Approximation Resistance from Pairwise Uniform Subgroups

Siu On Chan Microsoft Research

August 26, 2013

Part 1: XOR-lemma?

k-player game

1. Judge picks a question tuple $\vec{\mathbf{v}} \triangleq (\mathbf{v}_1, \dots, \mathbf{v}_k)$ from a collection M at random

k-player game

- 1. Judge picks a question tuple $\vec{\mathbf{v}} \triangleq (\mathbf{v}_1, \dots, \mathbf{v}_k)$ from a collection M at random
- 2. Gets a reply $f_i(\mathbf{v}_i) \in \mathbb{Z}_2$ from each player
- 3. Accepts iff $\vec{f}(\vec{v}) \triangleq (f_1(v_1), \dots, f_k(v_k))$ satisfies a predicate $C \subseteq \mathbb{Z}_2^k$, i.e. $\vec{f}(\vec{v}) \in C$

k-player game

- 1. Judge picks a question tuple $(\vec{\mathbf{v}}, \vec{\mathbf{b}}) \triangleq ((\mathbf{v}_1, \dots, \mathbf{v}_k), (\mathbf{b}_1, \dots, \mathbf{b}_k))$ from a collection M at random $(\vec{\mathbf{b}} \in \mathbb{Z}_2^k)$
- 2. Gets a reply $f_i(\mathbf{v}_i) \in \mathbb{Z}_2$ from each player
- 3. Accepts iff $\vec{f}(\vec{v}) \triangleq (f_1(v_1), \dots, f_k(v_k))$ satisfies a predicate $C \subseteq \mathbb{Z}_2^k$, i.e. $\vec{f}(\vec{v}) \vec{b} \in C$

Hardness amplification

Reduce acceptance probability (under best players' strategy)

Hardness amplification

Reduce acceptance probability (under best players' strategy)

Pick ℓ question tuples $\vec{v}^{(1)}, \dots, \vec{v}^{(\ell)} \in M$, ask ℓ questions at once

- ► Parallel repetition
- XOR

Hardness amplification

Reduce acceptance probability (under best players' strategy)

Pick ℓ question tuples $\vec{v}^{(1)}, \dots, \vec{v}^{(\ell)} \in M$, ask ℓ questions at once

- Parallel repetition
- XOR

Game $M \oplus M'$:

- 1. Judge picks question tuples $(\vec{\pmb{v}}, \vec{\pmb{b}}) \in M$, $(\vec{\pmb{v}'}, \vec{\pmb{b}'}) \in M'$ at random
- 2. Gets a reply $f_i(\mathbf{v}_i, \mathbf{v}_i') \in \mathbb{Z}_2$ from each player
- 3. Accepts $\Leftrightarrow \vec{f}(\vec{\pmb{v}}, \vec{\pmb{v}'}) \vec{\pmb{b}} \vec{\pmb{b}'} \in C$

XOR-lemma?

Wishful thinking (XOR-lemma)

$$\operatorname{val}(\mathbf{M})\leqslant 0.9 \quad \Rightarrow \quad \operatorname{val}(\mathbf{M}\oplus\ldots\oplus\mathbf{M}) \to |\mathbf{C}|/2^k$$

XOR-lemma?

Wishful thinking (XOR-lemma)

$$\operatorname{val}(M) \leqslant 0.9 \quad \Rightarrow \quad \operatorname{val}(M \oplus \ldots \oplus M) \rightarrow |C|/2^{k}$$

Counterexample: Mermin's game [Briët-Buhrman-Lee-Vidick13]

Question	Parity
000	1
011	0
101	0
110	0

- No perfect strategy
- Perfect quantum strategy with GHZ states
 - ⇒ non-trivial (classical) strategy in repeated game, via Tonge inequality (a multilinear Grothendieck-type inequality)

5/22

Observation

Correlation can only decrease upon taking XOR

 M_1 :

Observation

Correlation can only decrease upon taking XOR

$$\begin{split} \vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}} &\triangleq (f_1(\pmb{v}_1) - \pmb{b}_1, \dots, f_k(\pmb{v}_k) - \pmb{b}_k) \in \mathbb{Z}_2^k \\ \|\pmb{M}\|_\chi &\triangleq \max_{\vec{t}: \vec{V} \rightarrow \mathbb{Z}_2^k} \left| \underset{(\vec{\pmb{v}}, \vec{\pmb{b}})}{\mathbb{E}} \chi(\vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}}) \right|, \qquad \chi \in \widehat{\mathbb{Z}_2^k} \end{split}$$

Lemma

$$||M \oplus M'||_{\chi} \leqslant \min\{||M||_{\chi}, ||M'||_{\chi}\}$$

$$\begin{split} \vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}} &\triangleq (f_1(\pmb{v}_1) - \pmb{b}_1, \dots, f_k(\pmb{v}_k) - \pmb{b}_k) \in \mathbb{Z}_2^k \\ \|\pmb{M}\|_\chi &\triangleq \max_{\vec{t}: \vec{V} \rightarrow \mathbb{Z}_2^k} \left| \underset{(\vec{\pmb{v}}, \vec{\pmb{b}})}{\mathbb{E}} \chi(\vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}}) \right|, \qquad \chi \in \widehat{\mathbb{Z}_2^k} \end{split}$$

Lemma

$$||M \oplus M'||_{\chi} \leqslant \min\{||M||_{\chi}, ||M'||_{\chi}\}$$

$$\begin{vmatrix} \mathbb{E} & \mathbb{E} & \chi(\vec{f}(\vec{\mathbf{v}}, \vec{\mathbf{v}'}) - \vec{\mathbf{b}} - \vec{\mathbf{b}'}) \end{vmatrix}$$

$$\leq \mathbb{E} & \mathbb{E} & \chi(\vec{f}(\vec{\mathbf{v}}, \vec{\mathbf{v}'}) - \vec{\mathbf{b}} - \vec{\mathbf{b}'}) \end{vmatrix}$$

Part 2: Inapproximability

Max-CSP

Input: collection of constraints on *n* variables

Output: truth assignment satisfying maximum fraction of constraints

► Max-3XOR

$$x_1 + x_{10} + x_{27} = 1$$

$$x_4 + x_5 + x_{16} = 0$$

$$x_9 + x_8 + x_{12} = 1$$

$$\vdots$$

► Max-3SAT

$$x_1 \lor \overline{x_{10}} \lor x_{27}$$

$$x_4 \lor x_5 \lor \overline{x_{16}}$$

$$\overline{x_9} \lor x_8 \lor x_{12}$$

$$\vdots$$

Definition (Approximation resistance)

NP-hard to beat a random assignment even when almost satisfiable

That is,
$$NP$$
-hard to decide if an instance of Max-CSP has value $\geqslant 1-\varepsilon$ or \leqslant "random assignment value" $+\varepsilon$

Examples: Max-3XOR, Max-3SAT [Håstad01]

Question

Which CSPs are approximation resistant? Why?

Definition (Approximation resistance)

NP-hard to beat a random assignment even when almost satisfiable

That is, NP-hard to decide if an instance of Max-CSP has value
$$\geqslant 1-\varepsilon \quad \text{or} \quad \leqslant \text{``random assignment value''} + \varepsilon$$

Examples: Max-3XOR, Max-3SAT [Håstad01]

Question

Which CSPs are approximation resistant? Why?

Partial answer

If given by a predicate C that is a "pairwise uniform subgroup"

Max-CSP(C)

Max-CSP(C) or Max-C:

Each clause

- ▶ involves the same number, *k*, of literals
- lacktriangle accepts the same collection $\mathcal{C}\subseteq\mathbb{Z}_2^k$ of local assignments

Examples (k = 3):

1.
$$C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases} \Rightarrow MAX-C = MAX-3XOR$$
2. $C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases} \Rightarrow MAX-C = MAX-3SAT$

Random assignment value = $|\mathcal{C}|/2^k$

Criteria for approximation resistance (red region):

Criteria for approximation resistance (red region):

- [Austrin-Mossel09]: contains pairwise uniform subset, assuming Unique-Games Conjecture
 - *C* is pairwise uniform if $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2$,

$$\Pr_{\boldsymbol{c} \in \mathcal{C}}[\boldsymbol{c}_i = a, \boldsymbol{c}_j = b] = 1/|\mathbb{Z}_2|^2$$

Example: $C = \{k\text{-bit strings of even parity}\} = kXOR$

Criteria for approximation resistance (red region):

- [Austrin-Mossel09]: contains pairwise uniform subset, assuming Unique-Games Conjecture
 - *C* is pairwise uniform if $\forall i \neq j \in [k]$, $\forall a, b \in \mathbb{Z}_2$,

$$\Pr_{\boldsymbol{c} \in C}[\boldsymbol{c}_i = a, \boldsymbol{c}_j = b] = 1/|\mathbb{Z}_2|^2$$

Example: $C = \{k \text{-bit strings of even parity}\} = k XOR$

- ► [Chan13]: contains pairwise uniform subgroup
 - ► Almost all Max-CSP(C) [Håstad09]

Corollaries

- ▶ Optimal $\Theta(k/2^k)$ -hardness for Max-kCSP, using predicate in [Samorodnitsky–Trevisan09]
- ▶ Optimal $\Theta(qk/q^k)$ -hardness for non-boolean Max-kCSP when $k \ge$ domain size q, using predicate of [Håstad12]

▶ ..

Proof sketch

Theorem

If $C\subseteq \mathbb{Z}_2^k$ is a subgroup that is pairwise uniform, then Max-CSP(C) is approximation resistant

Proof sketch

Theorem

If $C\subseteq \mathbb{Z}_2^k$ is a subgroup that is pairwise uniform, then Max-CSP(C) is approximation resistant

	Label-Cover	$\stackrel{composition}{\longmapsto}$	Max-C	$\stackrel{XOR}{\longmapsto}$	Max-C
Yes:	1		≈ 1		≈ 1
No:	o(1)				$\approx \mathcal{C} /2^k$

Label-Cover \longrightarrow Max- $C \equiv$ Game

k players try to convince a judge that a MAX-C instance M is satisfiable

1. Judge picks random clause $(\vec{\boldsymbol{v}}, \vec{\boldsymbol{b}}) = ((\boldsymbol{v}_1, \dots, \boldsymbol{v}_k), (\boldsymbol{b}_1, \dots, \boldsymbol{b}_k))$ from Max-C instance M ($\vec{\boldsymbol{b}} \in \mathbb{Z}_2^k$ specifies positive/negative literals)

Label-Cover \longrightarrow Max- $C \equiv$ Game

k players try to convince a judge that a Max-C instance M is satisfiable

- 1. Judge picks random clause $(\vec{\boldsymbol{v}}, \vec{\boldsymbol{b}}) = ((\boldsymbol{v}_1, \dots, \boldsymbol{v}_k), (\boldsymbol{b}_1, \dots, \boldsymbol{b}_k))$ from Max-*C* instance $M(\vec{\boldsymbol{b}} \in \mathbb{Z}_2^k$ specifies positive/negative literals)
- 2. Gets assignments $f_i(\mathbf{v}_i) \in \mathbb{Z}_2$ from k players
- 3. Accepts $\Leftrightarrow \vec{f}(\vec{v}) \vec{b} \in C$

Label-Cover → MAX-C

Two parties try to convince a judge that a CSP instance L is satisfiable

1. Judge picks clause — and variable • from — at random

Label-Cover \longrightarrow MAX-C

Two parties try to convince a judge that a CSP instance L is satisfiable

- 1. Judge picks clause and variable from at random
- 2. Asks for assignment to clause from one party and assignment to variable from the other
- 3. Accepts if the assignments agree at variable •

Winning probability 1 or $\approx 0?\ NP$ -hard to tell! (PCP Theorem and Parallel Repetition Theorem)

Label-Cover \longrightarrow Max-C (Composition)

k players try to convince a judge that a CSP instance *L* has a satisfying assignment *A*

- 1. Judge picks clause and variable from L as in LABEL-COVER
- Asks (, z_i) or (, z_i) from each player
 z_i: subset of satisfying assignments to clause or variable •
- 3. Get boolean replies y_i from k players
- 4. Accept $\Leftrightarrow (\mathbf{y}_1 \mathbf{b}_1, \dots, \mathbf{y}_k \mathbf{b}_k) \in C$

Label-Cover \longrightarrow Max-C (Composition)

k players try to convince a judge that a CSP instance *L* has a satisfying assignment *A*

- 1. Judge picks clause and variable from L as in LABEL-COVER
- Asks (, z_i) or (, z_i) from each player
 z_i: subset of satisfying assignments to clause or variable •
- 3. Get boolean replies \mathbf{y}_i from k players
- 4. Accept $\Leftrightarrow (\mathbf{y}_1 \mathbf{b}_1, \dots, \mathbf{y}_k \mathbf{b}_k) \in C$

 $\pmb{z}_1,\ldots,\pmb{z}_k,\pmb{b}_1,\ldots,\pmb{b}_k$ are correlated, as specified by "dictator test"

Composition without XOR?

		LABEL-	Cover	$\stackrel{composition}{\longmapsto}$	Max-C	
	Yes:		1		≈ 1	
	No:		o(1)		$\approx c $	$/2^k$
<u></u>		• • •		<u>m</u>		M
				†		†
(\mathbf{z} , \mathbf{z}	1)		()	(\bullet, \mathbf{z}_k)

Some players share , others share ⇒ replies not random [Bellare–Goldreich–Sudan98, Sudan–Trevisan98]

Label-Cover	$\stackrel{composition}{\longmapsto}$	Max-C	$\stackrel{XOR}{\longmapsto}$	Max-C
o(1)		$\ \cdot\ _{\chi} = o(1)$		$ C /2^k + o(1)$
		$\forall \chi: \chi_j \neq 1$		

Label-Cover	$\stackrel{composition}{\longmapsto}$	Max-C	$\stackrel{XOR}{\longmapsto}$	Max-C
o(1)		$\ \cdot\ _{\chi} = o(1)$		$ C /2^k + o(1)$
		$\forall \chi: \chi_j \neq 1$		
<u>M</u>	• • •	(M)	• • •	
↑		†		†
(,	$\mathbf{z}_1)$	$(ullet$, $z_j)$	((z_k)

- Remains to show: Strategies with good correlation must be close to honest strategies
- Uses pairwise uniformity and invariance principle

Invariance principle

Central limit theorem:

$$\frac{\mathbf{x}_1 + \dots + \mathbf{x}_n}{\sqrt{n}} \to \mathbf{g} = \frac{\mathbf{g}_1 + \dots + \mathbf{g}_n}{\sqrt{n}}$$

Invariance principle

Central limit theorem:

$$\frac{\mathbf{x}_1 + \dots + \mathbf{x}_n}{\sqrt{n}} \to \mathbf{g} = \frac{\mathbf{g}_1 + \dots + \mathbf{g}_n}{\sqrt{n}}$$

 Invariance principle [Mossel-O'Donnell-Oleszkiewicz10, Mossel10, O'Donnell-Wright12]

f: low-degree, low-influence polynomial

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)\approx f(\mathbf{g}_1,\ldots,\mathbf{g}_n)$$

provided $\mathbf{x}_t, \mathbf{g}_t$ have matching 1st and 2nd moments

$$\mathbb{E}[\mathbf{\textit{x}}_t] = \mathbb{E}[\mathbf{\textit{g}}_t]$$
 and $\mathbb{E}[\mathbf{\textit{x}}_t^2] = \mathbb{E}[\mathbf{\textit{g}}_t^2]$ $\forall t \in [n]$

Invariance principle

Central limit theorem:

$$\frac{\mathbf{x}_1 + \dots + \mathbf{x}_n}{\sqrt{n}} \to \mathbf{g} = \frac{\mathbf{g}_1 + \dots + \mathbf{g}_n}{\sqrt{n}}$$

 Invariance principle [Mossel-O'Donnell-Oleszkiewicz10, Mossel10, O'Donnell-Wright12]

f: low-degree, low-influence polynomial

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_n)\approx f(\mathbf{g}_1,\ldots,\mathbf{g}_n)$$

provided $\mathbf{x}_t, \mathbf{g}_t$ have matching 1st and 2nd moments

$$\mathbb{E}[\mathbf{\textit{x}}_t] = \mathbb{E}[\mathbf{\textit{g}}_t]$$
 and $\mathbb{E}[\mathbf{\textit{x}}_t^2] = \mathbb{E}[\mathbf{\textit{g}}_t^2]$ $\forall t \in [n]$

• C pairwise uniform \Rightarrow matching moments after rerandomizing \mathbf{z}_i

Matching second moments

$$\mathbf{x}_t \Rightarrow d \times k \text{ matrix}$$

Pick tuples $\mathbf{z}_1, \dots, \mathbf{z}_d \in C$ uniformly and independently at random, conditioned on agreeing at position j

Matching second moments

$$\mathbf{x}_t \Rightarrow d \times k \text{ matrix}$$

Pick tuples $\mathbf{z}_1, \dots, \mathbf{z}_d \in C$ uniformly and independently at random, conditioned on agreeing at position j

Think of column j as an element in \mathbb{Z}_2

Matching second moments

$$\mathbf{x}_t \Rightarrow d \times k \text{ matrix}$$

Pick tuples $\mathbf{z}_1, \dots, \mathbf{z}_d \in C$ uniformly and independently at random, conditioned on agreeing at position j

Think of column j as an element in \mathbb{Z}_2 For column j and any other column i, the marginal distribution is uniform over $\mathbb{Z}_2 \times \mathbb{Z}_2^d$

 \Rightarrow 2nd moments unchanged if column *j* is rerandomized

Open problems

- Optimal hardness of satisfiable MAX-kCSP?
- 2. Multilinear Grothendieck inequality: only obstruction to XOR-lemma?
- 3. Derandomizing XOR

Open problems

- 1. Optimal hardness of satisfiable Max-kCSP?
- 2. Multilinear Grothendieck inequality: only obstruction to XOR-lemma?
- 3. Derandomizing XOR

Emoticons modified from

http://www.texample.net/tikz/examples/emoticons/
Gavel from

http://openclipart.org/detail/69745/judge-hammer-by-bocian