The Complexity of Somewhat Approximation Resistant Predicates

Pratik Worah

Joint work with Subhash Khot and Madhur Tulsiani.

August 24, 2013

・ロン ・回と ・ヨン ・ヨン

Conditional Hardness

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

Approximation Resistance Somewhat Approximation Resistance

Some Technical Aspects

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

(4月) (4日) (4日)

k-CSPs are everywhere

 k-CSP(f)s, for f : {0,1}^k → {0,1}, are well studied in Theoretical Computer Science.

・ロン ・回と ・ヨン・

k-CSPs are everywhere

- k-CSP(f)s, for f : {0,1}^k → {0,1}, are well studied in Theoretical Computer Science.
- Example: $f = \lor$ or $f = \oplus$.

・ロット (四) (日) (日)

k-CSPs are everywhere

 k-CSP(f)s, for f : {0,1}^k → {0,1}, are well studied in Theoretical Computer Science.

• Example: $f = \lor$ or $f = \oplus$.

- For example k-CNF and k-XOR are at the intersection of many algorithmic and lower bound results.
 - Classical NP-Completeness reductions Eg. [Karp].
 - Dichotomy Theorems Eg. [Schaefer].
 - ► PCP based conditional lowerbounds Eg. [Håstad].
 - Lowerbounds in weak proof systems Eg. [Grigoriev et al].
 - Approximation algorithms for MAX-k-CSPs Eg. [Hast].

The list of references above runs long.

(日) (四) (王) (王) (王)

Approximation Resistance Somewhat Approximation Resistance

Our Problem Space

The problem of finding an assignment which satisfies maximum fraction of constraints is an important one -MAX-k-CSP(f).

・ロト ・回ト ・ヨト ・ヨト

Approximation Resistance Somewhat Approximation Resistance

Our Problem Space

- The problem of finding an assignment which satisfies maximum fraction of constraints is an important one -MAX-k-CSP(f).
- ► A k-ary constraint f_i is derived from f by choosing tuples of k variables (or their negations) as inputs to f.

イロト イポト イヨト イヨト

Approximation Resistance Somewhat Approximation Resistance

Our Problem Space

- The problem of finding an assignment which satisfies maximum fraction of constraints is an important one -MAX-k-CSP(f).
- ► A k-ary constraint f_i is derived from f by choosing tuples of k variables (or their negations) as inputs to f.
- ▶ Formally, given *m k*-ary constraints *f_i*, each derived from predicate *f*, on *n* variables {*x*₁,..,*x_n*} we wish to find:

$$\max_{\alpha\in\{0,1\}^n}\frac{1}{m}\sum_{i=1}^m f_i(\alpha_{|f_i}).$$

(日) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

A Trivial Algorithm

Solving MAX-k-CSP(f) exactly is NP-Hard [Cook-Levin].

・ロト ・回ト ・ヨト ・ヨト

Approximation Resistance Somewhat Approximation Resistance

A Trivial Algorithm

- Solving MAX-k-CSP(f) exactly is NP-Hard [Cook-Levin].
- What if we are willing to settle for a polynomial time algorithm which outputs an approximately optimal solution always within a small constant factor away from the optimum?

イロン イヨン イヨン イヨン

Approximation Resistance Somewhat Approximation Resistance

A Trivial Algorithm

- ▶ Solving MAX-k-CSP(f) exactly is NP-Hard [Cook-Levin].
- What if we are willing to settle for a polynomial time algorithm which outputs an approximately optimal solution always within a small constant factor away from the optimum?
- Let ρ(f) denote the density of accepting assignments of predicate f i.e. ρ(f) := ^{|f⁻¹(1)|}/_{2^k}.

Approximation Resistance Somewhat Approximation Resistance

A Trivial Algorithm

- ▶ Solving MAX-k-CSP(f) exactly is NP-Hard [Cook-Levin].
- What if we are willing to settle for a polynomial time algorithm which outputs an approximately optimal solution always within a small constant factor away from the optimum?
- Let ρ(f) denote the density of accepting assignments of predicate f i.e. ρ(f) := ^{|f⁻¹(1)|}/_{2^k}.
- Solution: Choose a uniform random assignment α ∈ {0,1}ⁿ. It will satisfy ρ(f) fraction of constraints in expectation.

Approximation Resistance Somewhat Approximation Resistance

Conditional Hardness

Can we do better than the above trivial algorithm?

・ロン ・回 と ・ヨン ・ヨン

Approximation Resistance Somewhat Approximation Resistance

Conditional Hardness

- Can we do better than the above trivial algorithm?
- ▶ Beating the random assignment for MAX-k-CSP(⊕) is NP-Hard [Håstad] for k ≥ 3.

・ロン ・回 と ・ ヨ と ・ ヨ と

Approximation Resistance Somewhat Approximation Resistance

Conditional Hardness

- Can we do better than the above trivial algorithm?
- ▶ Beating the random assignment for MAX-k-CSP(⊕) is NP-Hard [Håstad] for k ≥ 3.
- For k ≥ 3 and small enough ε > 0, it is NP-Hard to distinguish between a 1 − ε satisfiable instance of MAX-k-XOR and a 1/2 + ε satisfiable instance of MAX-k-XOR.

(日) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

Conditional Hardness

- Can we do better than the above trivial algorithm?
- ▶ Beating the random assignment for MAX-k-CSP(⊕) is NP-Hard [Håstad] for k ≥ 3.
- For k ≥ 3 and small enough ε > 0, it is NP-Hard to distinguish between a 1 − ε satisfiable instance of MAX-k-XOR and a 1/2 + ε satisfiable instance of MAX-k-XOR.
- A predicate f which is 1 − ε vs. ρ(f) − ε hard, in the above sense, is popularly known as approximation resistant.

(ロ) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

• What about predicates other than \oplus ?

イロン イヨン イヨン イヨン

æ

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

- What about predicates other than \oplus ?
- f: {0,1}^k → {0,1} is said to support a probability distribution µ : {0,1}^k → ℝ if µ(x) > 0 only when x ∈ f⁻¹(1).

・ロン ・回 と ・ ヨ と ・ ヨ と

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

- What about predicates other than \oplus ?
- f: {0,1}^k → {0,1} is said to support a probability distribution μ : {0,1}^k → ℝ if μ(x) > 0 only when x ∈ f⁻¹(1).
- A linear predicate *L* corresponds to a set of assignments *L*⁻¹(1) which form an affine subspace of 𝔽^k₂.

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

- What about predicates other than \oplus ?
- f: {0,1}^k → {0,1} is said to support a probability distribution μ : {0,1}^k → ℝ if μ(x) > 0 only when x ∈ f⁻¹(1).
- A linear predicate *L* corresponds to a set of assignments *L*⁻¹(1) which form an affine subspace of 𝔽^k₂.
- ▶ *k*-XOR is a linear predicate.

・ロン ・回 と ・ 回 と ・ 回 と

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

A well distributed linear predicate L is a linear predicate where the uniform distribution µ supported on the set L⁻¹(1) is balanced and pairwise independent.

$$\forall i, j \in [k] \quad \mu(x_i = 1) = 1/2, \ \mu(x_i = 1, x_j = 1) = 1/4.$$

イロト イポト イヨト イヨト

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

A well distributed linear predicate L is a linear predicate where the uniform distribution µ supported on the set L⁻¹(1) is balanced and pairwise independent.

$$\forall i, j \in [k] \quad \mu(x_i = 1) = 1/2, \ \mu(x_i = 1, x_j = 1) = 1/4.$$

Easy to see k-XOR is a well distributed linear predicate.

(ロ) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

A well distributed linear predicate L is a linear predicate where the uniform distribution µ supported on the set L⁻¹(1) is balanced and pairwise independent.

$$\forall i, j \in [k] \quad \mu(x_i = 1) = 1/2, \ \mu(x_i = 1, x_j = 1) = 1/4.$$

- Easy to see k-XOR is a well distributed linear predicate.
- For k ≥ 3, ε > 0 and L a well distributed linear predicate then L is approximation resistant [Chan].

・ロン ・回 と ・ ヨ と ・ ヨ と

Approximation Resistance Somewhat Approximation Resistance

More Conditional Hardness

A well distributed linear predicate L is a linear predicate where the uniform distribution µ supported on the set L⁻¹(1) is balanced and pairwise independent.

$$\forall i, j \in [k] \quad \mu(x_i = 1) = 1/2, \ \mu(x_i = 1, x_j = 1) = 1/4.$$

- Easy to see k-XOR is a well distributed linear predicate.
- For k ≥ 3, ε > 0 and L a well distributed linear predicate then L is approximation resistant [Chan].
- Q1: Exactly which non-linear predicates are "hard to approximate", assuming P ≠ NP?

Approximation Resistance Somewhat Approximation Resistance

τ -Resistance

For τ > ρ(f), f is said to be τ-resistant if for arbitrary small enough constant ε > 0, it is NP-Hard to distinguish instances where a τ − ε fraction of constraints can be simultaneously satisfied from those where at most ρ(f) + ε fraction of the constraints can be simultaneously satisfied.

Approximation Resistance Somewhat Approximation Resistance

τ -Resistance

- For τ > ρ(f), f is said to be τ-resistant if for arbitrary small enough constant ε > 0, it is NP-Hard to distinguish instances where a τ − ε fraction of constraints can be simultaneously satisfied from those where at most ρ(f) + ε fraction of the constraints can be simultaneously satisfied.
- Approximation Resistance \equiv 1-resistance.

(ロ) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

τ -Resistance

- For τ > ρ(f), f is said to be τ-resistant if for arbitrary small enough constant ε > 0, it is NP-Hard to distinguish instances where a τ − ε fraction of constraints can be simultaneously satisfied from those where at most ρ(f) + ε fraction of the constraints can be simultaneously satisfied.
- Approximation Resistance \equiv 1-resistance.
- ▶ We address a <u>weak version</u> of our original goal (Qn1).

Approximation Resistance Somewhat Approximation Resistance

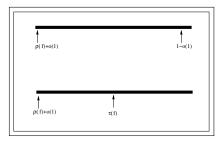
τ -Resistance

- For τ > ρ(f), f is said to be τ-resistant if for arbitrary small enough constant ε > 0, it is NP-Hard to distinguish instances where a τ − ε fraction of constraints can be simultaneously satisfied from those where at most ρ(f) + ε fraction of the constraints can be simultaneously satisfied.
- Approximation Resistance \equiv 1-resistance.
- ▶ We address a <u>weak version</u> of our original goal (Qn1).
- <u>Goal</u>: Given f, characterize the gap: $\tau(f) \rho(f)$.

(ロ) (同) (E) (E) (E)

Unconditional Hardness Some Technical Aspects Approximation Resistance Somewhat Approximation Resistance

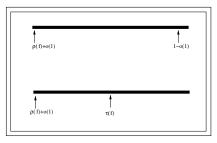
τ -Resistance



・ロト ・回 ト ・ヨト ・ヨー

Unconditional Hardness Some Technical Aspects Approximation Resistance Somewhat Approximation Resistance

τ -Resistance

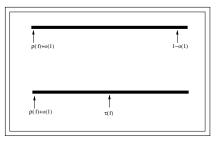


► f is said to be **somewhat approximation resistant** if there exists a constant $\tau > \rho(f)$ so that f is τ -resistant [Hastad].

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Unconditional Hardness Some Technical Aspects Approximation Resistance Somewhat Approximation Resistance

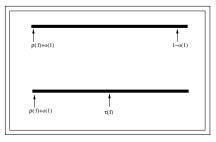
τ -Resistance



- ► f is said to be **somewhat approximation resistant** if there exists a constant $\tau > \rho(f)$ so that f is τ -resistant [Hästad].
- τ -resistance is a more precise version of somewhat resistance.

Unconditional Hardness Some Technical Aspects Approximation Resistance Somewhat Approximation Resistance

τ -Resistance



- ► f is said to be **somewhat approximation resistant** if there exists a constant $\tau > \rho(f)$ so that f is τ -resistant [Hästad].
- τ -resistance is a more precise version of somewhat resistance.
- We characterize $\tau(f) \rho(f)$ upto a factor of $O(k^5)$.

(日) (四) (王) (王) (王)

Approximation Resistance Somewhat Approximation Resistance

Somewhat Approximation Resistance

Let Q be the set of k-ary boolean predicates having no Fourier mass at level 3 or above.

(ロ) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

Somewhat Approximation Resistance

- Let Q be the set of k-ary boolean predicates having no Fourier mass at level 3 or above.
- Example: $f(\vec{x}) := \frac{1+(-1)^{x_1}+(-1)^{x_2}+(-1)^{x_1+x_2}}{4}$.

(ロ) (同) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

Somewhat Approximation Resistance

- Let Q be the set of k-ary boolean predicates having no Fourier mass at level 3 or above.
- Example: $f(\vec{x}) := \frac{1+(-1)^{x_1}+(-1)^{x_2}+(-1)^{x_1+x_2}}{4}$.
- If the normalized Hamming distance Δ(f, Q) > 0 i.e. f ∉ Q, then f is somewhat approximation resistant [Hästad].

イロト イポト イラト イラト 一日

Approximation Resistance Somewhat Approximation Resistance

Somewhat Approximation Resistance

- Let Q be the set of k-ary boolean predicates having no Fourier mass at level 3 or above.
- Example: $f(\vec{x}) := \frac{1+(-1)^{x_1}+(-1)^{x_2}+(-1)^{x_1+x_2}}{4}$.
- If the normalized Hamming distance Δ(f, Q) > 0 i.e. f ∉ Q, then f is somewhat approximation resistant [Hästad].
- But the value of τ in [Hastad] can be exponentially small in k.

イロト イポト イラト イラト 一日

Approximation Resistance Somewhat Approximation Resistance

Somewhat Approximation Resistance

- Let Q be the set of k-ary boolean predicates having no Fourier mass at level 3 or above.
- Example: $f(\vec{x}) := \frac{1+(-1)^{x_1}+(-1)^{x_2}+(-1)^{x_1+x_2}}{4}$.
- If the normalized Hamming distance Δ(f, Q) > 0 i.e. f ∉ Q, then f is somewhat approximation resistant [Hästad].
- But the value of τ in [Hastad] can be exponentially small in k.
- ► Conversely, if ∆(f, Q) = 0, then f depends on at most 4 variables [Hästad]. Moreover, f is not somewhat approximation resistant [Hästad].

・ロト ・四ト ・ヨト ・ヨト - ヨ

Approximation Resistance Somewhat Approximation Resistance

Main Theorem

Assume $k \ge k_0$ and $f : \{0,1\}^k \to \{0,1\}$ be a predicate with $\Delta(f, Q) > 0.$ 1. If $\Delta(f, Q) \ge 1/k^3$, then $\tau(f) \ge \rho(f) + \Omega(1/k^5).$ Else, $\Delta(f, Q) = \delta \le 1/k^3$, and let $g \in Q$ s.t. $\Delta(f, g) = \delta.$ 2. If $\exists x \in \{0,1\}^k$ such that $f(x) = 1 \land g(x) = 0$ then $\tau(f) \ge \rho(f) + \Omega(1/k).$

3. Else, g is monotonically above f. In this case,

$$ho(f)+\Omega\left(rac{\delta}{k^2}
ight)\leq au(f)\leq
ho(f)+O(k^3\delta).$$

Approximation Resistance Somewhat Approximation Resistance

A Comparison with Previous Results

k-XOR [Hästad]	$ au(f)\simeq 1$
Well distributed predicates [Chan]	$ au(f) \simeq 1.$
$\Delta(f,\mathcal{Q}) > 0$ [Håstad]	$ au(f) \ge ho(f) + rac{1}{2^{\Theta(k)}}.$
$\Delta(f,\mathcal{Q})=0$ [Håstad]	$ au(f) \leq ho(f) + arepsilon \ (orall arepsilon > 0).$
$\Delta(f,\mathcal{Q}) \geq 1/k^3$ [ktw]	$ au(f) \geq ho(f) + \Omega(1/k^5).$
$\Delta(f,\mathcal{Q}) \leq 1/k^3$ and $g ot \geq f_{ ext{[ктw]}}$	$ au(f) \geq ho(f) + \Omega(1/k).$
$\Delta(f,\mathcal{Q})=\delta\leq 1/k^3$ and $g\geq f_{ ext{[KTW]}}$	$egin{aligned} & ho(f) + \Omega\left(rac{\delta}{k^2} ight) \leq au(f) \ & au(f) \leq ho(f) + O(k^3\delta). \end{aligned}$
	$\tau(f) \le \rho(f) + O(k^3\delta).$

(日) (回) (E) (E) (E)

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

Lower bounds for k-CSPs in an a unconditional sense are also known in "weak" models of computation.

イロン イロン イヨン イヨン 三日

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- Lower bounds for k-CSPs in an a unconditional sense are also known in "weak" models of computation.
- A LP or SDP hierarchy generates stronger and stronger relaxations which require progressively more time to solve.

イロン イヨン イヨン イヨン

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- Lower bounds for k-CSPs in an a unconditional sense are also known in "weak" models of computation.
- A LP or SDP hierarchy generates stronger and stronger relaxations which require progressively more time to solve.
- The trade-off here is between the integrality gap and efficiency of the algorithm.

イロト イポト イヨト イヨト

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- Lower bounds for k-CSPs in an a unconditional sense are also known in "weak" models of computation.
- A LP or SDP hierarchy generates stronger and stronger relaxations which require progressively more time to solve.
- The trade-off here is between the integrality gap and efficiency of the algorithm.
- Why this model? LP and SDP rounding gives non-trivial approximation algorithms for MAX-k-CSPs which beats the random assignment for some predicates.

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

A predicate f : {0,1}^k → {0,1} is approximation resistant for Lasserre hierarchy if there exist MAX-k-CSP(f) instances with optimum value ~ ρ(f) but the SDP relaxation obtained after Ω(n) rounds of Lasserre has value 1.

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- A predicate f : {0,1}^k → {0,1} is approximation resistant for Lasserre hierarchy if there exist MAX-k-CSP(f) instances with optimum value ~ ρ(f) but the SDP relaxation obtained after Ω(n) rounds of Lasserre has value 1.
- ▶ Natural to substitute Lasserre with a weaker hierachy like LS₊.

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- A predicate f : {0,1}^k → {0,1} is approximation resistant for Lasserre hierarchy if there exist MAX-k-CSP(f) instances with optimum value ~ ρ(f) but the SDP relaxation obtained after Ω(n) rounds of Lasserre has value 1.
- ▶ Natural to substitute Lasserre with a weaker hierachy like LS₊.
- MAX-k-XOR, for $k \ge 3$, is approximation resistant [Schoenebeck].

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- A predicate f : {0,1}^k → {0,1} is approximation resistant for Lasserre hierarchy if there exist MAX-k-CSP(f) instances with optimum value ~ ρ(f) but the SDP relaxation obtained after Ω(n) rounds of Lasserre has value 1.
- ▶ Natural to substitute Lasserre with a weaker hierachy like LS₊.
- MAX-k-XOR, for $k \ge 3$, is approximation resistant [Schoenebeck].
- Well distributed linear predicates are approximation resistant [Tulsiani].

Approximation Resistance Somewhat Approximation Resistance

Unconditional Hardness

- A predicate f : {0,1}^k → {0,1} is approximation resistant for Lasserre hierarchy if there exist MAX-k-CSP(f) instances with optimum value ~ ρ(f) but the SDP relaxation obtained after Ω(n) rounds of Lasserre has value 1.
- ▶ Natural to substitute Lasserre with a weaker hierachy like LS₊.
- MAX-k-XOR, for $k \ge 3$, is approximation resistant [Schoenebeck].
- Well distributed linear predicates are approximation resistant [Tulsiani].
- Q2: Exactly which non-linear predicates are "hard" i.e. have high integrality gap, for many rounds of Lasserre?

Approximation Resistance Somewhat Approximation Resistance

τ^* -Resistance

For τ* > ρ(f), f is said to be τ*-resistant if for an arbitrarily small constant ε > 0, there exists a constant c = c(ε) > 0 and instances with n variables and m constraints, for infinitely many values of n, such that the Lasserre relaxation after [cn] rounds has value at least τ* but the integral optimum is at most ρ(f) + ε.

Approximation Resistance Somewhat Approximation Resistance

τ^* -Resistance

- For τ* > ρ(f), f is said to be τ*-resistant if for an arbitrarily small constant ε > 0, there exists a constant c = c(ε) > 0 and instances with n variables and m constraints, for infinitely many values of n, such that the Lasserre relaxation after [cn] rounds has value at least τ* but the integral optimum is at most ρ(f) + ε.
- Approximation Resistance for Lasserre \equiv 1-resistance.

Approximation Resistance Somewhat Approximation Resistance

τ^* -Resistance

- For τ* > ρ(f), f is said to be τ*-resistant if for an arbitrarily small constant ε > 0, there exists a constant c = c(ε) > 0 and instances with n variables and m constraints, for infinitely many values of n, such that the Lasserre relaxation after [cn] rounds has value at least τ* but the integral optimum is at most ρ(f) + ε.
- Approximation Resistance $_{\text{for Lasserre}} \equiv 1$ -resistance.
- As before one extends the definition of somewhat resistance to the unconditional case.

Approximation Resistance Somewhat Approximation Resistance

τ^* -Resistance

- For τ* > ρ(f), f is said to be τ*-resistant if for an arbitrarily small constant ε > 0, there exists a constant c = c(ε) > 0 and instances with n variables and m constraints, for infinitely many values of n, such that the Lasserre relaxation after [cn] rounds has value at least τ* but the integral optimum is at most ρ(f) + ε.
- Approximation Resistance $_{\text{for Lasserre}} \equiv 1$ -resistance.
- As before one extends the definition of somewhat resistance to the unconditional case.
- Somewhat approximation resistance has not been investigated before in the context of SDP hierarchies.

Approximation Resistance Somewhat Approximation Resistance

Main Theorem

Assume $k \ge k_0$ and $f : \{0,1\}^k \to \{0,1\}$ be a predicate with $\Delta(f, Q) > 0.$ 1. If $\Delta(f, Q) \ge 1/k^3$, then $\tau^*(f) \ge \rho(f) + \Omega(1/k^5).$ Else, $\Delta(f, Q) = \delta \le 1/k^3$, and let $g \in Q$ s.t. $\Delta(f, g) = \delta.$ 2. If $\exists x \in \{0,1\}^k$ such that $f(x) = 1 \land g(x) = 0$ then $\tau^*(f) \ge \rho(f) + \Omega(1/k).$

3. Else, g is monotonically above f. In this case,

$$ho(f)+\Omega\left(rac{\delta}{k^2}
ight)\leq au^*(f)\leq
ho(f)+O(k^3\delta).$$

Approximation Resistance Somewhat Approximation Resistance

A Comparison with Previous Results

k-XOR [Schoenebeck],[Grigoriev]	$\tau^*(f) = 1.$
Well distributed predicates [Tulsiani]	$\tau^*(f) = 1.$
Promise predicates [Tulsiani W]	$ au^*(f)=1$ in Static-LS+.
$\Delta(f,\mathcal{Q})=0$ [Håstad]	$ au^*(f) \leq ho(f) + arepsilon \; (orall arepsilon > 0).$
$\Delta(f,\mathcal{Q}) \geq 1/k^3$ [ktw]	$ au^*(f) \geq ho(f) + \Omega(1/k^5).$
$\Delta(f,\mathcal{Q}) \leq 1/k^3$ and $g ot \geq f_{ ext{[KTW]}}$	$ au^*(f) \geq ho(f) + \Omega(1/k).$
$\Delta(f,\mathcal{Q})=\delta\leq 1/k^3$ and $g\geq f_{ ext{[KTW]}}$	$ ho(f) + \Omega\left(rac{\delta}{k^2} ight) \leq au^*(f)$
	$\tau^*(f) \le \rho(f) + O(k^3\delta).$

<ロ> (四) (四) (三) (三) (三)

Proof Outline

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Our result relies on the constructions of [Chan] in the conditional setting and [Tulsiani] in the unconditional setting.

Proof Outline

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

- Our result relies on the constructions of [Chan] in the conditional setting and [Tulsiani] in the unconditional setting.
- Essentially, [Chan], [Tulsiani] show that a linear predicate $L: \{0,1\}^k \rightarrow \{0,1\}$ is 1-resistant if $L^{-1}(1)$ is the dual space of an affine translate of a distance 3 code.

Proof Outline

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

- Our result relies on the constructions of [Chan] in the conditional setting and [Tulsiani] in the unconditional setting.
- Essentially, [Chan], [Tulsiani] show that a linear predicate $L: \{0,1\}^k \rightarrow \{0,1\}$ is 1-resistant if $L^{-1}(1)$ is the dual space of an affine translate of a distance 3 code.
- Roughly: Well-distributed linear predicates are hard.

Proof Outline

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

- Our result relies on the constructions of [Chan] in the conditional setting and [Tulsiani] in the unconditional setting.
- ▶ Essentially, [Chan], [Tulsiani] show that a linear predicate $L: \{0,1\}^k \rightarrow \{0,1\}$ is 1-resistant if $L^{-1}(1)$ is the dual space of an affine translate of a distance 3 code.
- Roughly: Well-distributed linear predicates are hard.
- Well distributed linear predicates L, which have very few accepting assignments, are called "good" predicates.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Example: $L^{-1}(1)$ corresponds to the Hadamard code.

イロン イロン イヨン イヨン 三日

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Example: $L^{-1}(1)$ corresponds to the Hadamard code.
- ▶ Non-Example: $L^{-1}(1)$ corresponds to the Hamming code.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Example: $L^{-1}(1)$ corresponds to the Hadamard code.
- ▶ Non-Example: $L^{-1}(1)$ corresponds to the Hamming code.
- Intuition: We need to translate the known results about good predicates to weak results about **all** other predicates.

Proof Outline (contd.)

- Example: $L^{-1}(1)$ corresponds to the Hadamard code.
- ▶ Non-Example: $L^{-1}(1)$ corresponds to the Hamming code.
- Intuition: We need to translate the known results about good predicates to weak results about **all** other predicates.
- Correlation among predicates: f : {0,1}^k → {0,1} is said to be τ-correlated with L if a uniformly random satisfying assignment for L is a satisfying assignment for f with probability at least τ i.e.,

$$\mathbb{E}_{x\in L^{-1}(1)}[f(x)] = rac{|L^{-1}(1)\cap f^{-1}(1)|}{|L^{-1}(1)|} \geq au.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• **Step 1**: If f is τ -correlated with a good predicate then f is $\overline{\tau}$ -resistant (also τ^* -resistant).

・ロト ・回ト ・ヨト ・ヨト

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- **Step 1**: If f is τ -correlated with a good predicate then f is $\overline{\tau}$ -resistant (also τ^* -resistant).
- ▶ [Chan] shows that any well distributed predicate *L* is 1-resistant.

イロン イヨン イヨン イヨン

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- **Step 1**: If f is τ -correlated with a good predicate then f is $\overline{\tau}$ -resistant (also τ^* -resistant).
- ▶ [Chan] shows that any well distributed predicate *L* is 1-resistant.
- Main idea: Given any instance Φ_L construct an instance Φ_f such that
 - YES case (Completeness): If Val(Φ_L) ≥ 1 − ε then Val(Φ_f) ≥ τ − ε.
 - 2. NO case (Soundness): If $Val(\Phi_L) \le \rho(L) + \varepsilon$ then $Val(\Phi_f) \le \rho(f) + \varepsilon$.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- **Step 1**: If f is τ -correlated with a good predicate then f is $\overline{\tau}$ -resistant (also τ^* -resistant).
- [Chan] shows that any well distributed predicate L is 1-resistant.
- Main idea: Given any instance Φ_L construct an instance Φ_f such that
 - YES case (Completeness): If Val(Φ_L) ≥ 1 − ε then Val(Φ_f) ≥ τ − ε.
 - 2. NO case (Soundness): If $Val(\Phi_L) \le \rho(L) + \varepsilon$ then $Val(\Phi_f) \le \rho(f) + \varepsilon$.
- We replace L_i with f_i for every constraint in Φ_L to obtain Φ_f. Now, if f and L are τ-correlated then calculations show that f must be τ-resistant.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

Summary: To show that f is τ -resistant it will suffice to show $\overline{f \tau}$ -correlates with some good predicate.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Summary: To show that f is τ -resistant it will suffice to show $\overline{f \tau}$ -correlates with some good predicate.
- ▶ In the unconditional setting, we use the result of [Tulsiani] to link τ -correlation and Lasserre lower bounds i.e., τ^* -resistance.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Summary: To show that f is τ -resistant it will suffice to show $\overline{f \tau}$ -correlates with some good predicate.
- ▶ In the unconditional setting, we use the result of [Tulsiani] to link τ -correlation and Lasserre lower bounds i.e., τ^* -resistance.
- Next goal: Characterize the best possible correlation that f can have with some good predicate.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Summary: To show that f is τ -resistant it will suffice to show $\overline{f \tau}$ -correlates with some good predicate.
- ▶ In the unconditional setting, we use the result of [Tulsiani] to link τ -correlation and Lasserre lower bounds i.e., τ^* -resistance.
- Next goal: Characterize the best possible correlation that f can have with some good predicate.
- Remark: Any non-zero predicate f, Ω(1/k²)-correlates with some good predicate. But we need something better when ρ(f) is large.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Let $\gamma_r(f)$ denote the Fourier mass at level r and above i.e.

$$\gamma_r(f) := \sum_{|\alpha| \ge r} \hat{f}(\alpha)^2.$$

<ロ> (四) (四) (注) (注) (注) (注)

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Let $\gamma_r(f)$ denote the Fourier mass at level r and above i.e.

$$\gamma_r(f) := \sum_{|\alpha| \ge r} \hat{f}(\alpha)^2.$$

Step 2: Any given f is τ-correlated with a good predicate (and hence τ-resistant) for some τ s.t.

$$au \ge
ho(f) + \Omega\left(rac{\gamma_3(f)}{k^2}
ight)$$
 .

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Let $\gamma_r(f)$ denote the Fourier mass at level r and above i.e.

$$\gamma_r(f) := \sum_{|\alpha| \ge r} \hat{f}(\alpha)^2.$$

Step 2: Any given f is τ-correlated with a good predicate (and hence τ-resistant) for some τ s.t.

$$au \ge
ho(f) + \Omega\left(rac{\gamma_3(f)}{k^2}
ight)$$

The proof follows from a probabilistic argument.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Working with γ is a bit cumbersome so we relate it to Δ .

イロン イロン イヨン イヨン 三日

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Working with γ is a bit cumbersome so we relate it to Δ .
- Step 3: If $k \ge 2^{2^{15}}$ and $\gamma_3(f) \le 1/k^2$ then

 $\gamma_3(f) \leq \Delta(f, \mathcal{Q}) \leq C\gamma_3(f).$

イロト イボト イヨト イヨト 二日

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Working with γ is a bit cumbersome so we relate it to Δ .
- Step 3: If $k \ge 2^{2^{15}}$ and $\gamma_3(f) \le 1/k^2$ then

$$\gamma_3(f) \leq \Delta(f, \mathcal{Q}) \leq C\gamma_3(f).$$

► The claim above is similar in spirit to [FKN] which relates Fourier mass above level 1 to distance from dictator functions.

$$\gamma_2(f) \leq \Delta(f, \mathcal{L}) \leq C' \gamma_2(f),$$

where $\boldsymbol{\mathcal{L}}$ denotes the set of dictator and constant boolean functions.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- Working with γ is a bit cumbersome so we relate it to Δ .
- Step 3: If $k \ge 2^{2^{15}}$ and $\gamma_3(f) \le 1/k^2$ then

$$\gamma_3(f) \leq \Delta(f, \mathcal{Q}) \leq C\gamma_3(f).$$

► The claim above is similar in spirit to [FKN] which relates Fourier mass above level 1 to distance from dictator functions.

$$\gamma_2(f) \leq \Delta(f, \mathcal{L}) \leq C' \gamma_2(f),$$

where $\boldsymbol{\mathcal{L}}$ denotes the set of dictator and constant boolean functions.

 Our proof is closely based on Freidgut's theorem but the same results also follow from [Kindler-Safra].

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ Summary: Steps 1, 2 and 3 together with the result of [Chan] imply case (1) of our main theorem i.e., If $\Delta(f, Q) \ge 1/k^3$, then

$$\tau(f) \ge \rho(f) + \Omega(1/k^5)$$

and all that remains are cases 2 and 3 of our main theorem.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ Summary: Steps 1, 2 and 3 together with the result of [Chan] imply case (1) of our main theorem i.e., If $\Delta(f, Q) \ge 1/k^3$, then

$$\tau(f) \ge \rho(f) + \Omega(1/k^5)$$

and all that remains are cases 2 and 3 of our main theorem.

► In the unconditional setting we get from the result of [Tutsiani]:

$$\tau^*(f) \ge \rho(f) + \Omega(1/k^5).$$

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ Step 4: If $\Delta(f, Q) = \delta \le 1/k^3$ and if f does not dominate g then we show

 $\tau(f) \ge \rho(f) + \Omega(1/k).$

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ Step 4: If $\Delta(f, Q) = \delta \le 1/k^3$ and if f does not dominate g then we show

$$au(f) \ge
ho(f) + \Omega(1/k).$$

For illustration, let $\rho(f) = \delta$ be tiny then $g \equiv 0$ and f trivially $\Omega(1/k^2)$ -correlates with some well distributed linear predicate.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Step 4: If $\Delta(f, Q) = \delta \le 1/k^3$ and if f does not dominate g then we show

$$\tau(f) \ge
ho(f) + \Omega(1/k).$$

- For illustration, let $\rho(f) = \delta$ be tiny then $g \equiv 0$ and f trivially $\Omega(1/k^2)$ -correlates with some well distributed linear predicate.
- ▶ We prove a more general bound by a direct reduction from well distributed linear predicates to *f*. The details are left to the paper.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

• Step 4: If $\Delta(f, Q) = \delta \le 1/k^3$ and if f does not dominate g then we show

$$\tau(f) \ge \rho(f) + \Omega(1/k).$$

- For illustration, let $\rho(f) = \delta$ be tiny then $g \equiv 0$ and f trivially $\Omega(1/k^2)$ -correlates with some well distributed linear predicate.
- ▶ We prove a more general bound by a direct reduction from well distributed linear predicates to *f*. The details are left to the paper.
- This finishes our lower bounds.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ Step 4: If $\Delta(f, Q) = \delta \le 1/k^3$ and if f does not dominate g then we show

$$au(f) \ge
ho(f) + \Omega(1/k).$$

- For illustration, let $\rho(f) = \delta$ be tiny then $g \equiv 0$ and f trivially $\Omega(1/k^2)$ -correlates with some well distributed linear predicate.
- ▶ We prove a more general bound by a direct reduction from well distributed linear predicates to *f*. The details are left to the paper.
- This finishes our lower bounds.
- <u>Remark</u>: In the last case $|\tau(f) \rho(f)|$ is large even though $\gamma_3(f)$ may be very small in this case.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ **Step 5**: Finally, if $\Delta(f, Q) = \delta \le 1/k^3 f$ dominates g and $\overline{MAX-k}$ -CSP(f) is $Ck^3\delta$ satisfiable then we show

 $\tau(f) \le \rho(f) + O(k^3\delta).$

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

► **Step 5**: Finally, if $\Delta(f, Q) = \delta \le 1/k^3 f$ dominates g and MAX-k-CSP(f) is $Ck^3\delta$ satisfiable then we show

$$\tau(f) \leq \rho(f) + O(k^3\delta).$$

We provide a SDP rounding algorithm which given a ρ(f) + ε satisfiable instance outputs a ρ(f) + cε/k²log(1/ε) satisfying assignment and hence can distinguish between ~ ρ(f) vs ~ ρ(f) + Ck³δ satisfiable instances.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

▶ **Step 5**: Finally, if $\Delta(f, Q) = \delta \le 1/k^3 f$ dominates g and MAX-k-CSP(f) is $Ck^3\delta$ satisfiable then we show

$$\tau(f) \leq \rho(f) + O(k^3\delta).$$

- We provide a SDP rounding algorithm which given a ρ(f) + ε satisfiable instance outputs a ρ(f) + cε/k²log(1/ε) satisfying assignment and hence can distinguish between ~ ρ(f) vs ~ ρ(f) + Ck³δ satisfiable instances.
- First, we note that the algorithm of [Charikar Wirth] satisfies ρ(f) + cε/log(1/ε) constraints of a ρ(g) + ε satisfiable MAX-k-CSP(g) instance, where g ∈ Q.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

► **Step 5**: Finally, if $\Delta(f, Q) = \delta \le 1/k^3 f$ dominates g and MAX-k-CSP(f) is $Ck^3\delta$ satisfiable then we show

$$\tau(f) \leq \rho(f) + O(k^3\delta).$$

- We provide a SDP rounding algorithm which given a ρ(f) + ε satisfiable instance outputs a ρ(f) + cε/k²log(1/ε) satisfying assignment and hence can distinguish between ~ ρ(f) vs ~ ρ(f) + Ck³δ satisfiable instances.
- ▶ First, we note that the algorithm of [Charikar Wirth] satisfies $\rho(f) + \frac{c\varepsilon}{\log(1/\varepsilon)}$ constraints of a $\rho(g) + \varepsilon$ satisfiable MAX-*k*-CSP(*g*) instance, where $g \in Q$.
- Now we substitute g for f in our MAX-k-CSP(f) instance and use the algorithm of [Charikar Wirth].

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

► The simple algorithm described previously does not work since the assignment obtained from solving the MAX-k-CSP(g) instance may fail *disproportionately* on the MAX-k-CSP(f) instance (recall g ≥ f).

・ロン ・回 と ・ 回 と ・ 回 と

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- ► The simple algorithm described previously does not work since the assignment obtained from solving the MAX-k-CSP(g) instance may fail *disproportionately* on the MAX-k-CSP(f) instance (recall g ≥ f).
- ► To correct this, we re-reandomize each variable output by the algorithm independently with probability 1 1/2k.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- ► The simple algorithm described previously does not work since the assignment obtained from solving the MAX-k-CSP(g) instance may fail *disproportionately* on the MAX-k-CSP(f) instance (recall g ≥ f).
- ► To correct this, we re-reandomize each variable output by the algorithm independently with probability 1 1/2k.
- ▶ Using a simple Chernoff type argument we show that re-randomized assignment satisfies $\rho(f) + \frac{c\varepsilon}{k^2 \log(1/\varepsilon)}$ fraction of constraints.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

- ► The simple algorithm described previously does not work since the assignment obtained from solving the MAX-k-CSP(g) instance may fail *disproportionately* on the MAX-k-CSP(f) instance (recall g ≥ f).
- ► To correct this, we re-reandomize each variable output by the algorithm independently with probability 1 1/2k.
- ▶ Using a simple Chernoff type argument we show that re-randomized assignment satisfies $\rho(f) + \frac{c\varepsilon}{k^2 \log(1/\varepsilon)}$ fraction of constraints.
- This finishes the outline of our proof of the main theorem.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and au(f)

▶ Claim: Let $k \ge 16$ and $f : \{0,1\}^k \to \{0,1\}$ be a predicate. There exists

$$\tau \ge \sqrt{\rho(f)^2 + \frac{\gamma_3(f)}{100k^2}} \tag{1}$$

such that $f \ \tau$ -correlates with some well distributed linear predicate.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and au(f)

▶ Claim: Let $k \ge 16$ and $f : \{0,1\}^k \to \{0,1\}$ be a predicate. There exists

$$\tau \ge \sqrt{\rho(f)^2 + \frac{\gamma_3(f)}{100k^2}} \tag{1}$$

such that $f\ \tau\text{-correlates}$ with some well distributed linear predicate.

• Claim implies that f is τ -resistant (in both senses).

・ロト ・四ト ・ヨト ・ヨト - ヨ

$\gamma_3(f)$ and au(f)

▶ Claim: Let $k \ge 16$ and $f : \{0,1\}^k \to \{0,1\}$ be a predicate. There exists

$$\tau \ge \sqrt{\rho(f)^2 + \frac{\gamma_3(f)}{100k^2}} \tag{1}$$

such that $f\ \tau\text{-correlates}$ with some well distributed linear predicate.

- Claim implies that f is τ -resistant (in both senses).
- Recall that a well distributed linear predicate L is of the form L⁻¹(1) = S + z, S is a subspace and S[⊥] is a distance (at least) 3 code.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

▶ We will show that choosing a random *S* and *z* ensures:

- 1. L is well distributed and
- 2.

$$\mathbb{E}_{x \in S+z}[f(x)] \ge \sqrt{\hat{f}(0)^2 + \frac{\gamma_3(f)}{100k^2}}.$$
 (2)

イロン イボン イヨン イヨン 三日

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

- ▶ We will show that choosing a random S and z ensures:
 - 1. *L* is well distributed and 2.

$$\mathbb{E}_{x \in S+z}[f(x)] \ge \sqrt{\hat{f}(0)^2 + \frac{\gamma_3(f)}{100k^2}}.$$
 (2)

• Let
$$dim(S^{\perp}) := d$$
 and so

$$S + z := \{ x \in \mathbb{F}_2^k : \alpha_i \cdot x = b_i, \ i \in [d] \}.$$
(3)

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

- ▶ We will show that choosing a random S and z ensures:
 - 1. *L* is well distributed and 2.

$$\mathbb{E}_{x \in S+z}[f(x)] \ge \sqrt{\hat{f}(0)^2 + \frac{\gamma_3(f)}{100k^2}}.$$
 (2)

• Let
$$dim(S^{\perp}) := d$$
 and so
 $S + z := \{x \in \mathbb{F}_2^k : \alpha_i \cdot x = b_i, i \in [d]\}.$ (3)

Subclaim: Equations 3 and 2 imply:

$$\mathbb{E}_{x \in S+z}[f(x)] = \sum_{\alpha \in S^{\perp}} (-1)^{\alpha \cdot z} \hat{f}(\alpha).$$
(4)

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Subclaim is true because

$$\mathbb{E}_{x \in S+z}[f(x)] = \frac{2^k}{|S|} \mathbb{E}_{x \in \{0,1\}^k}[1_{S+z}(x) \cdot f(x)]$$

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Subclaim is true because

$$\mathbb{E}_{x \in S+z}[f(x)] = \frac{2^k}{|S|} \mathbb{E}_{x \in \{0,1\}^k}[\mathbb{1}_{S+z}(x) \cdot f(x)]$$

Expanding the indicator variable, we get:

$$\mathbb{E}_{x \in S+z}[f(x)] = 2^{d} \mathbb{E}_{x \in \{0,1\}^{k}} \left[\prod_{i=1}^{d} \left(\frac{1 + (-1)^{\alpha_{i} \cdot x + b_{i}}}{2} \right) \cdot f(x) \right].$$

< □ > < @ > < 注 > < 注 > ... 注

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Subclaim is true because

$$\mathbb{E}_{x \in S+z}[f(x)] = \frac{2^k}{|S|} \mathbb{E}_{x \in \{0,1\}^k}[\mathbb{1}_{S+z}(x) \cdot f(x)]$$

Expanding the indicator variable, we get:

$$\mathbb{E}_{x \in S+z}[f(x)] = 2^{d} \mathbb{E}_{x \in \{0,1\}^{k}} \left[\prod_{i=1}^{d} \left(\frac{1 + (-1)^{\alpha_{i} \cdot x + b_{i}}}{2} \right) \cdot f(x) \right].$$

Now we simplify the RHS by writing f in Fourier basis, expanding Π^d_{i=1} (1 + (−1)^{α_i·x+b_i}) and then computing the expectations.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Subclaim is true because

$$\mathbb{E}_{x \in S+z}[f(x)] = \frac{2^k}{|S|} \mathbb{E}_{x \in \{0,1\}^k}[1_{S+z}(x) \cdot f(x)]$$

Expanding the indicator variable, we get:

$$\mathbb{E}_{x \in S+z}[f(x)] = 2^{d} \mathbb{E}_{x \in \{0,1\}^{k}} \left[\prod_{i=1}^{d} \left(\frac{1 + (-1)^{\alpha_{i} \cdot x + b_{i}}}{2} \right) \cdot f(x) \right].$$

- Now we simplify the RHS by writing f in Fourier basis, expanding Π^d_{i=1} (1 + (−1)^{α_i·x+b_i}) and then computing the expectations.
- Simplification implies our subclaim:

$$\mathbb{E}_{x \in S+z}[f(x)] = \sum_{\alpha \in S^{\perp}} (-1)^{\alpha \cdot z} \hat{f}(\alpha).$$

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Squaring both sides and taking expectations over a uniform random choice of z ∈ {0,1}^k gives:

$$\mathbb{E}_{z}\left[\mathbb{E}_{x\in\mathcal{S}+z}[f(x)]\right]^{2} = \hat{f}(0)^{2} + \sum_{\alpha:|\alpha|\geq3}\hat{f}(\alpha)^{2}\cdot 1_{\alpha\in\mathcal{S}^{\perp}}.$$
 (5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Squaring both sides and taking expectations over a uniform random choice of z ∈ {0,1}^k gives:

$$\mathbb{E}_{z}\left[\mathbb{E}_{x\in\mathcal{S}+z}[f(x)]\right]^{2} = \hat{f}(0)^{2} + \sum_{\alpha:|\alpha|\geq 3}\hat{f}(\alpha)^{2} \cdot \mathbf{1}_{\alpha\in\mathcal{S}^{\perp}}.$$
 (5)

Now we let d = k − 2 log₂ k − 2 and take expectation (on both sides of Equation 5) over S by choosing S[⊥] uniformly from distance 3 codes in F^k₂.

イロト イポト イラト イラト 一日

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

Squaring both sides and taking expectations over a uniform random choice of z ∈ {0,1}^k gives:

$$\mathbb{E}_{z}\left[\mathbb{E}_{x\in\mathcal{S}+z}[f(x)]\right]^{2} = \hat{f}(0)^{2} + \sum_{\alpha:|\alpha|\geq 3}\hat{f}(\alpha)^{2} \cdot \mathbf{1}_{\alpha\in\mathcal{S}^{\perp}}.$$
 (5)

- Now we let d = k − 2 log₂ k − 2 and take expectation (on both sides of Equation 5) over S by choosing S[⊥] uniformly from distance 3 codes in F^k₂.
- Heuristically, since ^{|S⊥|}/_{2^k} ≃ ¹/_{k²} and since S[⊥] behaves as a random subset of F^k₂ we will get:

$$\mathbb{E}_{S^{\perp}}[1_{\alpha\in S^{\perp}}] \geq \Omega(1/k^2),$$

which will prove our claim.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

▶ Formally, let C be d dimension codes and C₃ be d dimension codes of distance (at least) 3.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

- ▶ Formally, let C be d dimension codes and C₃ be d dimension codes of distance (at least) 3.
- Chosing S^{\perp} to be a random code in C_3 we get:

$$\mathbb{E}_{S^{\perp}}[\mathbf{1}_{\alpha\in S^{\perp}}] \geq \mathbb{P}_{C\in\mathcal{C}}[\alpha\in C, C\in\mathcal{C}_3].$$

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

- ▶ Formally, let C be d dimension codes and C₃ be d dimension codes of distance (at least) 3.
- Chosing S^{\perp} to be a random code in C_3 we get:

$$\mathbb{E}_{S^{\perp}}[1_{\alpha \in S^{\perp}}] \geq \mathbb{P}_{C \in \mathcal{C}}[\alpha \in C, C \in \mathcal{C}_3].$$

• Now $|\mathcal{C}| = \binom{k}{d}_2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

- ▶ Formally, let C be d dimension codes and C₃ be d dimension codes of distance (at least) 3.
- Chosing S^{\perp} to be a random code in C_3 we get:

$$\mathbb{E}_{S^{\perp}}[1_{\alpha \in S^{\perp}}] \geq \mathbb{P}_{C \in \mathcal{C}}[\alpha \in C, C \in \mathcal{C}_3].$$

• Now
$$|\mathcal{C}| = \binom{k}{d}_2$$
.

• The number of codes in C containing $\alpha \in \mathbb{F}_2^k$ is $\binom{k-1}{d-1}_2$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のQ@

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

▶ The number of codes containing $\alpha \in \mathbb{F}_2^k$ and distance at most 2 is $k^2 \binom{k-2}{d-2}_2$.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

The number of codes containing α ∈ 𝔽^k₂ and distance at most 2 is k² (^{k-2}_{d-2})₂.
 So.

$$\mathbb{P}_{C \in \mathcal{C}}[\alpha \in C, C \in \mathcal{C}_3] \geq \frac{\binom{k-1}{d-1}_2 - k^2 \binom{k-2}{d-2}_2}{\binom{k}{d}_2}$$

(日) (四) (王) (王) (王)

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

The number of codes containing α ∈ 𝔽^k₂ and distance at most 2 is k² (^{k−2}_{d−2})₂.
 So.

$$\mathbb{P}_{\mathcal{C}\in\mathcal{C}}[\alpha\in\mathcal{C},\mathcal{C}\in\mathcal{C}_3]\geq\frac{\binom{k-1}{d-1}_2-k^2\binom{k-2}{d-2}_2}{\binom{k}{d}_2}$$

Simplifying the above we get:

$$\mathbb{E}_{S^{\perp}}[1_{lpha\in S^{\perp}}]\geq rac{1}{100k^2}.$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

$\gamma_3(f)$ and $\tau(f)$ (contd.)

The number of codes containing α ∈ 𝔽^k₂ and distance at most 2 is k² (^{k-2}_{d-2})₂.
 So.

$$\mathbb{P}_{C\in\mathcal{C}}[\alpha\in\mathcal{C}, C\in\mathcal{C}_3] \geq \frac{\binom{k-1}{d-1}_2 - k^2\binom{k-2}{d-2}_2}{\binom{k}{d}_2}$$

Simplifying the above we get:

$$\mathbb{E}_{\mathcal{S}^{\perp}}[1_{lpha\in\mathcal{S}^{\perp}}]\geq rac{1}{100k^2}.$$

This proves our claim.

Overview of the Proof Large Fourier Mass implies Non-trivial Correlation

Thank You.

Thank You.

Pratik Worah The Complexity of Somewhat Approximation Resistant Predica

イロン イボン イヨン イヨン 三日