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Fictitious Play [Brown ‘49]
players plays their best-response to 
empirical dist. of opponent’s past plays

‣ FP converge to minimax [Robinson ’51] 
‣ but, might need Ω(2N) iterations [Brandt+ ’10] 
‣ convergence rate is Ω(T-1/N) [Daskalakis-Pan ’14] 

(refutes Karlin’s conjecture [Karlin ’59])

x1

y1

x2 = argminx L(x,y1)

x3 = argminx ½L(x,y1)+½L(x,y2)

y2 = argminy L(x1,y)

y3 = argminy ½L(x1,y)+½L(x2,y)



Solving zero-sum games
‣ Poly-time since the 70’s…  

(equivalent to LP) 

‣ state of the art:  
Õ(N) time algorithm, tight   
[Grigoriadis-Khachiyan ’95] 

‣ Õ(N) time via regret minimization  
[Freund-Schapire ’99]

SUBLINEAR IN 
INPUT SIZE   

‣ Õ(N) time for generalized  
minimax problems [Clarkson+ ’10]

this talk:  
focus on N

‣ More recent results:  
poly(N) / T convergence rates  
[Daskalakis+ ’11, Rakhlin-Sridharan ’13]



REGRET:

REGRET:

Learning in zero-sum games  
[Freund-Schapire ‘99]

Õ(N)  time
O(N) time

O(N) time
Players use online learning algos 
(e.g., Multiplicative Weights)
‣ log(N) / ε2 iterations for regret < ε 
‣ O(N) time per iteration 
➔ O(N / ε2) time for ε-approximation



Can we do better?
Games are often exponentially large 

▸ X = { all (s,t)-paths in a given graph } 
Y = { costs on edges } 

▸ X = { all permutations over [n] } 
Y = { value assignments to items } 

▸ X = { subsets of [n] }  
Y = { submodular evaluation functions } 

 
But best-response / optimization is poly-time = poly(log N)
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Best response oracles

OPTrow

OPTcol

poly(log N) 
time?

Õ(1) time?

Õ(1) time?

assume BR is efficient = poly(log N) time 
‣ black-box OPT oracles 
‣ structure is implicit

➔ efficient zero-sum games? 
➔ efficient regret minimization?



Online Learning
Iteratively, for t=1,2,…,T: 
(1) player:  xt ∈ X    (“expert”) 
(2) adversary:  yt ∈ Y  
(3) player’s loss = L(xt,yt) = Lt(xt) 

▸ Goal: minimize regret: 
(average, expected) 

‣ Value access to matrix:             VAL(x,y) = L(x,y)

Learn efficiently? Regret < ¼ in poly(log N) time? 

‣ Best Response oracle: 

x1

xN

y1 yMy2

x2

O(1) timeÕ(1) time

Lt(x) 



Learning-theoretic motivation
▸ Fundamental question in learning theory: 

generic & efficient reduction of online learning to optimization? 
(analogous to fundamental theorem of statistical learning) 

▸ Many specialized online algorithms for optimizable settings:  
submodular opt., network routing, online PCA, contextual bandits, 
online ranking,… 

▸ Practical — numerous previous attempts: 
Online convex optimization [Zinkevich ’03, Hazan+ ’06],  
Follow the Perturbed Leader (FPL) [Hannan ’57, Kalai-Vempala ’06], 
Dropout perturbation [vanErven-Kotlowski-Warmuth ’14], 
Contextual bandits [Agarwal+ ’14], … 
☛ typically poly(log N) computation, but need explicit structure



In OPT oracle model: 

▸ Thm 1.  Any algo that approximates N⨉N zero-sum games  
to within ε=¼ runs in total time Ω̃(√N) 
☛ Ω̃(N) time needed to minimize regret  

▸ Thm 2.  There exists (new) online learning algo that attains  
regret < ε in total time Õ(√N / ε2), tight 
☛ vs. Θ(N/ε2) time w/o OPT oracle  

▸ Corr.  There exists (new) algo that approximates N⨉N zero-sum  
games in total time Õ(√N), tight 
☛ vs. Θ(N) time without oracles

Results

4TH ROOT OF 
INPUT SIZE



Thm [Aldous, Aaronson]: this is tight 
Any algo that tells whether argmin vertex is odd/even w.p. > 2/3  
would need Ω̃(√N) queries to f

Aldous’ random walk function  
[Aldous ‘83, Aaronson ’06]

Dist. over functions that have a single local min. 
(1) start RW from uniform vertex of d-dim cube 
(2) f(i) = time to hit vertex i

V = {0,1}d 

N = 2d

▸ Any such f has a single local min? 
▸ #queries to find minimum? 

LOCAL  
SEARCH...

0

1 2

3

O(√N)  =  O(2d/2)



Local search ➔ Learning in games

argmin f is odd? even?
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 ¼? ¾?

N = 2d

N = 2d

game 
equilibrium

Reduction: oracle access to f  ➔  VAL + OPT oracles for game

f



Local search ➔ Learning in games

1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 ¼? ¾?

N = 2d

N = 2d

Reduction: oracle access to f  ➔  VAL + OPT oracles for game

VAL oracle?  
two queries to compute L(i,j) 
OPT oracle?

game 
equilibrium

‣ find i s.t.:  f(i) < min( f(S) ) 
‣ local search: 

≤ log(N) queries  
per each j ∈ S



In OPT oracle model: 

▸ Thm 1.  Any algo that approximates N⨉N zero-sum games  
to within ε=¼ runs in total time Ω̃(√N) 
☛ Ω̃(N) time needed to minimize regret  

▸ Thm 2.  There exists (new) online learning algo that attains  
regret < ε in total time Õ(√N / ε2), tight 
☛ vs. Θ(N/ε2) time w/o OPT oracle  

▸ Corr.  There exists (new) algo that approximates N⨉N zero-sum  
games in total time Õ(√N), tight 
☛ vs. Θ(N) time without oracles

Results



Intuition
Idea: reduce effective #experts from N to √N

Interpolate two extreme cases: 
1. There are few leaders:  

➔ OPT oracle is useful 
2. Leader keeps changing:  

➔ sampling ~√N experts will get us into √N “finalists” 



Stream of leaders

▸ Sampling √N experts: 
1. w.h.p. gets us to last √N leaders 
2. EXP3 regret vs √N sampled experts  ≤  

 

▸ “Only” need to get low-regret in last time interval: 

time

L=√N distinct leaders

▸ Sort leaders by “death time” = last time ever to appear as leader

# LEADERS



Stream of leaders

▸ Leaders: for any sequence  
with at most L distinct leaders: 
☛ needs Õ(1) time per round

time

L=√N distinct leaders

Combine two algorithms:  
(1) Bandit algo over random sample of √N experts 
(2) “Leaders” algorithm

▸ Sort leaders by “death time” = last time ever to appear as leader



Final algorithm
{{|S| = √N 

random

log(N) 
“sliding  

windows”

bandit on 
√N + log(N) 
“meta-arms”

Thm. for any sequence y1,…,yT,  
w.p. ≥1-δ :

√N

1

2

…



Bottom line
▸ efficient OPT ⇏ efficient online learning 
▸ but it helps, quadratically 
▸ intriguing connections to local search

Many questions:
▸ stronger positive results? what assumptions?  

(e.g., [Daskalakis-Syrgkanis ’16]) 
▸ what about oracle complexity? (lower b.) 
▸ approximate optimization? (upper b.) 
▸ …


