Hardness of Maximum Independent Set in Structured Hypergraphs

Rishi Saket

IBM TJ Watson

Joint works with: Subhash Khot (NYU)

Sushant Sachdeva (Berkeley)

Independent Set in Hypergraphs

Independent Set: Subset of vertices not containing all the vertices of any hyperedge.

k-colorable : Vertices can be partitioned into k disjoint independent sets.

Maximum Independent Set

In hypergraphs with specific structural property

Almost *k*-Colorability

G has Indep. Set of $\approx n/k$ size.

G(V,E)

G': remove V' and all $e \sim V'$ k-colorable

Hypergraph G(V,E) on n vertices is almost k-colorable if,

Maximum Independent Set in (almost) $2\frac{\exists V \subseteq V |V| \leq \varepsilon n}{\text{colorable hypérgraphs}}$ NP-hard to find independent set of relative size: is K-colorable.

- $(\log \log n / \log \log \log n) 1 1$ in 2-colorable 4-uniform hypergraphs [GHS 00] [Hol 02]
- (Assuming UGC) any constant $\delta\!\!>\!\!0$ in,
 - Almost 2-colorable 3-uniform hypergraphs, [Guruswami Sinop 10]

Our Results [Khot S. 13]

NP-hard to find independent set of relative size:

 $2 \hat{1} - (\log n) \hat{1} 1 - \varepsilon$ in almost 2-colorable 4-uniform hypergraphs.

Any constant $\delta > 0$ in almost 2-colorable 3-uniform hypergraphs, without assuming UGC.

Any constant $\delta > 0$ in 2-colorable 3-uniform hypergraphs, assuming d-to-1 Games Conjecture.

A "Dictatorship" Gadget

- Toy instance: 3-uniform hypergraph over Label Set L.
 - Yes Case: Every $i \in L \Rightarrow$ "good" solution, i.e. an almost 2-coloring.
- No Case: Every large independent set ⇒ "small" subset of L. Ground set $\Omega = \{*,1,2\}$. Measure $\mu(1) = \mu(2) = 1 \varepsilon/2$, $\mu(*) = \varepsilon$.

Vertices $V := \Omega \uparrow L$ with weights $wt(v) := \mu \uparrow L(v)$ for $v \in \Omega \uparrow L$.

Hyperedges $E: \{u, v, w\} \in E \Leftrightarrow \forall i \ (u \downarrow i, v \downarrow i, w \downarrow i) \neq (1,1,1), (2,2,2)$

YES Case

- Fix any *i*∈*L*.
- Define:
 - $F \downarrow 1 = \{u \mid u \downarrow i = 1\},$
 - $F \downarrow 2 = \{u \mid u \downarrow i = 2\},$
 - $F \downarrow * = \{u \mid u \downarrow i = *\}$

- $F \downarrow 1$ and $F \downarrow 2$ are disjoint independent sets of weight $1 \varepsilon/2$ each.
 - $u, v, w \in F \downarrow 1 \Rightarrow (u \downarrow i, v \downarrow i, w \downarrow i) = (1, 1, 1)$
 - $-u,v,w \in F \downarrow 2 \Rightarrow (u \downarrow i,v \downarrow i,w \downarrow i) = (2,2,2)$
- "Good" solution corresponding to each $i \in L$.
 - Removing $F\downarrow *$ + incident hyperedges makes it 2-colorable.

No Case

- Let $F \subseteq \Omega \uparrow L$ be maximal Ind. Set. $wt(F) \ge \delta$.
 - Monotone : Closed under changing * to 1,2.
- Goal: "Decode" F to small subset of L.
- Let ${\mathcal D}$ be a distn. on $\Omega \, {\mathcal I} 2$:
 - Sample uniformly from $\{(1,2),(2,1)\}$
 - Independently w.p. ε change each coordinate to *.
 - $(1,1), (2,2) \notin supp(D)$
 - Both marginals of \mathcal{D} are identical to μ .
- Key Property: There exist $u,v \in F$ and $S \subseteq L$ such that:
 - $\forall i \in L S, (u \downarrow i, v \downarrow i) \in supp(D)$
 - $|S| \le \exp(poly(1/\delta, 1/\varepsilon))$

No Case

- Let $F \subseteq \Omega \uparrow L$ be maximal Ind. Set. $wt(F) \ge \delta$.
 - Monotone : Closed under changing * to 1,2.
- Goal: "Decode" F to small subset of L.
- Let \mathcal{D} be a distance of \mathcal{D} .
 - Sample

Combine Dictatorship Gadget with

- Indep to *.
 Multilayered PCP [DGKR 03]
- $-(1,1),(2,2) \notin supp(D)$
- Both marginals of $\mathcal D$ are identical to μ .
- Key Property: There exist $u,v \in F$ and $S \subseteq L$ such that:
 - $\forall i \in L S, (u \downarrow i, v \downarrow i) \in supp(D)$
 - $|S| \le \exp(poly(1/\delta, 1/\varepsilon))$

 $\Omega \uparrow L$

Proof Techniques

- $F \subseteq \Omega \uparrow L$ be monotone with $wt(F) \ge \delta$,
- [Russo] F has avg. sensitivity $O(1/\varepsilon)$.
- [Friedgut, Sachdeva Tulsiani 11] F is very close to a junta F' on $S \subseteq L$.
 - $|S| \leq \exp(poly(\varepsilon,\delta)).$
- [Dinur Safra 02, DKPS 10] Distn \mathcal{D} on $\Omega \mathcal{T} k$ with marginals identical to μ .
 - ∃ $u\uparrow1$,... $u\uparrow k \in F$ s.t. $(u\downarrow i\uparrow1$,... $u\downarrow i\uparrow k$)∈ $supp(\mathcal{D})$ for $i\in L-S$.
 - Jointly sample "extensions" of junta F' using \mathcal{D} .

Proof Techniques

- $F \subseteq \Omega \uparrow L$ be monotone with $wt(F) \ge \delta$, $\mu(*) = \varepsilon$.
- [Russo] F has avg. sensitivity $O(1/\varepsilon)$.
- [Friedgut, Sachdeva Tulsiani 11] F is very close to a junta F' on $S \subseteq L$.
 - $|S| \leq \exp($

Other problems where UGC can be

avoided using similar techniques?

als identical to μ .

-S.

 $- \exists u \uparrow 1 \dots i$

[Dinur Safra

- Jointly sample "extensions" of Junta F using \mathcal{D} .

Hardness of Scheduling Problems and Hypergraph Independent Set [Bansal Khot 10]

Concurrent Open Shop
Minimize sum of weighted completion
times. 2-approx. [GKP 07]

 $(2-\varepsilon)$ -UGC hard to approx. [BK 10]

Ind. Set. in almost k-partite k-uniform hypergraphs [BK 10]

Given a k-uniform hypergraph G(V, E), UGC-hard to decide whether:

- Yes Case: V can be partitioned into V1', V11,..., V1k s.t. $|V'| = \varepsilon |V|$, $|V1| = \ldots = |V1k|$ and each $e \in E$ has at most one vertex from any V1i.
- No Case: No Ind. Set of size $\varepsilon |V|$.

(Almost *k*-partite)

Hardness of Scheduling Problems and Hypergraph Independent Set [Bansal Khot 10]

Bypassing UGC [Sachdeva S. 13]

Independent Set in "*k*-blocked partite" hypergraphs.

Given k12 -uniform hypergraph G(V,E), it is NP-hard to decide:

Yes Case

- V can be partitioned into V1', V11,..., V1k s.t. $|V'| = \varepsilon |V|$, |V1| = ... = |V1k|.
- Any $e \in E$ can be divided into k blocks of k vertices each s.t. at least k-1 blocks are "good": contain at most one vertex from any $V \downarrow i$.

V

No Case : No Indep. Set. of size $\varepsilon |V|$.

Reduction to Concurrent Open Shop

- Machines: Hyperedges E
- Jobs: Vertices V, unit weight.
 - v∈V has unit processing time on each e~v.
- Yes Case : Each e processes its k12 jobs according to $V \downarrow 1$, $V \downarrow 2$,..., $V \downarrow k$, V' .
 - Jobs $V \downarrow i$ completed by time ik+k.
 - Jobs V' completed by time k12.
 - Average completion time : $\approx k(k+1)/2 + \varepsilon k \uparrow 2$.
- No Case : Set of jobs completed by time k12 1 is an indep. set.
 - Average completion time : \geq (1−ε)k12.
- Choose large k and small ε : $(2-\delta)$ NP-hardness factor.

"Dictatorship" Gadget

Instance : k12 -uniform hypergraph over L.

Ground set $\Omega = \{*,1,2,...,k\}$. $\mu(*) = \varepsilon, \mu(1) = \mu(2) = ... = \mu(k) = 1 - \varepsilon/k$.

Vertices $V := Uj = 1 \uparrow k \# H \downarrow j$ where $H \downarrow j$ is copy of $\Omega \uparrow L$.

for each $i \in L$, for k-1 of the $H \downarrow j$'s:

Contains at most one value of r for each $r \in [k]$

"Dictatorship" Gadget

Instance : k12 -uniform hypergraph over L.

Ground set $\Omega = \{*,1,2,...,k\}$. $\mu(*) = \varepsilon, \mu(1)$ Analysis follows using:

[Russo] [Friedgut, ST 11] [DS 02, DKPS 10] $\Omega \uparrow L$.

Combine with variant of Label Cover

Hyperedg

such that:

for each $i \in L$, for k-1 of the $H \downarrow j's$:

Contains at most one value of r for each $r \in [k]$

Conclusions

- NP-hardness (bypassing UGC) results for Max. independent set in
 - Almost 2-colorable 3-uniform hypergraphs,
 - "k-blocked partite" hypergraphs.
 - Optimal $(2-\delta)$ -inapprox. for Concurrent Open Shop, Assembly Line Scheduling.
- Future Directions.
 - Prove indep. set results for exactly colorable hypergraphs?
 - Invariance Principle with Label Cover for better results for Vertex Cover, Independent Set …?
 - Scheduling with precedence constraints. $(2-\delta)$ -UGC hard [BK 09]
 - Use LP integrality gaps for NP-hardness ? [KMTV 11]

Thank You!