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The Lovasz Local Lemma

The Probabilistic Method

m Probability space + Collection B = {&1,&,...,&,} of “bad” events.
m If {&;} are independent, Pr[Nothing bad happens] = [\, (1 — p;).
m What if avoiding some bad events boosts some other bad events ?

Example: Q = {0, 1} with uniform measure, F = (21 V 22) A (T3 V x3). ]
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m If {&;} are independent, Pr[Nothing bad happens] = [\, (1 — p;).
m What if avoiding some bad events boosts some other bad events ?

Example: Q = {0, 1} with uniform measure, F = (21 V 22) A (T3 V x3). ]

Symmetric LLL (Erdés, Lovasz '75)

Assume that every bad event has probability at most p and is independent
of all but at most A bad events. If

pA<l1/e ,

then Pr[Nothing bad happens| > 0.
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The Lovasz Local Lemma

A Tight Example and a Breakthrough

Example

Every k-CNF formula in which each clause shares variables with at most
A < 2% /e other clauses is satisfiable. Proof: 27FA < 1/e.
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v

Algorithmic LLL: a s.t.a can be found efficiently if A < 2F/4
[Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]
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There exist unsatisfiable formulas with A = (1 + ;)2% /e, where §;, — 0.

v

Algorithmic LLL: a s.t.a can be found efficiently if A < 2F/4
[Beck 91], [Alon 91], [Molloy, Reed 98], [Czumaj, Scheideler 00], [Srinivasan 08]

Theorem (Moser '09)
If A(F) < 275 a sat assignment can be found in O(|V| + |F|log|F|).

Moser's ideas, with more care, yield 2¥ /c. [Messner, Thierauf 11]
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Algorithmic Aspects

Moser's Algorithm

Resample

1: Start at an arbitrary truth assignment
2: while violated clauses exist do

3 Select a random violated clause ¢
4 for each variable v of ¢ independently do
5 Set v to 0/1 with equal probability
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Algorithmic Aspects

The Flaws/Actions Framework [A., lliopoulos FOCS'14/JACM'16]
Let 2 be an arbitrary finite set. J
Let ' = {f1, f2,..., fm} be arbitrary subsets of Q called flaws. J
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Algorithmic Aspects

The Flaws/Actions Framework [A., lliopoulos FOCS'14/JACM'16]
Let 2 be an arbitrary finite set. J
Let ' = {f1, f2,..., fm} be arbitrary subsets of Q called flaws. )
Goal

When flawless objects exist, find one in much less time than |Q].

How?
m Specify a directed graph D on 2 such that:

m Every flawed object has outdegree at least 1.
m Every flawless object has outdegree 0.

m Start at an arbitrary o1 € Q

m Take a random walk on D until you reach a sink.
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Algorithmic Aspects

Address a Random Flaw of the Current State
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Algorithmic Aspects

Address a Random Flaw of the Current State

Moser's Algorithm on a k-CNF formula

If '=c1 A - Acpis a k-CNF formula with n variables:
Q={0,1}"

fi ={o0 € Q: o violates clause ¢;}

A(f;,0) = {The 2F mutations of ¢ through var(c;)}
The 2* actions in A(f;, o) are equiprobable, for all (i, o)
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Algorithmic Aspects

Measuring the Speed of State-Space Exploration

Local Entropy

Let p;(o, 7) denote the probability of o — 7 when addressing f; at o.
The local entropy of flaw f; is

min H[pi (07 )]

o€fi

Example: The local entropy of every flaw in Moser’s algorithm is k.
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Algorithmic Aspects

Measuring the Speed of State-Space Exploration

Local Entropy

Let p;(o, 7) denote the probability of o — 7 when addressing f; at o.
The local entropy of flaw f; is

in H AN
min [pi(a,-)]

Example: The local entropy of every flaw in Moser’s algorithm is k.

Congestion
Let InDeg,(7) = |o : 7 € A(fi,0)|. The congestion of flaw f; is

max logy[InDeg;(7)] .

Example: The congestion of every flaw in Moser's algorithm is 0.
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Algorithmic Aspects

Amenability = Local Entropy minus Congestion

Amenability(f;) = Local Entropy( f;) — Congestion(f;)
=min H ] — log, [Indeg;
min H|p(c, )] — maxlogy[Indeg;(7)]

Example: The amenability of every flaw in Moser's algorithm is & — 0 = k
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Algorithmic Aspects

ntial Causality
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Algorithmic Aspects

Potential Causality

For each 7 € A(f;,0) we define the set of flaws I';(o, 7) to contain:
m Every flaw present in 7 that was not present in ¢, and,
m Flaw f; itself, if 7 € f;.
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Algorithmic Aspects

Potential Causality

For each 7 € A(f;,0) we define the set of flaws I';(o, 7) to contain:
m Every flaw present in 7 that was not present in ¢, and,
m Flaw f; itself, if 7 € f;.

Potential Causality

Let
I = U Li(o,7)
o€ fi
TEA(fi,0)
Example

In Moser's algorithm each clause potentially causes:
m Each clause with which it shares a variable with opposite sign
m tself
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Algorithmic Aspects

Results: Noiseless Case

m Let o1 € Q) be arbitrary.
mFort=1,2,...
m Let f; be a random flaw present in oy.
m Move to 7 € A(f;,0) with probability p;(c, 7).
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Algorithmic Aspects

Results: Noiseless Case

m Let o1 € Q be arbitrary.
mFort=1,2,...
m Let f; be a random flaw present in 0.
m Move to 7 € A(f;,0) with probability p;(c, 7).

Theorem
If for every flaw f;,

3 g-humen(s) <% ,
fi€L:

then the probability we don't reach a flawless state within O(Tp + s) steps
is less than 27%, where T = log, [Q| + | F|.
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Results: Noiseless Case

m Let o1 € Q) be arbitrary.
mFort=1,2,...
m Let f; be a random flaw present in 0.
m Move to 7 € A(f;,0) with probability p;(c, 7).

Theorem
If for every flaw f;,

Z 2—Amen(fj) <
fi€L:

=

then the probability we don't reach a flawless state within O(Tp + s) steps
is less than 27%, where T = log, [Q| + | F|.

Example

For Moser's algorithm on k-CNF formulas we get A(F) < 2+F=2.
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Algorithmic Aspects
Let's Add Some Noise
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Algorithmic Aspects

Let's Add Some Noise

R AL AT

Question: Can we still find a satisfying assignment if:
m The lightbulbs are faulty, having both false positives and negatives.
m When we reset a variable it doesn't always happen.

m Variables change values on their own, silently.
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Let's Add Some Noise

R AL AT

Question: Can we still find a satisfying assignment if:
m The lightbulbs are faulty, having both false positives and negatives.
m When we reset a variable it doesn't always happen.

m Variables change values on their own, silently.

Answer: Yes! Lack of “internal conflict” implies “noise resistance”.
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Algorithmic Aspects

Modeling Noise
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Algorithmic Aspects

Modeling Noise

In each step:
m With probability 1 — p the system acts normally
m With probability p it acts according to the adversary's chain
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Algorithmic Aspects

Thinking of the adversary’s chain as just some other algorithm, we define

o) =p [IE21 (44 5 4 80) =2~ 1)

~p|T5[0°

where b* = max; Congestion( f;).
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Thinking of the adversary’s chain as just some other algorithm, we define
* >k 5
¢i(p) = p |IL3[{ 0"+ 5 +h(p) ) =2~ h(p)
~p 70",

where b* = max; Congestion( f;).

Theorem
If for every flaw f;,

)

S g-Amen(f)+air) 1o—n@)
4

fi€L:

then the probability we don't reach a flawless state within O(Tp + s) steps
is less than 27°, where Ty = log, [Q| + m.

v
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Algorithmic Aspects

Thanks!
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