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Sensitive Data

Medical Records

Search Logs

Social Networks



How do we analyze sensitive data while still 
preserving privacy?

Talk Agenda:

(Focus on correlated data)



Correlated Data

User information 
in social networks

Physical Activity
Monitoring



Why is Privacy Hard for Correlated Data?

Because neighbor’s information leaks 
information on user



Talk Agenda:

1. Privacy for Correlated Data
- How to define privacy (for uncorrelated data)



Differential Privacy [DMNS06]

“similar”

Randomized
Algorithm

Randomized 
Algorithm

Data  +

Data  +

Participation of a single person does not change output



Differential Privacy: Attacker’s View

Prior 
Knowledge +

Algorithm
Output on 
Data &

=
Conclusion

on

Prior 
Knowledge +

Algorithm
Output on 
Data &

=
Conclusion

on

a.   Algorithm could draw personal conclusions about Alice

b.   Alice has the agency to participate or not

Note:



What happens with correlated data?



Example 1: Activity Monitoring

Goal: Share aggregate data on physical activity with 
doctor, while hiding activity at each specific time.  
Agency is at the individual level.



Example 2: Spread of Flu in Network

Goal: Publish aggregate statistics over a set of schools, 
prevent adversary from knowing who has flu.  Agency at 
school level. 

Interaction  
Network



Why is Differential Privacy not Right 
for Correlated data?



Example: Activity Monitoring

Correlation 
Network

Goal: (1) Publish activity histogram
(2) Prevent adversary from knowing activity at t

D = (x1, .., xT),   xt = activity at time t



Example: Activity Monitoring

Correlation 
Network

Goal: (1) Publish activity histogram
(2) Prevent adversary from knowing activity at t

D = (x1, .., xT),   xt = activity at time t

Agency is at individual level, not time entry level



1-DP: Output histogram of activities + noise with stdev T

Correlation 
Network

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t

Too much noise - no utility!



1-entry-DP: Output histogram of activities +  
noise with stdev 1

Not enough - activities across time are correlated!

Correlation 
Network

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t



1-Entry-Group DP: Output histogram of activities 
 + noise with stdev T

Too much noise - no utility!

Correlation 
Network

D = (x1, .., xT),   xt = activity at time t

Example: Activity Monitoring



Pufferfish Privacy [KM12]

Secret Set S

S: Information to be protected

e.g:  Alice’s age is 25, Bob has a disease



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Q:  Pairs of secrets we want to be indistinguishable

e.g:  (Alice’s age is 25, Alice’s age is 40)

(Bob is in dataset, Bob is not in dataset)



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Distribution  
   Class ⇥

e.g:  (connection graph G, disease transmits w.p [0.1, 0.5])

(Markov Chain with transition matrix in set P)

:  A set of distributions that plausibly generate the data⇥

May be used to model correlation in data



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Distribution  
   Class ⇥

whenever P (si|✓), P (sj |✓) > 0

p(A(X)|sj , ✓)p(A(X)|si, ✓)

t

p✓,A(A(X) = t|si, ✓)  e✏ · p✓,A(A(X) = t|sj , ✓)

An algorithm A is    -Pufferfish private with parameters

(S,Q,⇥) if for all (si, sj) in Q, for all          ,             all t,✓ 2 ⇥ X ⇠ ✓,

✏



Pufferfish Generalizes DP [KM12]

Theorem:  Pufferfish = Differential Privacy when:

S = {  si,a := Person i has value a,  for all i, all a in domain X }

Q = {  (si,a si,b), for all i and (a, b) pairs in X x X }

= {  Distributions where each person i is independent }⇥



Pufferfish Generalizes DP [KM12]

Theorem:  Pufferfish = Differential Privacy when:

S = {  si,a := Person i has value a,  for all i, all a in domain X }

Q = {  (si,a si,b), for all i and (a, b) pairs in X x X }

= {  Distributions where each person i is independent }⇥

Theorem:  No utility possible when:

= {  All possible distributions }⇥



Talk Agenda:

1. Privacy for Correlated Data
- How to define privacy (for uncorrelated data)

- How to define privacy (for correlated data)

2.   Privacy Mechanisms
- A General Pufferfish Mechanism



How to get Pufferfish privacy?

Special case [KM12, HMD12, LCM16, GK16]

Is there a more general Pufferfish mechanism 
analogous to the sensitivity mechanism in DP?

Our work:  Yes, the Wasserstein Mechanism



Intuition

Sensitivity Method: 

Find the worst case “distance” |F(D) - F(D’)| 
where D, D’ differ in one person’s value

For our case:

What is the relevant “distance” ?
We have                    vs.p(F (X)|si, ✓) p(F (X)|sj , ✓)



Infinity Wasserstein Distance

Given measures p and q,
G(p,q) = all joint distributions with p and q as marginals

Winf(p, q) = inf

�2G(p,q)
max

(x,y)2supp(�)
d(x, y)

Infinity-Wasserstein distance:
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Infinity Wasserstein Distance

Given measures p and q,
G(p,q) = all joint distributions with p and q as marginals

Winf(p, q) = inf

�2G(p,q)
max

(x,y)2supp(�)
d(x, y)

Infinity-Wasserstein distance:

0 1 K… 0 1 K…

p q

Winf(p,q) = K - 1



Wasserstein Mechanism

Function F,  Pufferfish framework (S, Q,    ), Data D⇥
Inputs: 



Wasserstein Mechanism

when P (si|✓) > 0, P (sj |✓) > 0

Function F,  Pufferfish framework (S, Q,    ), Data D⇥
Inputs: 

For each (si, sj) in Q,     in    , define:⇥✓1. 
µi,✓ = P (F (X)|si, ✓), µj,✓ = P (F (X)|sj , ✓)



Wasserstein Mechanism

when P (si|✓) > 0, P (sj |✓) > 0

Function F,  Pufferfish framework (S, Q,    ), Data D⇥
Inputs: 

For each (si, sj) in Q,     in    , define:⇥✓1. 
µi,✓ = P (F (X)|si, ✓), µj,✓ = P (F (X)|sj , ✓)

W ⇤ = sup
i,j,✓

W (µi,✓, µj,✓)Find:2. 



Wasserstein Mechanism

when P (si|✓) > 0, P (sj |✓) > 0

Function F,  Pufferfish framework (S, Q,    ), Data D⇥
Inputs: 

For each (si, sj) in Q,     in    , define:⇥✓1. 
µi,✓ = P (F (X)|si, ✓), µj,✓ = P (F (X)|sj , ✓)

W ⇤ = sup
i,j,✓

W (µi,✓, µj,✓)Find:2. 

Output:   F(D) + Z, where3. Z ⇠ W ⇤

✏
Lap(1)



Wasserstein Mechanism: Properties

2.  Reduces to sensitivity mechanism for DP

1.     -private in any Pufferfish framework✏

Problem: Computational efficiency

Can we do better?



Talk Agenda:

1. Privacy for Correlated Data
- How to define privacy (for uncorrelated data)

- How to define privacy (for correlated data)

2.   Privacy Mechanisms
- A General Pufferfish Mechanism
- A Computationally Efficient Mechanism



Correlation Measure: Bayesian Networks

Node: variable

Directed Acyclic Graph

Pr(X1, X2, . . . , Xn) =
Y

i

Pr(Xi|parents(Xi))

Joint distribution of variables:



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp

Pr(X2 = 0| X1 = 0)  = p

….

Pr(X2 = 0| X1 = 1)  = 1 - p



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp

Pr(X2 = 0| X1 = 0)  = p

….

Influence of X1 diminishes with distance

Pr(Xi = 0| X1 = 0)  =
1

2
+

1

2
(2p� 1)i�1

Pr(X2 = 0| X1 = 1)  = 1 - p

1

2
� 1

2
(2p� 1)i�1Pr(Xi = 0| X1 = 1)  =



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn

Local nodes Rest
(high correlation) (almost independent)



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn

Add noise to hide
local nodes

Small correction
for rest+

Local nodes Rest
(high correlation) (almost independent)



Measuring “Independence”

Max-influence of Xi on a set of nodes XR:

To protect Xi, correction term needed for XR is 
exp(e(XR|Xi))

e(X

R

|X
i

) = max

a,b

sup

✓2⇥
max

xR

log

Pr(X

R

= x

R

|X
i

= a, ✓)

Pr(X

R

= x

R

|X
i

= b, ✓)

Low e(XR|Xi) means XR is almost independent of Xi



How to find large “almost 
independent” sets

Brute force search is expensive

Use structural properties of the Bayesian network



Markov Blanket

Markov Blanket(Xi) =
Set of nodes XS s.t Xi is 
independent of  X\(Xi U XS)
given XS

(usually, parents, children,
other parents of children)

Xi 

XS 

Markov 
Blanket (Xi)



Define: Markov Quilt

XQ is a Markov Quilt of Xi if:

2. Xi lies in XN

1. Deleting XQ breaks graph 
into XN and XR

3. XR is independent of Xi 

given XQ

Xi 
XQ 

XR 

XN 

(For Markov Blanket XN = Xi)



Recall: Algorithm

Goal: Protect X1

X1 X2 X3 Xn

Add noise to hide
local nodes

Small correction
for rest+

Local nodes Rest
(high correlation) (almost independent)



Why do we need Markov Quilts?

Given a Markov Quilt,

Xi 
XQ 

XR 

XN 

XN = local nodes for Xi 
XQ U XR = rest



Why do we need Markov Quilts?

Given a Markov Quilt,

Xi 
XQ 

XR 

XN 

XN = local nodes for Xi 
XQ U XR = rest

Need to search over Markov 
Quilts XQ to find the one 
which needs optimal amount 
of noise



 

From Markov Quilts to  
Amount of Noise

Xi 
XQ 

XR 

XN 

Stdev of noise to protect Xi:

Score(XQ) = 

Correction for XQ U XR 

Noise due to XN 

Let XQ = Markov Quilt for Xi

card(XN )

✏� e(XQ|Xi)



The Markov Quilt Mechanism

For each Xi

Find the Markov Quilt XQ for Xi with
minimum score si

Output F(D) + (maxi si) Z where Z ⇠ Lap(1)



The Markov Quilt Mechanism

For each Xi

Find the Markov Quilt XQ for Xi with
minimum score si

Output F(D) + (maxi si) Z where Z ⇠ Lap(1)

Advantage:  Poly-time in special cases.

Theorem: This preserves   -Pufferfish privacy✏



Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t



XQ

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t

(Minimal) Markov Quilts for Xi have form {Xi-a,Xi+b}

Xi Xi+bXi-a

Efficiently searchable

XN XQ XR



Example: Activity Monitoring

set of statesX :
P✓ : transition matrix describing each ✓ 2 ⇥



Example: Activity Monitoring

Under some assumptions, relevant parameters are:

⇡⇥ = min
x2X ,✓2⇥

⇡

✓

(x) (min prob of x under stationary distr.)

set of statesX :
P✓ : transition matrix describing each ✓ 2 ⇥

g⇥ = min
✓2⇥

min{1� |�| : P✓x = �x,� < 1} (min eigengap of any     )P✓



Example: Activity Monitoring

Under some assumptions, relevant parameters are:

⇡⇥ = min
x2X ,✓2⇥

⇡

✓

(x) (min prob of x under stationary distr.)

set of statesX :
P✓ : transition matrix describing each ✓ 2 ⇥

g⇥ = min
✓2⇥

min{1� |�| : P✓x = �x,� < 1} (min eigengap of any     )P✓

e(XQ|Xi)  log

✓
⇡⇥ + exp(�g⇥b)

⇡⇥ � exp(�g⇥b)

◆
+ 2 log

✓
⇡⇥ + exp(�g⇥a)

⇡⇥ � exp(�g⇥a)

◆
Max-influence of XQ = {Xi-a,Xi+b} for Xi

Score(XQ) =   
a+ b� 1

✏� e(XQ|Xi)



Markov Quilt Mechanism for  
Activity Monitoring

For each Xi

Find Markov Quilt XQ = {Xi-a,Xi+b} with
minimum score si

Output F(D) + (maxi si) Z where Z ⇠ Lap(1)

Running Time: O(T3)  (can be made O(T2) )

Advantage 1: Consistency

Advantage 2: Composition (for chains)



Simulations - Task

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

q

1-qp

Model Class:
⇥ = [`, 1� `]

(implies p and q can lie
anywhere in    )⇥

Sequence length = 100



Simulations - Results
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Markov Quilt Mechanism
Inferential Privacy
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Markov Quilt Mechanism
Inferential Privacy

Methods:  Markov Quilt Mechanism vs. [GK16]



Preliminary Experiments

Data on physical activity performed by overweight subject

MQM

Group-DP

GK16

0.012

0.214

NA

L1 error: 



Preliminary Experiments

Electricity consumption of single household in Vancouver

MQM
GK16

0.019
NA

L1 error: 



Conclusion

Problem:
privacy of correlated data - time series, social networks

Contributions:

Two new mechanisms - a fully general mechanism, 
and a more efficient mechanism

Future Work:

Established composition of the Markov Quilt Mechanism

More efficient mechanisms, more detailed composition 
properties
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