Stochastic Control by Entropy Compression

Dimitris Achlioptas ¹ Fotis Iliopoulos ² Nikos Vlassis ³

¹UC Santa Cruz

²UC Berkeley

³Adobe Research

Stochastic Control

Dimitris Achlioptas (UC Santa Cruz) Stochastic Control by Entropy Compression Simons Unc

2 / 18

Stochastic Control

Dimitris Achlioptas (UC Santa Cruz) Stochastic Control by Entropy Compression Simons Uncertainty 2016 4 / 18

э

The Probabilistic Method

- Probability space + Collection $B = \{\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_m\}$ of "bad" events.
- If $\{\mathcal{E}_i\}$ are independent, $\Pr[\text{Nothing bad happens}] = \prod_{i=1}^m (1-p_i)$.
- What if avoiding some bad events boosts some other bad events ?

Example: $\Omega = \{0,1\}^3$ with uniform measure, $F = (x_1 \lor x_2) \land (\overline{x_2} \lor x_3)$.

The Probabilistic Method

- Probability space + Collection $B = \{\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_m\}$ of "bad" events.
- If $\{\mathcal{E}_i\}$ are independent, $\Pr[\text{Nothing bad happens}] = \prod_{i=1}^m (1-p_i)$.
- What if avoiding some bad events boosts some other bad events ?

Example: $\Omega = \{0, 1\}^3$ with uniform measure, $F = (x_1 \lor x_2) \land (\overline{x_2} \lor x_3)$.

Symmetric LLL (Erdős, Lovász '75)

Assume that every bad event has probability at most p and is independent of all but at most Δ bad events. If

$$p\Delta \leq 1/\mathrm{e}$$
 ,

then $\Pr[\text{Nothing bad happens}] > 0$.

Example

 $\begin{array}{ll} \mbox{Every k-CNF formula in which each clause shares variables with at most} \\ \Delta \leq 2^k/\mbox{e other clauses is satisfiable.} \end{array} \begin{array}{ll} \mbox{Proof: } 2^{-k}\Delta \leq 1/\mbox{e.} \end{array}$

Example

Every k-CNF formula in which each clause shares variables with at most $\Delta \leq 2^k/e$ other clauses is satisfiable. Proof: $2^{-k}\Delta \leq 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k) 2^k / e$, where $\delta_k \to 0$.

Example

Every k-CNF formula in which each clause shares variables with at most $\Delta \leq 2^k/e$ other clauses is satisfiable. Proof: $2^{-k}\Delta \leq 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k) 2^k / e$, where $\delta_k \to 0$.

Algorithmic LLL: a s.t.a can be found efficiently if $\Delta \le 2^{k/4}$ [Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]

Example

Every k-CNF formula in which each clause shares variables with at most $\Delta \leq 2^k/e$ other clauses is satisfiable. Proof: $2^{-k}\Delta \leq 1/e$.

Theorem (Gebauer, Szabo, Tardos '11)

There exist unsatisfiable formulas with $\Delta = (1 + \delta_k) 2^k / e$, where $\delta_k \to 0$.

Algorithmic LLL: a s.t.a can be found efficiently if $\Delta \le 2^{k/4}$ [Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]

Theorem (Moser '09)

If $\Delta(F) < 2^{k-5}$ a sat assignment can be found in $O(|V| + |F| \log |F|)$.

Moser's ideas, with more care, yield $2^k/e$.

[Messner, Thierauf 11]

Moser's Algorithm

Resample

- 1: Start at an arbitrary truth assignment
- 2: while violated clauses exist do
- 3: Select a random violated clause c
- 4: for each variable v of c independently do
- 5: Set v to 0/1 with equal probability

The Flaws/Actions Framework

[A., Iliopoulos FOCS'14/JACM'16]

Let Ω be an arbitrary finite set.

Let $F = \{f_1, f_2, \dots, f_m\}$ be arbitrary subsets of Ω called flaws.

The Flaws/Actions Framework

[A., Iliopoulos FOCS'14/JACM'16]

Let Ω be an arbitrary finite set.

Let $F = \{f_1, f_2, \dots, f_m\}$ be arbitrary subsets of Ω called flaws.

Goal

When flawless objects exist, find one in much less time than $|\Omega|$.

How?

- Specify a directed graph D on Ω such that:
 - Every flawed object has outdegree at least 1.
 - Every flawless object has outdegree 0.
- Start at an arbitrary $\sigma_1 \in \Omega$
- Take a random walk on D until you reach a sink.

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Address a Random Flaw of the Current State

Dimitris Achlioptas (UC Santa Cruz) Stochastic Control by Entropy Compression Simons Uncertainty 2016 9 / 18

Address a Random Flaw of the Current State

Moser's Algorithm on a k-CNF formula

If $F = c_1 \wedge \cdots \wedge c_m$ is a k-CNF formula with n variables:

$$\ \ \, \Omega=\{0,1\}^n$$

•
$$f_i = \{ \sigma \in \Omega : \sigma \text{ violates clause } c_i \}$$

•
$$A(f_i, \sigma) = \{ \text{The } 2^k \text{ mutations of } \sigma \text{ through } var(c_i) \}$$

• The 2^k actions in $A(f_i, \sigma)$ are equiprobable, for all (i, σ)

Local Entropy

Let $\rho_i(\sigma,\tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw f_i is

 $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is k.

Local Entropy

Let $\rho_i(\sigma,\tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw f_i is

 $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is k.

Local Entropy

Let $\rho_i(\sigma,\tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw f_i is

 $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is k.

Congestion

Let $\operatorname{InDeg}_i(\tau) = |\sigma: \tau \in A(f_i, \sigma)|$. The congestion of flaw f_i is

 $\max_{\tau\in\Omega}\log_2[\mathrm{InDeg}_i(\tau)] \ .$

Example: The congestion of every flaw in Moser's algorithm is 0.

イロト 人間ト イヨト イヨト

3

Local Entropy

Let $\rho_i(\sigma,\tau)$ denote the probability of $\sigma \to \tau$ when addressing f_i at σ . The local entropy of flaw f_i is

 $\min_{\sigma \in f_i} H[\rho_i(\sigma, \cdot)]$

Example: The local entropy of every flaw in Moser's algorithm is k.

Amenability = Local Entropy minus Congestion

$$\begin{aligned} \mathsf{Amenability}(f_i) &= \mathsf{Local Entropy}(f_i) - \mathsf{Congestion}(f_i) \\ &= \min_{\sigma \in f_i} H[\rho(\sigma, \cdot)] - \max_{\tau \in \Omega} \log_2[\mathrm{Indeg}_i(\tau)] \end{aligned}$$

Example: The amenability of every flaw in Moser's algorithm is k - 0 = k

- Every flaw present in τ that was not present in σ , and,
- Flaw f_i itself, if $\tau \in f_i$.

- Every flaw present in τ that was not present in σ , and,
- Flaw f_i itself, if $\tau \in f_i$.

- Every flaw present in τ that was not present in σ , and,
- Flaw f_i itself, if $\tau \in f_i$.

- Every flaw present in τ that was not present in σ , and,
- Flaw f_i itself, if $\tau \in f_i$.

- Every flaw present in τ that was not present in σ , and,
- Flaw f_i itself, if $\tau \in f_i$.

For each $\tau \in A(f_i, \sigma)$ we define the set of flaws $\Gamma_i(\sigma, \tau)$ to contain:

- Every flaw present in τ that was not present in $\sigma,$ and,
- Flaw f_i itself, if $\tau \in f_i$.

Potential Causality Let $\Gamma_i = \bigcup_{\substack{\sigma \in f_i \\ \tau \in A(f_i,\sigma)}} \Gamma_i(\sigma,\tau)$

Example

In Moser's algorithm each clause potentially causes:

- Each clause with which it shares a variable with opposite sign
- Itself

Results: Noiseless Case

```
• Let \sigma_1 \in \Omega be arbitrary.
```

```
• For t = 1, 2, ...
```

- Let f_i be a random flaw present in σ_t .
- Move to $\tau \in A(f_i, \sigma)$ with probability $\rho_i(\sigma, \tau)$.

Results: Noiseless Case

```
• Let \sigma_1 \in \Omega be arbitrary.
```

• For
$$t = 1, 2, ...$$

- Let f_i be a random flaw present in σ_t .
- Move to $\tau \in A(f_i, \sigma)$ with probability $\rho_i(\sigma, \tau)$.

Theorem

If for every flaw f_i ,

$$\sum_{j\in\Gamma_i} 2^{-\operatorname{Amen}(f_j)} < \frac{1}{4} ,$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + |F|$.

Results: Noiseless Case

```
• Let \sigma_1 \in \Omega be arbitrary.
```

• For
$$t = 1, 2, ...$$

- Let f_i be a random flaw present in σ_t .
- Move to $\tau \in A(f_i, \sigma)$ with probability $\rho_i(\sigma, \tau)$.

Theorem

If for every flaw f_i ,

$$\sum_{j \in \Gamma_i} 2^{-\operatorname{Amen}(f_j)} < \frac{1}{4} ,$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + |F|$.

Example

For Moser's algorithm on k-CNF formulas we get $\Delta(F) < 2^{k-2}$.

Let's Add Some Noise

3

Let's Add Some Noise

э.

3

Let's Add Some Noise

Question: Can we still find a satisfying assignment if:

- The lightbulbs are faulty, having both false positives and negatives.
- When we reset a variable it doesn't always happen.
- Variables change values on their own, silently.

Let's Add Some Noise

Question: Can we still find a satisfying assignment if:

- The lightbulbs are faulty, having both false positives and negatives.
- When we reset a variable it doesn't always happen.
- Variables change values on their own, silently.

Answer: Yes! Lack of "internal conflict" implies "noise resistance".

Modeling Noise

2

→ < ∃ →</p>

- 一司

Modeling Noise

2

→ < ∃ →</p>

- 一司

Modeling Noise

In each step:

- \blacksquare With probability 1-p the system acts normally
- \blacksquare With probability p it acts according to the adversary's chain

Thinking of the adversary's chain as just some other algorithm, we define

$$q_i(p) = p \left[\left| \Gamma_i^* \right| \left(b^* + \frac{5}{2} + h(p) \right) - 2 - h(p) \right]$$

~ $p \left| \Gamma_i^* \right| b^*$,

where $b^* = \max_i \text{Congestion}(f_i)$.

Thinking of the adversary's chain as just some other algorithm, we define

$$\begin{aligned} q_i(p) &= p \left[|\Gamma_i^*| \left(b^* + \frac{5}{2} + h(p) \right) - 2 - h(p) \right] \\ &\sim p \left| \Gamma_i^* \right| b^* \ , \end{aligned}$$

where $b^* = \max_i \text{Congestion}(f_i)$.

Theorem

If for every flaw f_i ,

$$\sum_{f_j \in \Gamma_i} 2^{-\operatorname{Amen}(f_j) + q_j(p)} < \frac{1}{4} 2^{-h(p)}$$

then the probability we don't reach a flawless state within $O(T_0 + s)$ steps is less than 2^{-s} , where $T_0 = \log_2 |\Omega| + m$.

< 口 > < 同

- - E - N

3

Thanks!

Dimitris Achlioptas (UC Santa Cruz) Stochastic Control by Entropy Compression Simons Uncertainty 2016 18 / 18

2

< E

< A