Fourier Representations for Probabilistic Inference

Yexiang Xue¹,

Stefano Ermon², Ronan Le Bras¹, Carla P. Gomes¹, Bart Selman¹

¹ Computer Science Dept, Cornell University, 2 Computer Science Dept, Stanford University.

High-dimensional Probabilistic Distributions in Machine Learning

§ Modelling high-dimensional probabilistic distributions is ubiquitous in machine learning.

1 https://www.youtube.com

² http://zackkanter.com/2015/01/23/how-ubers-autonomous-cars-will-destroy-10-million-jobs-by-2025

³ http://www.birds.cornell.edu/brp/elephant/cyclotis/language/infrasound.html

4 https://en.wikipedia.org/wiki/Parse_tree

Compact Representations

- One of the most valuable insight for probabilistic inference is how to represent high dimensional probability distributions in a **compact form.**
- Many ramifications:
	- Efficient **Inference** Algorithms
	- **Machine Learning** with better predictive power and generalization

Compact Representations

§ Most compact representations are based on some form of **independence.**

Exploited in Graphical models, Mean Field Approximations, Tree Reweighted Approximations, Hidden Markov Models, and many more…

$$
P(x_1 \ldots, x_m, y_1 \ldots, y_n) \approx P(x_1 \ldots, x_m) \cdot P(y_1 \ldots, y_n).
$$

- § We propose the **Fourier representation of pseudo Boolean functions** as a **novel compact** way of representing high dimensional probability distributions.
- § Fourier representations provide **a natural and well motivated way of approximating** high dimensional probability distributions.
	- **I) We show that for a general class of functions, most probability mass** *concentrates on low degree coefficients in their Fourier spectrum.*
	- **II) Dropping higher degree coefficients leads to** *good approximations measured in the L2 distance* **(contrast with existing approaches such as minibucket and variational approaches).**
- § Strong results obtained by applying Fourier representations for probabilistic inference. **Orders of magnitudes improvement for partition function** compared to competing approaches.

Table Representation

 ϕ (x, y) is a function from $\{-1,1\}^2$ to **R+**; ϕ_1 , ..., ϕ_4 are real numbers.

Throughout this talk, we use: -1 to represent **false**; +1 to represent **true**.

Table Representation Interpolation

 ϕ (x, y) is a function from $\{-1,1\}^2$ to **R+**; ϕ_1 , ..., ϕ_4 are real numbers.

Throughout this talk, we use: -1 to represent **false**;

+1 to represent **true**.

Table Representation Interpolation

 ϕ (x, y) is a function from $\{-1,1\}^2$ to **R+**; ϕ_1 , ..., ϕ_4 are real numbers.

Throughout this talk, we use: -1 to represent **false**; +1 to represent **true**.

Blue part evaluates to 1 Green parts evaluate to 0.

Table Representation **Interpolation**

Rearranging Terms

$$
\phi(x,y) = \frac{1}{4} \left(\begin{array}{cc} \phi_1 + \phi_2 + \phi_3 + \phi_4 \end{array} \right) + \frac{1}{4} \left(-\phi_1 - \phi_2 + \phi_3 + \phi_4 \right) x + \frac{1}{4} \left(-\phi_1 + \phi_2 - \phi_3 + \phi_4 \right) y + \frac{1}{4} \left(\begin{array}{cc} \phi_1 - \phi_2 - \phi_3 + \phi_4 \end{array} \right) xy.
$$

 \mathbf{x} \boldsymbol{y} $\boldsymbol{\phi}(\mathbf{x}, \mathbf{y})$ -1 -1 ϕ_1 -1 1 ϕ_2 1 -1 ϕ_3 1 1 ϕ_4 ϕ (x, y) = $1 - x$ $\frac{1}{2}$. $1 - y$ $\frac{3}{2} \cdot \phi_1 +$ $1 - x$ $\frac{1}{2}$. $1 + y$ $\frac{1}{2} \cdot \phi_2 +$ $1 + x$ $\frac{1}{2}$. $1 - y$ $\frac{3}{2} \cdot \phi_3 +$ $1 + x$ $\frac{1}{2}$. $1 + y$ $\frac{1}{2} \cdot \phi_4.$ $\phi(\mathbf{x}, \mathbf{y}) = \frac{1}{4} (\phi_1 + \phi_2 + \phi_3 + \phi_4) + \frac{1}{4} (-\phi_1 - \phi_2 + \phi_3 + \phi_4) \mathbf{x} +$ $\frac{1}{4}(-\phi_1 + \phi_2 - \phi_3 + \phi_4)y + \frac{1}{4}(\phi_1 - \phi_2 - \phi_3 + \phi_4)xy$ Table Representation Interpolation Rearranging Terms **Fourier Representation**

Thm 1: *(Hadamard-Fourier Transformation) Every weighted function* $f: \{-1,1\}^n \rightarrow \mathbb{R}$ *can be uniquely expressed as a multilinear polynomial:*

$$
f(\pmb{x}) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i = \sum_{S \subseteq [n]} \widehat{f(S)} \chi_S(\pmb{x}).
$$

Where each $c_s \in \mathbb{R}$. [n] is the power set of $\{1, ..., n\}$. This polynomial is referred to as *the Hadamard-Fourier expansion of .*

Following standard notation:

 $\prod_{i \in S} x_i$ $\longleftarrow x_S(x)$ (Basis Function, also parity functions).

(coefficients)

 $\widehat{f(S)}$ is a degree-k coefficient iff $|S| = k$.

 c_S $\qquad \qquad \qquad$ $\widehat{f(S)}$

Thm 1: *(Hadamard-Fourier Transformation) Every weighted function* $f: \{-1,1\}^n \rightarrow \mathbb{R}$ *can be uniquely expressed as a multilinear polynomial:*

$$
f(x) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i = \sum_{S \subseteq [n]} \widehat{f(S)} \chi_S(x)
$$

Basis Function (also Parity functions) **Coefficients**

Where each $c_s \in \mathbb{R}$. [n] is the power set of $\{1, ..., n\}$. This polynomial is referred to as *the Hadamard-Fourier expansion of .*

Following standard notation:

(Basis Function, also parity functions).

(coefficients)

 $\widehat{f(S)}$ is a degree-k coefficient iff $|S| = k$.

 $\Pi_{i \in S} x_i$ $\overbrace{f(S)}^{x_S(x)}$

Example Fourier Representation

$$
\Phi(x, y) = \frac{1}{4} \left(\phi_1 + \phi_2 + \phi_3 + \phi_4 \right) + \frac{1}{4} \left(-\phi_1 - \phi_2 + \phi_3 + \phi_4 \right) x + \frac{1}{4} \left(-\phi_1 + \phi_2 - \phi_3 + \phi_4 \right) y + \frac{1}{4} \left(\phi_1 - \phi_2 - \phi_3 + \phi_4 \right) xy
$$
\n
$$
\text{Coefficients}
$$
\n
$$
\text{Cosficients}
$$
\n
$$
\text{Passis Functions,}
$$
\n
$$
\text{Classi Functions,}
$$
\n
$$
\text{Case 2 term}
$$
\n
$$
\text{Case 2 term}
$$
\n
$$
\text{Baseis Functions,}
$$
\n
$$
\text{Case 3: } \text{Equation 4: } \text{Equation 5: } \text{Equation 6: } \text{Equation 7: } \text{Equation 8: } \text{Equation 8: } \text{Equation 9: } \text{Equation 9: } \text{Equation 1: } \text{Equation 2: } \text{Equation 3: } \text{Equation 3: } \text{Equation 4: } \text{Equation 5: } \text{Equation 5: } \text{Equation 6: } \text{Equation 7: } \text{Equation 8: } \text{Equation 8: } \text{Equation 9: } \text{Equation 9: } \text{Equation 1: } \text{Equation 1: } \text{Equation 1: } \text{Equation 1: } \text{Equation 2: } \text{Equation 2: } \text{Equation 3: } \text{Equation 3: } \text{Equation 4: } \text{Equation 5: } \text{Equation 5: } \text{Equation 6: } \text{Equation 7: } \text{Equation 7: } \text{Equation 8: } \text{Equation 8: } \text{Equation 9: } \text{Equation 9: } \text{Equation 1: } \text{Equation 1: } \text{Equation 1: } \text{Equation 1: } \text{Equation 2: } \text{Equation 3: } \text{Equation 3: } \text{Equation 4: } \text{Equation 5: } \text{Equation 6: } \text{Equation 7: } \text{Equation
$$

Why Fourier Representation?

Value Representation binary variables \rightarrow **table of length 2**ⁿ Fourier Representation **F**

$$
f(\pmb{x}) = \sum_{S \subseteq [n]} \widehat{f(S)} \chi_S(\pmb{x}).
$$

expression with 2^n terms

Why Fourier?

*Good properties for many distributions***.**

- **a) Often only a few lower-order terms needed**
- **b) Can also truncate and get good approximation (L2 norm)**

High Freq Comps are smaller

High Freq Comps are

smaller

Weight Concentration

Continuous Case: signals decompose into components with different frequencies. High frequency components are often close to zero for a wide class of functions.

High Freq Comps are smaller

High Freq Comps

are

smaller

Weight Concentration

Continuous Case: signals decompose into components with different frequencies. High frequency components are often close to zero for a wide class of functions.

Discrete Case: decompose the function into the sum of parity functions. Weights are **concentrated on low degree Fourier coefficients.**

16

Weight Concentration on Lower-Order Terms

• Let $f(x) = \sum_{S \subseteq [n]} \widehat{f(S)} \chi_S(x)$ be the Fourier expansion of function f .

Thm: $\widehat{f(S)} = \mathbf{E}_{x: \{-1,1\}^n}(f(x) \chi_S(x))$

$$
= \frac{1}{2^n} \sum_{x: \chi_S(x) = +1} f(x) - \frac{1}{2^n} \sum_{x: \chi_S(x) = -1} f(x).
$$

I.e., Fourier coefficient $\widehat{f(S)}$ **is the difference between the sum of the values of** $f(x)$ **where** $\chi_{S}(x)$ evaluate to +1 against those where $\chi_{S}(x)$ **evaluate to -1.**

• In most functions, high order correlations are rare. Therefore, the weight difference of the Fourier coefficients corresponding to long parity functions are usually very small.

Long parity constraints cut space roughly evenly. Gives near zero Fourier coefficient. (Aside: Long is useful for counting! (Ermon))

Approximation with Bounded Degree

Defn 1: The Fourier spectrum of f is ϵ -concentrated on degree up to \boldsymbol{k} if and only if the squared sum of coefficients whose degrees are larger than k (tail weight) is bounded by ϵ , i.e., $W_{>k}[f] = \sum_{S \subseteq [n], |S| > k} \widehat{f(S)}^2 < \epsilon$.

Key property: When Fourier spectrum is ϵ -concentrated, we can drop **higher-order terms and get a good guaranteed bound on the accuracy of the approximation in terms of the L2 distance.**

We will use this during probabilistic inference.

Formal: Suppose $f = \sum_{S \subseteq [n]} \widehat{f(S)} \chi_S(x)$ is ϵ -concentrated on degree up to k , then f can be approximated by its Fourier coefficients up to degree $k: f_{\leq k}$ = $\sum_{S \subseteq [n], |S| \le k} \widehat{f(S)} \chi_S(x)$, with the difference in L2 distance bounded by:

$$
\mathbf{E}_{x:\{-1,1\}^n}\big((f-f_{\leq k})^2\big)=\sum_{S\subseteq[n],|S|>k}\widehat{f(S)}^2<\epsilon.
$$

Many distributions have bounded degree Fourier spectrum

Formally:

Defn : Suppose $f(x): \{-1,1\}^n \to \mathbb{R}^+$ is a weighted function, we say $f(x)$ has **bounded width** w iff the number of variables in the domain of f is no more than w. We say $f(x)$ is **contractive with gap** $1 - \eta$ $(0 \le \eta < 1)$ iff $(1) f(x) \le$ 1; (2) max $\overline{\mathbf{x}}$ $f(x) = 1$; (3) if $f(x_0) < 1$, then $f(x_0) \le \eta$. 1

 η

Key Thm: *(Xue et al. 2016)* Suppose $f(x) = \prod_{i=1}^{m} f_i(x_i)$, in which every f_i is a contractive function with width w and gap $1 - \eta$, then f's Fourier spectrum is ϵ concentrated on degree up to $O(w \log_{\frac{1}{\epsilon}}) \log_{\eta} \epsilon$) when $\eta > 0$ and $O(w \log_{\frac{1}{\epsilon}})$ when $\eta = 0$.

Prove by extending *Hastad's Switching Lemma for CNF/DNF* **to the weighted case. Clever use of "random restrictions."**

Variable Elimination in the Fourier Domain

§ Inference in Probabilistic Graphical Models

Compute the probability of evidence, the partition function, etc…

$$
Z = \sum_{x_1,\dots,x_n} f(x) = \sum_{x_1,\dots,x_n} \prod_{i=1}^K \psi_i(x_{S_i}).
$$

§ Variable Elimination

Eliminate (sum out) variables based on a fixed variable order.

Simple algorithm in Probabilistic Inference *(Inference 101)*

- § Represent intermediate result in Fourier domain. Keep a fixed number of coefficients.
- § With weight concentration theory, the truncated Fourier representation approximates the original probability table with small L2 loss.

Example of the Variable Elimination process

- § Compute the problem:
	- $f(A, B)f(B, C)f(A, C)f(C, D)f(D, E)$ A,B,C,D,E
- Fix a variable elimination order: A, B, C, D, E .

Example of the Variable Elimination process

- § Compute the problem:
	- $f(A, B)f(B, C)f(A, C)f(C, D)f(D, E)$ A,B,C,D,E
- Fix a variable elimination order: A, B, C, D, E .
- \blacksquare Eliminate A:

 $\sum f(A,B)f(A,C)$ \overline{A} $f(B, C) f(C, D) f(D, E)$ \overline{B} , \overline{C} , \overline{D} , E $g(B, C)$

Example of the Variable Elimination process

- § Compute the problem:
	- $f(A, B)f(B, C)f(A, C)f(C, D)f(D, E)$ $A.B.C.D.E$
- Fix a variable elimination order: A, B, C, D, E .
- \blacksquare Eliminate A:
	- $\sum g(B,C)f(B,C)f(C,D)f(D,E)$ B, C, D, E
- Then eliminating B, C, D, E .
- § Involve sum and multiplication operator.

Truncate Fourier Rep with L2 Guarantee

- § Conduct variable elimination in the Fourier domain. The size of the intermediate probability tables are exponential in the treewidth.
- § **When the probability table becomes too large, keep a fixed number of Fourier coefficients based on:**
	- **(i) lowest degree;**
	- **(ii) maximal absolute values.**
- § Because of weight concentration result on the Fourier representation, **removing high degree coefficients preserves approximation guarantee in L2-distance.**
	- **•** If the tail weights are bounded by ϵ , then the average difference between the approximated function and the original one in L2-distance is also bounded by ϵ .

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences in log partition function $|\log_{10} Z_{\text{approx}} - \log_{10} Z_{\text{true}}|$ averaged over benchmarks in each category are shown. Fourier VE algorithms outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

- of one million.
- Ground truth computed by Ace in 2h & 8G memory.

Both based on variable elimination, Minibucket Both Fourier and Minibucket retain a message size of one million.

approximate messages assuming independence.

Category	$\#ins$	Minibucket	Fourier (max coef)	Fourier (min deg)	BP	MCMC	HAK
$bn2o-30-$ *	18	3.91	$1.21 \cdot 10^{-2}$	$1.36 \cdot 10^{-2}$	$0.94 \cdot 10^{-2}$	0.34	$8.3 \cdot \overline{10^{-4}}$
grids $2/50$ [*]	72	5.12	$3.67\cdot10^{-6}$	$7.81 \cdot 10^{-6}$	$1.53 \cdot 10^{-2}$		$1.53 \cdot 10^{-2}$
grids $2/75$ [*]	103	18.34	$5.41\cdot 10^{-4}$	$6.87 \cdot 10^{-4}$	$2.94 \cdot 10^{-2}$		$2.94 \cdot 10^{-2}$
grids $2/90$ [*]	105	26.16	$2.23\cdot 10^{-3}$	$5.71 \cdot 10^{-3}$	$5.59 \cdot 10^{-2}$		$5.22 \cdot 10^{-2}$
blockmap_ $05*$	48	$1.25 \cdot 10^{-6}$	$4.34\cdot10^{-9}$	$4.34\cdot10^{-9}$	0.11		$8.73 \cdot 10^{-9}$
students $03*$	16	$2.85 \cdot 10^{-6}$	$1.67 \cdot 10^{-7}$	$1.67\cdot10^{-7}$	2.20		$3.17 \cdot 10^{-6}$
mastermind_03*	48	7.83	0.47	0.36	27.69		$\mathbf{4.35 \cdot 10^{-5}}$
mastermind $04*$	32	12.30	$3.63 \cdot 10^{-7}$	$3.63 \cdot 10^{-7}$	20.59		$4.03 \cdot 10^{-5}$
mastermind $05*$	16	4.06	$2.56 \cdot 10^{-7}$	$2.56 \cdot 10^{-7}$	22.47		$3.02 \cdot 10^{-5}$
mastermind_06*	16	22.34	$3.89 \cdot 10^{-7}$	$3.89 \cdot 10^{-7}$	17.18		$4.5\cdot10^{-5}$
mastermind_ $10*$	16	275.82	5.63	2.98	26.32		0.14

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences in log partition function $|\log_{10} Z_{\text{approx}} - \log_{10} Z_{\text{true}}|$ averaged over benchmarks in each category are shown. Fourier VE algorithms outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

BP is belief propagation, a variational method. MCMC is based on sampling.

Table 2. The comparsion of various inference algorithms on several categories in UAI 2010 Inference Challenge. The median differences in log partition function $|\log_{10} Z_{\text{approx}} - \log_{10} Z_{\text{true}}|$ averaged over benchmarks in each category are shown. Fourier VE algorithms outperform Belief Propagation, MCMC and Minibucket Algorithm. #ins is the number of instances in each category.

> HAK is an award winning solver, based on a portfolio of several state-of-the-art solvers.

Conclusion

- § We explore **the Fourier Representation,** a **novel compact representation** of high-dimensional probability distributions.
- § The Fourier Representation provides **a natural and well motivated way of approximating probability distributions.**
	- § Most probability mass **concentrates on low degree coefficients**.
	- § Drop high degree coefficients leads to **good approximation guarantee in L2-norm**, novel bound contrasting with existing methods such as minibucket and variational approaches.
- § Strong empirical results when applied to probabilistic inference.
	- § **Orders of magnitudes better** than competing methods.