Stochastic Control by Entropy Compression

Dimitris Achlioptas Fotis Iliopoulos 2 Nikos Vlassis 3

UC Santa Cruz

UC Berkeley

Adobe Research

Stochastic Control

Dimitris Achlioptas (UC Santa Cruz) [Stochastic Control by Entropy Compression](#page-0-0) Simons Uncertainty 2016 2 / 18

Stochastic Control

4 D F

× × э

The Probabilistic Method

- Probability space + Collection $B = {\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_m}$ of "bad" events.
- If $\{\mathcal{E}_i\}$ are independent, $\Pr[\text{Nothing bad happens}] = \prod_{i=1}^m (1 p_i).$
- What if avoiding some bad events boosts some other bad events?

Example: $\Omega = \{0, 1\}^3$ with uniform measure, $F = (x_1 \vee x_2) \wedge (\overline{x_2} \vee x_3)$.

The Probabilistic Method

- Probability space + Collection $B = {\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_m}$ of "bad" events.
- If $\{\mathcal{E}_i\}$ are independent, $\Pr[\text{Nothing bad happens}] = \prod_{i=1}^m (1 p_i).$
- What if avoiding some bad events boosts some other bad events?

Example: $\Omega = \{0, 1\}^3$ with uniform measure, $F = (x_1 \vee x_2) \wedge (\overline{x_2} \vee x_3)$.

Symmetric LLL (Erdős, Lovász '75)

Assume that every bad event has probability at most *p* and is independent of all but at most Δ bad events. If

$$
p\Delta \leq 1/e ,
$$

then Pr[Nothing bad happens] *>* 0.

Example

Every *k*-CNF formula in which each clause shares variables with at most $\Delta \leq 2^k/e$ other clauses is satisfiable. **Proof:** $2^{-k}\Delta \leq 1/e$. $\Delta \leq 2^k/e$ other clauses is satisfiable.

Example

Every *k*-CNF formula in which each clause shares variables with at most $\Delta < 2^k/e$ other clauses is satisfiable. **Proof:** $2^{-k}\Delta < 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k)2^k/e$, where $\delta_k \to 0$.

Example

Every *k*-CNF formula in which each clause shares variables with at most $\Delta < 2^k/e$ other clauses is satisfiable. **Proof:** $2^{-k}\Delta < 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k)2^k/e$, where $\delta_k \to 0$.

Algorithmic LLL: a s.t.a can be found efficiently if $\Delta \leq 2^{k/4}$ [Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]

Example

Every *k*-CNF formula in which each clause shares variables with at most $\Delta < 2^k/e$ other clauses is satisfiable. **Proof:** $2^{-k}\Delta < 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k)2^k/e$, where $\delta_k \to 0$.

Algorithmic LLL: a s.t.a can be found efficiently if $\Delta \leq 2^{k/4}$

[Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]

Theorem (Moser '09)

If $\Delta(F) < 2^{k-5}$ a sat assignment can be found in $O(|V| + |F| \log |F|)$.

[M](#page-9-0)os[e](#page-9-0)r'[s](#page-3-0)ideas, with more care, yield $2^k/e$. [\[](#page-8-0)Mes[sn](#page-8-0)e[r,](#page-2-0) [T](#page-8-0)[hi](#page-9-0)[er](#page-0-0)[auf](#page-40-0) 11]

Moser's Algorithm

Resample

- 1: Start at an arbitrary truth assignment
- 2: while violated clauses exist do
- 3: Select a random violated clause *c*
- 4: for each variable *v* of *c* independently do
- 5: Set v to $0/1$ with equal probability

 $The Flaws/Actions Framework$ [A., Iliopoulos FOCS'14/JACM'16]

 Ω

Let Ω be an arbitrary finite set.

Let $F = \{f_1, f_2, \ldots, f_m\}$ be arbitrary subsets of Ω called flaws.

The Flaws/Actions Framework [A., Iliopoulos FOCS'14/JACM'16]

イロメ イ母メ イヨメ イヨ

 Ω

Let Ω be an arbitrary finite set.

Let $F = \{f_1, f_2, \ldots, f_m\}$ be arbitrary subsets of Ω called flaws.

Goal

When flawless objects exist, find one in much less time than *|*⌦*|*.

How?

- **Specify a directed graph** D on Ω such that:
	- Every flawed object has outdegree at least 1.
	- Every flawless object has outdegree 0.
- Start at an arbitrary $\sigma_1 \in \Omega$
- \blacksquare Take a random walk on D until you reach a sink.

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Moser's Algorithm on a *k*-CNF formula

If $F = c_1 \wedge \cdots \wedge c_m$ is a *k*-CNF formula with *n* variables:

\n- \n
$$
\Omega = \{0, 1\}^n
$$
\n
\n- \n
$$
f_i = \{\sigma \in \Omega : \sigma \text{ violates clause } c_i\}
$$
\n
\n- \n
$$
A(f_i, \sigma) = \{\text{The } 2^k \text{ mutations of } \sigma \text{ through } \text{var}(c_i)\}
$$
\n
\n

The 2^k actions in $A(f_i, \sigma)$ are equiprobable, for all (i, σ)

Local Entropy

Let $\rho_i(\sigma, \tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw *fⁱ* is

> min $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is *k*.

Local Entropy

Let $\rho_i(\sigma, \tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw *fⁱ* is

> min $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is *k*.

Local Entropy

Let $\rho_i(\sigma, \tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw *fⁱ* is

> min $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is *k*.

Congestion

Let In $\text{Deg}_i(\tau) = |\sigma : \tau \in A(f_i, \sigma)|$. The congestion of flaw f_i is

 $\max_{\tau \in \Omega} \log_2[\text{InDeg}_i(\tau)]$.

Example: The congestion of every flaw in Moser's algorithm is 0.

 QQ

画

イロト イ押ト イヨト イヨト

Local Entropy

Let $\rho_i(\sigma, \tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw *fⁱ* is

> min $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is *k*.

Amenability $=$ Local Entropy minus Congestion

$$
\begin{aligned} \text{Amenability}(f_i) &= \text{Local Entropy}(f_i) - \text{Congestion}(f_i) \\ &= \min_{\sigma \in f_i} H[\rho(\sigma, \cdot)] - \max_{\tau \in \Omega} \log_2[\text{Index}_i(\tau)] \end{aligned}
$$

Ex[a](#page-22-0)mp[l](#page-20-0)e: The amenability of every flaw in Mos[er'](#page-20-0)[s](#page-22-0) al[go](#page-21-0)[ri](#page-22-0)[t](#page-8-0)[h](#page-9-0)[m](#page-40-0) [is](#page-8-0) $k - 0 = k$ $k - 0 = k$

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in σ , and,
- **Flaw** f_i itself, if $\tau \in f_i$.

Potential Causality Let $\Gamma_i = \bigcup$ $\sigma \in f_i$ $\tau \in A(f_i, \sigma)$ $\Gamma_i(\sigma,\tau)$

Example

In Moser's algorithm each clause potentially causes:

- Each clause with which it shares a variable with opposite sign
- \blacksquare Itself

 QQQ

Results: Noiseless Case

```
Let \sigma_1 \in \Omega be arbitrary.
For t = 1, 2, ...Let f_i be a random flaw present in \sigma_t.
      Move to \tau \in A(f_i, \sigma) with probability \rho_i(\sigma, \tau).
```
Results: Noiseless Case

```
Let \sigma_1 \in \Omega be arbitrary.
```
For
$$
t = 1, 2, \ldots
$$

- Let f_i be a random flaw present in σ_t .
- Move to $\tau \in A(f_i, \sigma)$ with probability $\rho_i(\sigma, \tau)$.

Theorem

If for every flaw *fi*,

$$
\sum_{f_j \in \Gamma_i} 2^{-\text{Amen}(f_j)} < \frac{1}{4} \enspace,
$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + |F|$.

Results: Noiseless Case

```
Let \sigma_1 \in \Omega be arbitrary.
```
For
$$
t = 1, 2, \ldots
$$

- Let f_i be a random flaw present in σ_t .
- **M**ove to $\tau \in A(f_i, \sigma)$ with probability $\rho_i(\sigma, \tau)$.

Theorem

If for every flaw *fi*,

$$
\sum_{f_j \in \Gamma_i} 2^{-\text{Amen}(f_j)} < \frac{1}{4} \enspace,
$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + |F|$.

Example

[F](#page-30-0)or Moser's algorithm on *k*-CNF formulas we g[et](#page-31-0) $\Delta(F) < 2^{k-2}$ $\Delta(F) < 2^{k-2}$ [.](#page-9-0)

Let's Add Some Noise

4 D F

a.

 299

画

 \mathcal{A} ÷.

Let's Add Some Noise

4. 0. 8.

×.

 299

э

重

≈ \sim \sim

Let's Add Some Noise

Question: Can we still find a satisfying assignment if:

- The lightbulbs are faulty, having both false positives and negatives.
- When we reset a variable it doesn't always happen.
- **Natiables change values on their own, silently.**

Let's Add Some Noise

Question: Can we still find a satisfying assignment if:

- **The lightbulbs are faulty, having both false positives and negatives.**
- When we reset a variable it doesn't always happen.
- **Natiables change values on their own, silently.**

Answer: Yes! Lack of "internal conflict" implies "noise resistance".

Modeling Noise

4 D F

÷,

Þ × \mathcal{A}

Modeling Noise

4 D F

 299

э

 \mathcal{A} ∍

Modeling Noise

In each step:

- With probability $1 p$ the system acts normally
- With probability p it acts according to the adversary's chain

Thinking of the adversary's chain as just some other algorithm, we define

$$
q_i(p) = p \left[|\Gamma_i^*| \left(b^* + \frac{5}{2} + h(p) \right) - 2 - h(p) \right]
$$

\$\sim p |\Gamma_i^*| b^* ,

where $b^* = \max_i$ Congestion(f_i).

 \Box

 QQ

Thinking of the adversary's chain as just some other algorithm, we define

$$
q_i(p) = p \left[|\Gamma_i^*| \left(b^* + \frac{5}{2} + h(p) \right) - 2 - h(p) \right]
$$

\$\sim p |\Gamma_i^*| b^* ,

where $b^* = \max_i$ Congestion(f_i).

Theorem

If for every flaw *fi*,

$$
\sum_{f_j \in \Gamma_i} 2^{-\text{Amen}(f_j) + q_j(p)} < \frac{1}{4} 2^{-h(p)} \enspace ,
$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + m$.

(□) (f)

一本 語り

画

 QQ

Thanks!

Dimitris Achlioptas (UC Santa Cruz) Stochastic Control by Entropy Compression Simons Uncertainty 2016 18 / 18

4 D F

×.

重

× \sim 重

∍