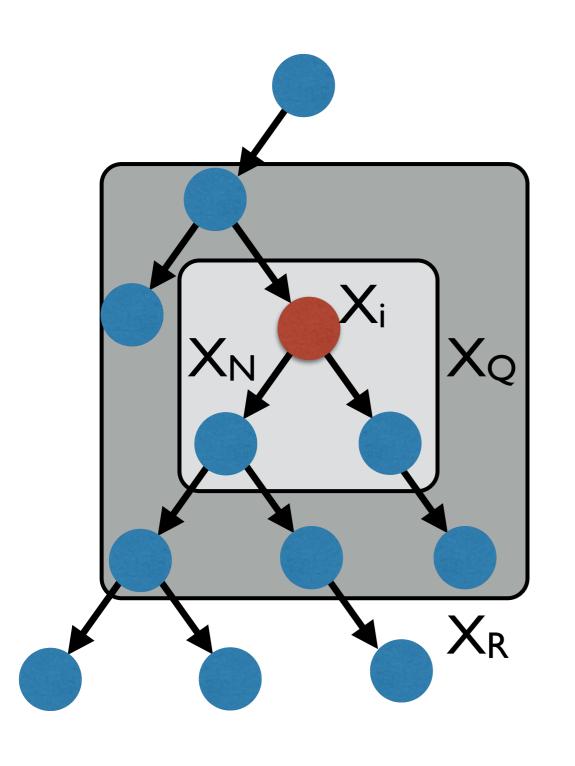
Markov Blanket



Markov Blanket(X_i) =
Set of nodes X_S s.t Xi is
independent of X\(X_i U X_S)
given X_S

(usually, parents, children, other parents of children)

Define: Markov Quilt

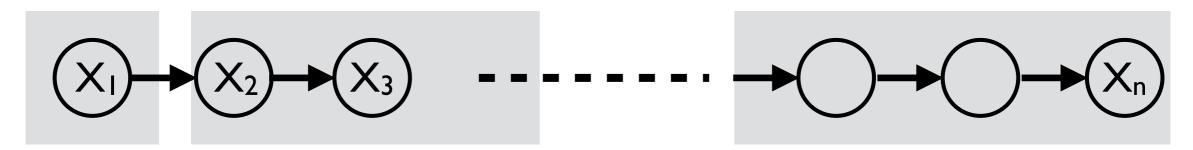


X_Q is a Markov Quilt of X_i if:

- I. Deleting X_Q breaks graph into X_N and X_R
- 2. X_i lies in X_N
- 3. X_R is independent of X_i given X_Q

(For Markov Blanket $X_N = X_i$)

Recall: Algorithm



Local nodes (high correlation)

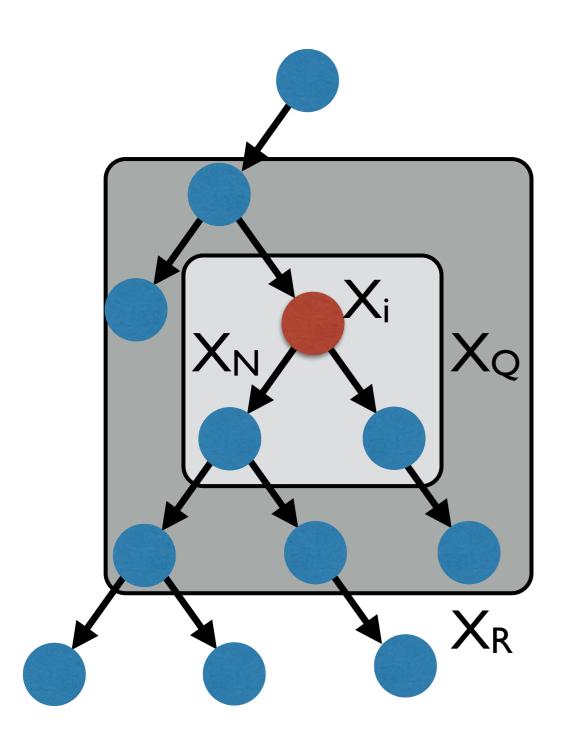
Rest (almost independent)

Goal: Protect X_I

Add noise to hide local nodes

Small correction for rest

Why do we need Markov Quilts?

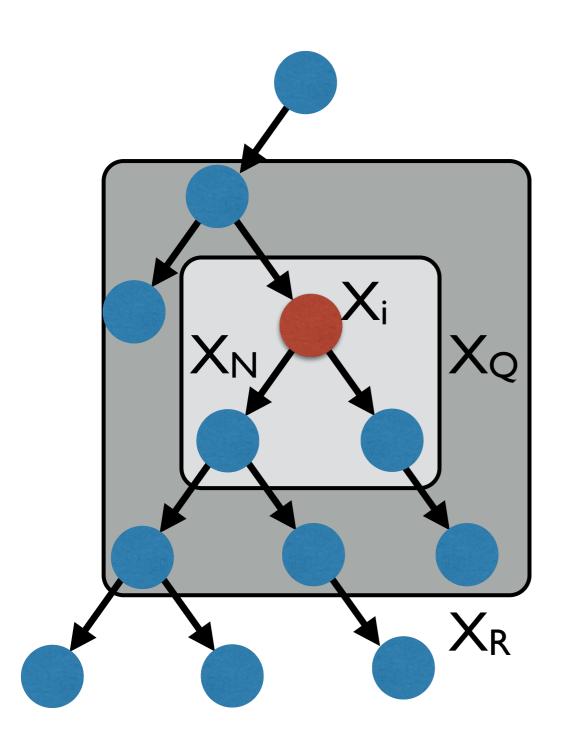


Given a Markov Quilt,

 $X_N = local nodes for X_i$

 $X_Q U X_R = rest$

Why do we need Markov Quilts?



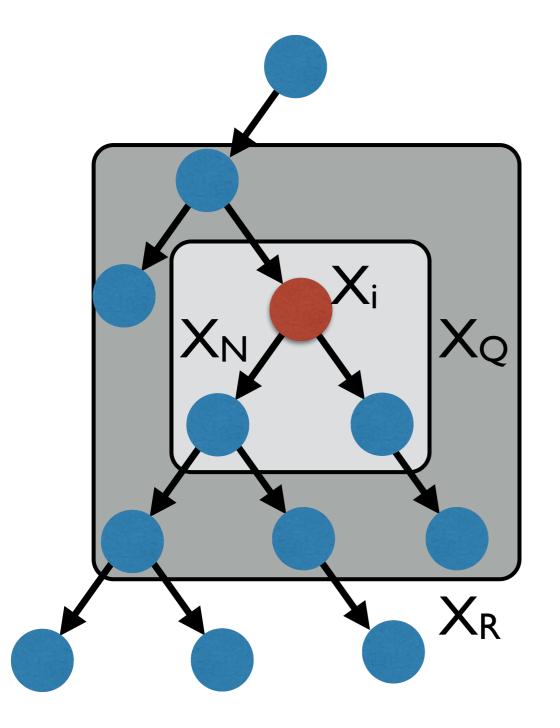
Given a Markov Quilt,

 X_N = local nodes for X_i

 $X_Q U X_R = rest$

Need to search over Markov Quilts X_Q to find the one which needs optimal amount of noise

From Markov Quilts to Amount of Noise



Let X_Q = Markov Quilt for X_i Stdev of noise to protect X_i :

Noise due to X_N

Score(X_Q) =
$$\frac{card(X_N)}{\epsilon - e(X_Q|X_i)}$$

Correction for $X_Q U X_R$

The Markov Quilt Mechanism

For each Xi

Find the Markov Quilt X_Q for X_i with minimum score s_i

Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

The Markov Quilt Mechanism

For each Xi

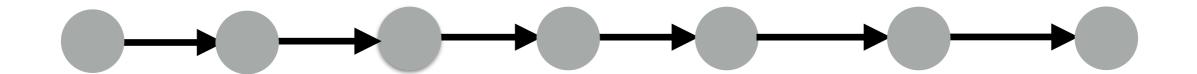
Find the Markov Quilt X_Q for X_i with minimum score s_i

Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

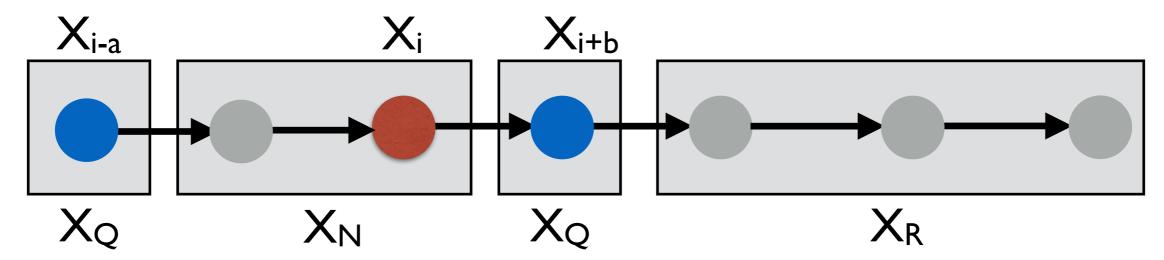
Theorem: This preserves ϵ -Pufferfish privacy

Advantage: Poly-time in special cases.

 $D = (x_1, ..., x_T), x_t = activity at time t$



 $D = (x_1, ..., x_T), x_t = activity at time t$



(Minimal) Markov Quilts for X_i have form $\{X_{i-a}, X_{i+b}\}$ Efficiently searchable

 \mathcal{X} : set of states

 $P_{\theta}: \quad \text{transition matrix describing each } \theta \in \Theta$

 \mathcal{X} : set of states

 P_{θ} : transition matrix describing each $\theta \in \Theta$

Under some assumptions, relevant parameters are:

$$\begin{split} \pi_\Theta &= \min_{x \in \mathcal{X}, \theta \in \Theta} \pi_\theta(x) \quad \text{(min prob of x under stationary distr.)} \\ g_\Theta &= \min_{\theta \in \Theta} \min\{1 - |\lambda| : P_\theta x = \lambda x, \lambda < 1\} \text{ (min eigengap of any } P_\theta\text{)} \end{split}$$

 \mathcal{X} : set of states

 $P_{\theta}: \quad \text{transition matrix describing each } \theta \in \Theta$

Under some assumptions, relevant parameters are:

$$\pi_{\Theta} = \min_{x \in \mathcal{X}, \theta \in \Theta} \pi_{\theta}(x)$$
 (min prob of x under stationary distr.)

$$g_{\Theta} = \min_{\theta \in \Theta} \min\{1 - |\lambda| : P_{\theta}x = \lambda x, \lambda < 1\}$$
 (min eigengap of any P_{θ})

Max-influence of $X_Q = \{X_{i-a}, X_{i+b}\}$ for X_i

$$e(X_Q|X_i) \le \log\left(\frac{\pi_{\Theta} + \exp(-g_{\Theta}b)}{\pi_{\Theta} - \exp(-g_{\Theta}b)}\right) + 2\log\left(\frac{\pi_{\Theta} + \exp(-g_{\Theta}a)}{\pi_{\Theta} - \exp(-g_{\Theta}a)}\right)$$

Score(X_Q) =
$$\frac{a+b-1}{\epsilon - e(X_Q|X_i)}$$

Markov Quilt Mechanism for Activity Monitoring

For each X_i

Find Markov Quilt $X_Q = \{X_{i-a}, X_{i+b}\}$ with minimum score s_i

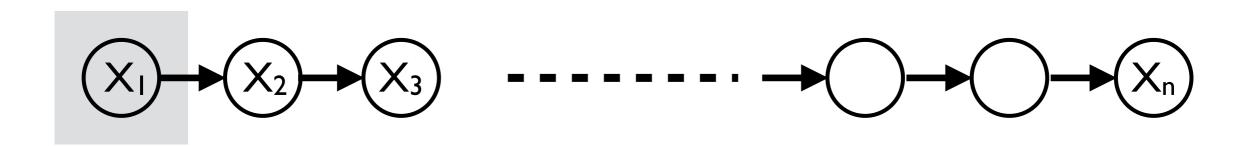
Output F(D) + (max_i s_i) Z where $Z \sim Lap(1)$

Running Time: $O(T^3)$ (can be made $O(T^2)$)

Advantage I: Consistency

Advantage 2: Composition (for chains)

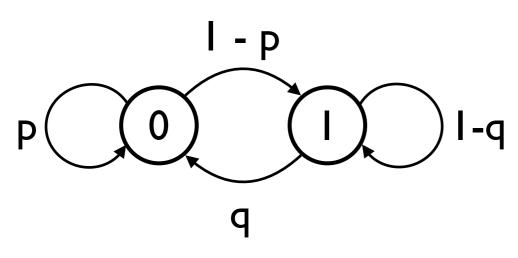
Simulations - Task



Model:

 X_i in $\{0, 1\}$

State Transition Probabilities:



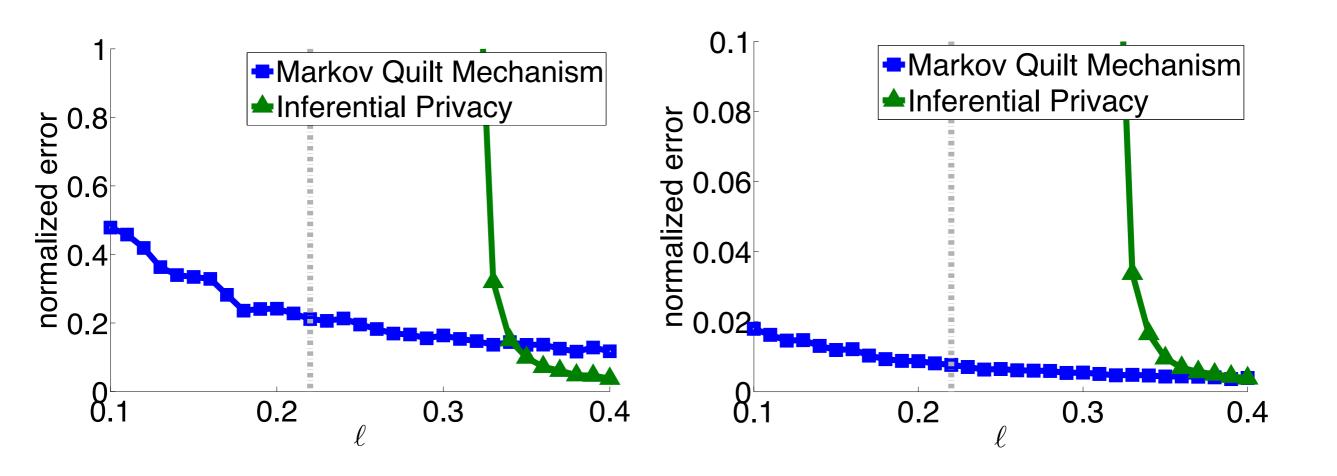
Model Class:

$$\Theta = [\ell, 1 - \ell]$$

(implies p and q can lie anywhere in Θ)

Sequence length = 100

Simulations - Results



Methods: Markov Quilt Mechanism vs. [GK16]

Preliminary Experiments

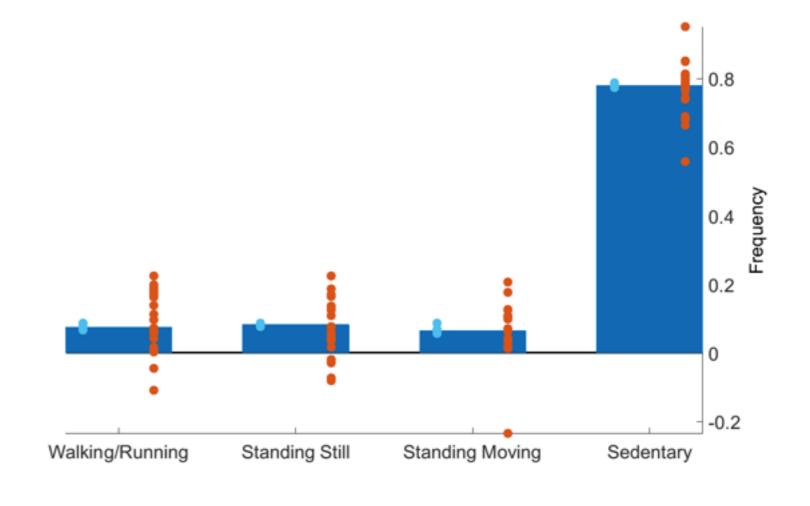
Data on physical activity performed by overweight subject

L₁ error:

MQM 0.012

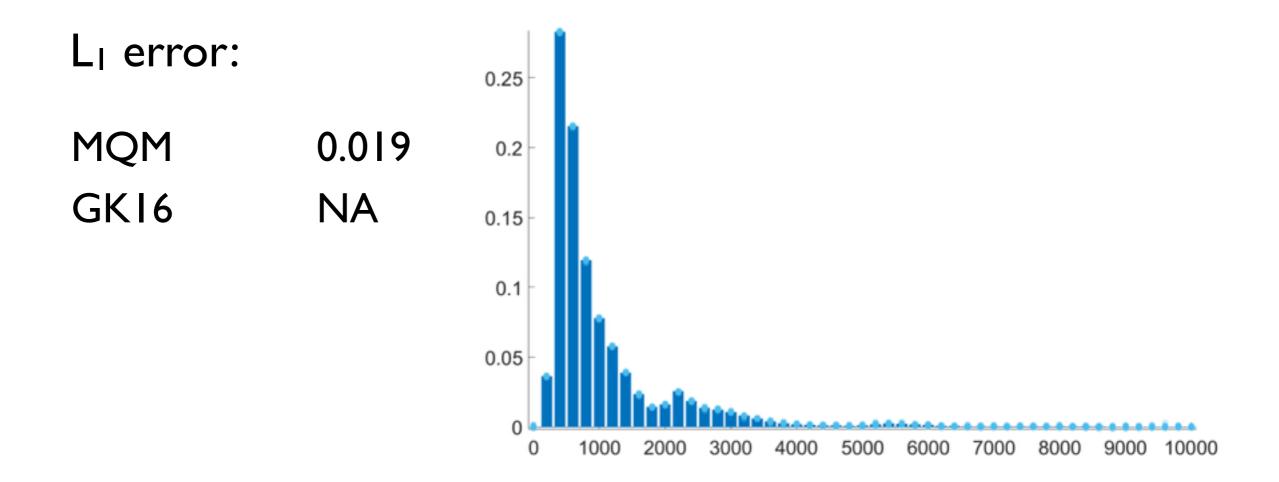
Group-DP 0.214

GKI6 NA



Preliminary Experiments

Electricity consumption of single household in Vancouver



Conclusion

Problem:

privacy of correlated data - time series, social networks

Contributions:

Two new mechanisms - a fully general mechanism, and a more efficient mechanism

Established composition of the Markov Quilt Mechanism

Future Work:

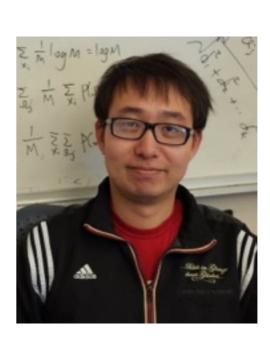
More efficient mechanisms, more detailed composition properties

Acknowledgements



Shuang Song

Mani Srivastava



Yizhen Wang

Questions?