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k-CSPs are everywhere

I k-CSP(f )s, for f : {0, 1}k → {0, 1}, are well studied in
Theoretical Computer Science.

I Example: f = ∨ or f = ⊕.
I For example k-CNF and k-XOR are at the intersection of

many algorithmic and lower bound results.
I Classical NP-Completeness reductions Eg. [Karp].
I Dichotomy Theorems Eg. [Schaefer].
I PCP based conditional lowerbounds Eg. [Håstad].
I Lowerbounds in weak proof systems Eg. [Grigoriev et al].
I Approximation algorithms for MAX-k-CSPs Eg. [Hast].

The list of references above runs long.
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Our Problem Space

I The problem of finding an assignment which satisfies
maximum fraction of constraints is an important one -
MAX-k-CSP(f ).

I A k-ary constraint fi is derived from f by choosing tuples of k
variables (or their negations) as inputs to f .

I Formally, given m k-ary constraints fi , each derived from
predicate f , on n variables {x1, .., xn} we wish to find:

max
α∈{0,1}n

1

m

m∑
i=1

fi (α|fi ).
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A Trivial Algorithm

I Solving MAX-k-CSP(f ) exactly is NP-Hard [Cook-Levin].

I What if we are willing to settle for a polynomial time
algorithm which outputs an approximately optimal solution
always within a small constant factor away from the optimum?

I Let ρ(f ) denote the density of accepting assignments of

predicate f i.e. ρ(f ) := |f −1(1)|
2k .

I Solution: Choose a uniform random assignment α ∈ {0, 1}n.
It will satisfy ρ(f ) fraction of constraints in expectation.
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Conditional Hardness

I Can we do better than the above trivial algorithm?

I Beating the random assignment for MAX-k-CSP(⊕) is
NP-Hard [Håstad] for k ≥ 3.

I For k ≥ 3 and small enough ε > 0, it is NP-Hard to
distinguish between a 1− ε satisfiable instance of
MAX-k-XOR and a 1/2 + ε satisfiable instance of
MAX-k-XOR.

I A predicate f which is 1− ε vs. ρ(f)− ε hard, in the above
sense, is popularly known as approximation resistant.
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NP-Hard [Håstad] for k ≥ 3.

I For k ≥ 3 and small enough ε > 0, it is NP-Hard to
distinguish between a 1− ε satisfiable instance of
MAX-k-XOR and a 1/2 + ε satisfiable instance of
MAX-k-XOR.

I A predicate f which is 1− ε vs. ρ(f)− ε hard, in the above
sense, is popularly known as approximation resistant.

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Approximation Resistance
Somewhat Approximation Resistance

Conditional Hardness

I Can we do better than the above trivial algorithm?

I Beating the random assignment for MAX-k-CSP(⊕) is
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More Conditional Hardness

I What about predicates other than ⊕?

I f : {0, 1}k → {0, 1} is said to support a probability
distribution µ : {0, 1}k → R if µ(x) > 0 only when
x ∈ f −1(1).

I A linear predicate L corresponds to a set of assignments
L−1(1) which form an affine subspace of Fk

2 .

I k-XOR is a linear predicate.
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More Conditional Hardness

I A well distributed linear predicate L is a linear predicate where
the uniform distribution µ supported on the set L−1(1) is
balanced and pairwise independent.

∀i , j ∈ [k] µ(xi = 1) = 1/2, µ(xi = 1, xj = 1) = 1/4.

I Easy to see k-XOR is a well distributed linear predicate.

I For k ≥ 3, ε > 0 and L a well distributed linear predicate then
L is approximation resistant [Chan].

I Q1: Exactly which non-linear predicates are “hard to
approximate”, assuming P 6= NP?
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τ -Resistance

I For τ > ρ(f ), f is said to be τ -resistant if for arbitrary small
enough constant ε > 0, it is NP-Hard to distinguish instances
where a τ − ε fraction of constraints can be simultaneously
satisfied from those where at most ρ(f ) + ε fraction of the
constraints can be simultaneously satisfied.

I Approximation Resistance ≡ 1-resistance.

I We address a weak version of our original goal (Qn1).

I Goal: Given f , characterize the gap: τ(f )− ρ(f ).
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τ -Resistance

ρ( f)+o(1)

ρ( f)+o(1)

1−o(1)

τ( f)

I f is said to be somewhat approximation resistant if there
exists a constant τ > ρ(f ) so that f is τ -resistant [Håstad].

I τ -resistance is a more precise version of somewhat resistance.

I We characterize τ(f )− ρ(f ) upto a factor of O(k5).
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Somewhat Approximation Resistance

I Let Q be the set of k-ary boolean predicates having no
Fourier mass at level 3 or above.

I Example: f (~x) := 1+(−1)x1 +(−1)x2 +(−1)x1+x2

4 .

I If the normalized Hamming distance ∆(f ,Q) > 0 i.e. f 6∈ Q,
then f is somewhat approximation resistant [Håstad].

I But the value of τ in [Håstad] can be exponentially small in k .

I Conversely, if ∆(f ,Q) = 0, then f depends on at most 4
variables [Håstad]. Moreover, f is not somewhat approximation
resistant [Håstad].
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Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Approximation Resistance
Somewhat Approximation Resistance

Somewhat Approximation Resistance

I Let Q be the set of k-ary boolean predicates having no
Fourier mass at level 3 or above.

I Example: f (~x) := 1+(−1)x1 +(−1)x2 +(−1)x1+x2

4 .

I If the normalized Hamming distance ∆(f ,Q) > 0 i.e. f 6∈ Q,
then f is somewhat approximation resistant [Håstad].
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Main Theorem

Assume k ≥ k0 and f : {0, 1}k → {0, 1} be a predicate with
∆(f ,Q) > 0.

1. If ∆(f ,Q) ≥ 1/k3, then

τ(f ) ≥ ρ(f ) + Ω(1/k5).

Else, ∆(f ,Q) = δ ≤ 1/k3, and let g ∈ Q s.t. ∆(f , g) = δ.

2. If ∃x ∈ {0, 1}k such that f (x) = 1 ∧ g(x) = 0 then

τ(f ) ≥ ρ(f ) + Ω(1/k).

3. Else, g is monotonically above f . In this case,

ρ(f ) + Ω

(
δ

k2

)
≤ τ(f ) ≤ ρ(f ) + O(k3δ).
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A Comparison with Previous Results

k-XOR [Håstad] τ(f ) ' 1

Well distributed predicates [Chan] τ(f ) ' 1.

∆(f ,Q) > 0 [Håstad] τ(f ) ≥ ρ(f ) + 1
2Θ(k) .

∆(f ,Q) = 0 [Håstad] τ(f ) ≤ ρ(f ) + ε (∀ε > 0).

∆(f ,Q) ≥ 1/k3
[KTW] τ(f ) ≥ ρ(f ) + Ω(1/k5).

∆(f ,Q) ≤ 1/k3 and g 6≥ f [KTW] τ(f ) ≥ ρ(f ) + Ω(1/k).

∆(f ,Q) = δ ≤ 1/k3 and g ≥ f [KTW] ρ(f ) + Ω
(
δ
k2

)
≤ τ(f )

τ(f ) ≤ ρ(f ) + O(k3δ).
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Unconditional Hardness

I Lower bounds for k-CSPs in an a unconditional sense are also
known in “weak” models of computation.

I A LP or SDP hierarchy generates stronger and stronger
relaxations which require progressively more time to solve.

I The trade-off here is between the integrality gap and
efficiency of the algorithm.

I Why this model? LP and SDP rounding gives non-trivial
approximation algorithms for MAX-k-CSPs which beats the
random assignment for some predicates.
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random assignment for some predicates.
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for Lasserre hierarchy if there exist MAX-k-CSP(f ) instances
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after Ω(n) rounds of Lasserre has value 1.

I Natural to substitute Lasserre with a weaker hierachy like LS+.
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I Well distributed linear predicates are approximation resistant
[Tulsiani].

I Q2: Exactly which non-linear predicates are “hard” i.e. have
high integrality gap, for many rounds of Lasserre?
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τ ∗-Resistance

I For τ∗ > ρ(f ), f is said to be τ∗-resistant if for an arbitrarily
small constant ε > 0, there exists a constant c = c(ε) > 0
and instances with n variables and m constraints, for infinitely
many values of n, such that the Lasserre relaxation after bcnc
rounds has value at least τ∗ but the integral optimum is at
most ρ(f ) + ε.

I Approximation Resistance for Lasserre ≡ 1-resistance.

I As before one extends the definition of somewhat resistance
to the unconditional case.

I Somewhat approximation resistance has not been investigated
before in the context of SDP hierarchies.
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Main Theorem

Assume k ≥ k0 and f : {0, 1}k → {0, 1} be a predicate with
∆(f ,Q) > 0.

1. If ∆(f ,Q) ≥ 1/k3, then

τ∗(f ) ≥ ρ(f ) + Ω(1/k5).

Else, ∆(f ,Q) = δ ≤ 1/k3, and let g ∈ Q s.t. ∆(f , g) = δ.

2. If ∃x ∈ {0, 1}k such that f (x) = 1 ∧ g(x) = 0 then

τ∗(f ) ≥ ρ(f ) + Ω(1/k).

3. Else, g is monotonically above f . In this case,

ρ(f ) + Ω

(
δ

k2

)
≤ τ∗(f ) ≤ ρ(f ) + O(k3δ).
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A Comparison with Previous Results

k-XOR [Schoenebeck],[Grigoriev] τ∗(f ) = 1.

Well distributed predicates [Tulsiani] τ∗(f ) = 1.

Promise predicates [Tulsiani W] τ∗(f ) = 1 in Static-LS+.

∆(f ,Q) = 0 [Håstad] τ∗(f ) ≤ ρ(f ) + ε (∀ε > 0).

∆(f ,Q) ≥ 1/k3
[KTW] τ∗(f ) ≥ ρ(f ) + Ω(1/k5).

∆(f ,Q) ≤ 1/k3 and g 6≥ f [KTW] τ∗(f ) ≥ ρ(f ) + Ω(1/k).

∆(f ,Q) = δ ≤ 1/k3 and g ≥ f [KTW] ρ(f ) + Ω
(
δ
k2

)
≤ τ∗(f )

τ∗(f ) ≤ ρ(f ) + O(k3δ).
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Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

Proof Outline

I Our result relies on the constructions of [Chan] in the conditional
setting and [Tulsiani] in the unconditional setting.

I Essentially, [Chan], [Tulsiani] show that a linear predicate
L : {0, 1}k → {0, 1} is 1-resistant if L−1(1) is the dual space
of an affine translate of a distance 3 code.

I Roughly: Well-distributed linear predicates are hard.

I Well distributed linear predicates L, which have very few
accepting assignments, are called “good” predicates.
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Proof Outline (contd.)

I Example: L−1(1) corresponds to the Hadamard code.

I Non-Example: L−1(1) corresponds to the Hamming code.

I Intuition: We need to translate the known results about good
predicates to weak results about all other predicates.

I Correlation among predicates: f : {0, 1}k → {0, 1} is said to
be τ -correlated with L if a uniformly random satisfying
assignment for L is a satisfying assignment for f with
probability at least τ i.e.,

Ex∈L−1(1)[f (x)] =
|L−1(1) ∩ f −1(1)|
|L−1(1)|

≥ τ.
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Proof Outline (contd.)

I Step 1: If f is τ -correlated with a good predicate then f is
τ -resistant (also τ∗-resistant).

I [Chan] shows that any well distributed predicate L is 1-resistant.
I Main idea: Given any instance ΦL construct an instance Φf

such that

1. YES case (Completeness): If Val(ΦL) ≥ 1− ε then
Val(Φf ) ≥ τ − ε.

2. NO case (Soundness): If Val(ΦL) ≤ ρ(L) + ε then
Val(Φf ) ≤ ρ(f ) + ε.

I We replace Li with fi for every constraint in ΦL to obtain Φf .
Now, if f and L are τ -correlated then calculations show that f
must be τ -resistant.♠
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Proof Outline (contd.)

I Summary: To show that f is τ -resistant it will suffice to show
f τ -correlates with some good predicate.

I In the unconditional setting, we use the result of [Tulsiani] to link
τ -correlation and Lasserre lower bounds i.e., τ∗-resistance.

I Next goal: Characterize the best possible correlation that f
can have with some good predicate.

I Remark: Any non-zero predicate f , Ω(1/k2)-correlates with
some good predicate. But we need something better when
ρ(f ) is large.
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Proof Outline (contd.)

I Let γr (f ) denote the Fourier mass at level r and above i.e.

γr (f ) :=
∑
|α|≥r

f̂ (α)2.

I Step 2: Any given f is τ -correlated with a good predicate
(and hence τ -resistant) for some τ s.t.

τ ≥ ρ(f ) + Ω

(
γ3(f )

k2

)
.

I The proof follows from a probabilistic argument.

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

I Let γr (f ) denote the Fourier mass at level r and above i.e.

γr (f ) :=
∑
|α|≥r

f̂ (α)2.

I Step 2: Any given f is τ -correlated with a good predicate
(and hence τ -resistant) for some τ s.t.

τ ≥ ρ(f ) + Ω

(
γ3(f )

k2

)
.

I The proof follows from a probabilistic argument.

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

I Let γr (f ) denote the Fourier mass at level r and above i.e.

γr (f ) :=
∑
|α|≥r

f̂ (α)2.

I Step 2: Any given f is τ -correlated with a good predicate
(and hence τ -resistant) for some τ s.t.

τ ≥ ρ(f ) + Ω

(
γ3(f )

k2

)
.

I The proof follows from a probabilistic argument.

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

Proof Outline (contd.)

I Working with γ is a bit cumbersome so we relate it to ∆.

I Step 3: If k ≥ 2215
and γ3(f ) ≤ 1/k2 then

γ3(f ) ≤ ∆(f ,Q) ≤ Cγ3(f ).

I The claim above is similar in spirit to [FKN] which relates
Fourier mass above level 1 to distance from dictator functions.

γ2(f ) ≤ ∆(f ,L) ≤ C ′γ2(f ),

where L denotes the set of dictator and constant boolean
functions.

I Our proof is closely based on Freidgut’s theorem but the same
results also follow from [Kindler-Safra].
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Proof Outline (contd.)

I Summary: Steps 1, 2 and 3 together with the result of [Chan]

imply case (1) of our main theorem i.e., If ∆(f ,Q) ≥ 1/k3,
then

τ(f ) ≥ ρ(f ) + Ω(1/k5)

and all that remains are cases 2 and 3 of our main theorem.

I In the unconditional setting we get from the result of [Tulsiani]:

τ∗(f ) ≥ ρ(f ) + Ω(1/k5).
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I Step 4: If ∆(f ,Q) = δ ≤ 1/k3 and if f does not dominate g
then we show

τ(f ) ≥ ρ(f ) + Ω(1/k).

I For illustration, let ρ(f ) = δ be tiny then g ≡ 0 and f trivially
Ω(1/k2)-correlates with some well distributed linear predicate.

I We prove a more general bound by a direct reduction from
well distributed linear predicates to f . The details are left to
the paper.

I This finishes our lower bounds.

I Remark: In the last case |τ(f )− ρ(f )| is large even though
γ3(f ) may be very small in this case.
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I Step 5: Finally, if ∆(f ,Q) = δ ≤ 1/k3 f dominates g and
MAX-k-CSP(f ) is Ck3δ satisfiable then we show

τ(f ) ≤ ρ(f ) + O(k3δ).

I We provide a SDP rounding algorithm which given a ρ(f ) + ε
satisfiable instance outputs a ρ(f ) + cε

k2 log(1/ε)
satisfying

assignment and hence can distinguish between ∼ ρ(f ) vs
∼ ρ(f ) + Ck3δ satisfiable instances.

I First, we note that the algorithm of [Charikar Wirth] satisfies
ρ(f ) + cε

log(1/ε) constraints of a ρ(g) + ε satisfiable

MAX-k-CSP(g) instance, where g ∈ Q.

I Now we substitute g for f in our MAX-k-CSP(f ) instance and
use the algorithm of [Charikar Wirth].
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I The simple algorithm described previously does not work since
the assignment obtained from solving the MAX-k-CSP(g)
instance may fail disproportionately on the MAX-k-CSP(f )
instance (recall g ≥ f ).

I To correct this, we re-reandomize each variable output by the
algorithm independently with probability 1− 1/2k .

I Using a simple Chernoff type argument we show that
re-randomized assignment satisfies ρ(f ) + cε

k2 log(1/ε)
fraction

of constraints.

I This finishes the outline of our proof of the main theorem.
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γ3(f ) and τ(f )

I Claim: Let k ≥ 16 and f : {0, 1}k → {0, 1} be a predicate.
There exists

τ ≥
√
ρ(f )2 +

γ3(f )

100k2
(1)

such that f τ -correlates with some well distributed linear
predicate.

I Claim implies that f is τ -resistant (in both senses).

I Recall that a well distributed linear predicate L is of the form
L−1(1) = S + z , S is a subspace and S⊥ is a distance (at
least) 3 code.
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γ3(f ) and τ(f ) (contd.)

I We will show that choosing a random S and z ensures:

1. L is well distributed and
2.

Ex∈S+z [f (x)] ≥
√

f̂ (0)2 +
γ3(f )

100k2
. (2)

I Let dim(S⊥) := d and so

S + z := {x ∈ Fk
2 : αi · x = bi , i ∈ [d ]}. (3)

I Subclaim: Equations 3 and 2 imply:

Ex∈S+z [f (x)] =
∑
α∈S⊥

(−1)α·z f̂ (α). (4)

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

γ3(f ) and τ(f ) (contd.)

I We will show that choosing a random S and z ensures:

1. L is well distributed and
2.

Ex∈S+z [f (x)] ≥
√

f̂ (0)2 +
γ3(f )

100k2
. (2)

I Let dim(S⊥) := d and so

S + z := {x ∈ Fk
2 : αi · x = bi , i ∈ [d ]}. (3)

I Subclaim: Equations 3 and 2 imply:

Ex∈S+z [f (x)] =
∑
α∈S⊥

(−1)α·z f̂ (α). (4)

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

γ3(f ) and τ(f ) (contd.)

I We will show that choosing a random S and z ensures:

1. L is well distributed and
2.

Ex∈S+z [f (x)] ≥
√

f̂ (0)2 +
γ3(f )

100k2
. (2)

I Let dim(S⊥) := d and so

S + z := {x ∈ Fk
2 : αi · x = bi , i ∈ [d ]}. (3)

I Subclaim: Equations 3 and 2 imply:

Ex∈S+z [f (x)] =
∑
α∈S⊥

(−1)α·z f̂ (α). (4)

Pratik Worah The Complexity of Somewhat Approximation Resistant Predicates



Conditional Hardness
Unconditional Hardness
Some Technical Aspects

Overview of the Proof
Large Fourier Mass implies Non-trivial Correlation

γ3(f ) and τ(f ) (contd.)

I Subclaim is true because

Ex∈S+z [f (x)] =
2k

|S |
Ex∈{0,1}k [1S+z(x) · f (x)]

I Expanding the indicator variable, we get:

Ex∈S+z [f (x)] = 2dEx∈{0,1}k

[
Πd

i=1

(
1 + (−1)αi ·x+bi

2

)
· f (x)

]
.

I Now we simplify the RHS by writing f in Fourier basis,
expanding Πd

i=1

(
1 + (−1)αi ·x+bi

)
and then computing the

expectations.
I Simplification implies our subclaim:

Ex∈S+z [f (x)] =
∑
α∈S⊥

(−1)α·z f̂ (α).
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γ3(f ) and τ(f ) (contd.)

I Squaring both sides and taking expectations over a uniform
random choice of z ∈ {0, 1}k gives:

Ez [Ex∈S+z [f (x)]]2 = f̂ (0)2 +
∑

α:|α|≥3

f̂ (α)2 · 1α∈S⊥ . (5)

I Now we let d = k − 2 log2 k − 2 and take expectation (on
both sides of Equation 5) over S by choosing S⊥ uniformly
from distance 3 codes in Fk

2 .

I Heuristically, since |S
⊥|

2k ' 1
k2 and since S⊥ behaves as a

random subset of Fk
2 we will get:

ES⊥ [1α∈S⊥ ] ≥ Ω(1/k2),

which will prove our claim.
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I Formally, let C be d dimension codes and C3 be d dimension
codes of distance (at least) 3.

I Chosing S⊥ to be a random code in C3 we get:

ES⊥ [1α∈S⊥ ] ≥ PC∈C[α ∈ C ,C ∈ C3].

I Now |C| =
(k
d

)
2
.

I The number of codes in C containing α ∈ Fk
2 is

(k−1
d−1

)
2
.
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I The number of codes containing α ∈ Fk
2 and distance at most

2 is k2
(k−2
d−2

)
2
.

I So,

PC∈C[α ∈ C ,C ∈ C3] ≥
(k−1
d−1

)
2
− k2

(k−2
d−2

)
2(k

d

)
2

.

I Simplifying the above we get:

ES⊥ [1α∈S⊥ ] ≥ 1

100k2
.

I This proves our claim.
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2 and distance at most

2 is k2
(k−2
d−2

)
2
.

I So,

PC∈C[α ∈ C ,C ∈ C3] ≥
(k−1
d−1

)
2
− k2

(k−2
d−2

)
2(k

d

)
2

.

I Simplifying the above we get:

ES⊥ [1α∈S⊥ ] ≥ 1

100k2
.

I This proves our claim.
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Thank You.

Thank You.
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