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The definition

A set of states S,
a set of labels or actions, L or A and
a transition relation ⊆ S×A× S, usually written

→a⊆ S× S.

The transitions could be indeterminate (nondeterministic).
We write s a−−→ s′ for (s, s′) ∈→a.
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A simple example
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Bisimulation

s and t are states of a labelled transition system. We say s is bisimilar
to t – written s ∼ t – if

s a−−→ s′ ⇒ ∃t′ such that t a−−→ t′ and s′ ∼ t′

and
t a−−→ t′ ⇒ ∃s′ such that s a−−→ s′ and s′ ∼ t′.
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Bisimulation relations

Define a (note the indefinite article) bisimulation relation R to be
an equivalence relation on S such that

sRt means ∀a, s a−−→ s′ ⇒ ∃t′, t a−−→ t′ with s′Rt′

and vice versa.
This is not circular; it is a condition on R.
We define s ∼ t if there is some bisimulation relation R with sRt.
This is the version that is used most often.

Panangaden (McGill) Analysis of Probabilistic Systems Logic and bisimulation 6 / 29



What are Labelled Markov Processes?

Labelled Markov processes are probabilistic versions of labelled
transition systems. Labelled transition systems where the final
state is governed by a probability distribution - no other
indeterminacy.
All probabilistic data is internal - no probabilities associated with
environment behaviour.
We observe the interactions - not the internal states.
In general, the state space of a labelled Markov process may be a
continuum.
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Markov Kernels

A Markov kernel is a function h : S× Σ −→ [0, 1] with (a) h(s, ·) : Σ
−→ [0, 1] a (sub)probability measure and (b) h(·,A) : X −→ [0, 1] a
measurable function.
Though apparantly asymmetric, these are the probabilistic
analogues of binary relations
and the uncountable generalization of a matrix.
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Formal Definition of LMPs

An LMP is a tuple (S,Σ,L, ∀α ∈ L.τα) where
(S,Σ) is an analytic space (what?, why?) with its Borel σ-algebra.
and τα : S× Σ −→ [0, 1] the transition function is a Markov kernel
∀s : S.λA : Σ.τα(s,A) is a subprobability measure
and
∀A : Σ.λs : S.τα(s,A) is a measurable function.
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Probabilistic Bisimulation

Let S = (S, i,Σ, τ) be a labelled Markov process. An equivalence
relation R on S is a bisimulation if whenever sRs′, with s, s′ ∈ S, we
have that for all a ∈ A and every R-closed measurable set A ∈ Σ,
τa(s,A) = τa(s′,A).
Two states are bisimilar if they are related by a bisimulation relation.
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Logical Characterization

L ::== T|φ1 ∧ φ2|〈a〉qφ

We say s |= 〈a〉qφ iff

∃A ∈ Σ.(∀s′ ∈ A.s′ |= φ) ∧ (τa(s,A) > q).

Two systems are bisimilar iff they obey the same formulas of L.
[Desharnais, Edalat, P. 1998 LICS, I and C 2002]
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That cannot be right?
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Two processes that cannot be distinguished without negation.
The formula that distinguishes them is 〈a〉(¬〈b〉>).

Panangaden (McGill) Analysis of Probabilistic Systems Logic and bisimulation 12 / 29



But it is!
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We add probabilities to the transitions.
If p + q < r or p + q > r we can easily distinguish them.
If p + q = r and p > 0 then q < r so 〈a〉r〈b〉1> distinguishes them.
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Bisimulation implies logical equivalence

Let R be a bisimulation relation on an LMP (S,Σ, τa). We prove by
induction on φ that ∀φ ∈ L ∀s, s′ ∈ S.sRs′ ⇒ s |= φ⇔ s′ |= φ.

Base case trivial.
∧ is obvious from Inductive Hypothesis.
For φ = 〈a〉qψ we have that JψK is R-closed from inductive
hypothesis. Thus τa(s, JψK) = τa(s′, JψK) and thus
sRs′ ⇒ s |= φ⇔ s′ |= φ.
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Polish space

A topological space is separable if it has a countable dense
subset.
A separable metric space has a countable base of open sets.
A Polish space is the topological space underlying a complete
separable metric space.
Why did topology creep in?
Measure theory works nicely on Polish spaces: e.g. the Borel sets
of X1 × X2 is the product σ-algebra of the Borel sets of X1 and X2 if
they are Polish.
The Gíry monad can be defined on Polish spaces.
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Analytic space

An analytic set A is the image of a Polish space X (or a Borel
subset of X) under a continuous (or measurable) function f : X
−→ Y, where Y is Polish. If (S,Σ) is a measurable space where S is
an analytic set in some ambient topological space and Σ is the
Borel σ-algebra on S.
Analytic sets do not form a σ-algebra but they are in the
completion of the Borel algebra under any probability measure.
[Universally measurable.]
Regular conditional probability densities can be defined on
analytic spaces.
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Amazing Facts about Analytic Spaces

Given S an analytic space and ∼ an equivalence relation such that
there is a countable family of real-valued measurable functions
fi : S −→ R such that

∀s, s′ ∈ S.s ∼ s′ ⇐⇒ ∀fi.fi(s) = fi(s′)

then the quotient space (Q,Ω) - where Q = S/ ∼ and Ω is the
finest σ-algebra making the canonical surjection q : S −→ Q
measurable - is also analytic.
If an analytic space (S,Σ) has a sub-σ-algebra Σ0 of Σ which
separates points and is countably generated then Σ0 is Σ! The
Unique Structure Theorem (UST).
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Proof Sketch

Show that the relation “s and s′ satisfy exactly the same formulas”
is a bisimulation.
Can easily show that τa(s,A) = τa(s′,A) for A of the form JφK.
Use Dynkin’ λ− π theorem to show that we get a well defined
measure on the σ-algebra generated by such sets and the above
equality holds.
Use special properties of analytic spaces to show that this
σ-algebra is the same as the original σ-algebra.
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The Quotient

Given (S,Σ, τa) an LMP, we define s ' s′ if s and s′ obey exactly the
same formulas of L0.
The functions IJφK : S −→ R defined by IJφK(s) = 1 if s |= φ and 0
otherwise are a countable family of measurable functions such
that s ' s′ if and only if all the functions agree on s and s′. Thus the
quotient space (Q,Ω) is analytic.
We define an LMP (Q,Ω, ρa) where ρa(t,U) := τa(s, q−1(U));
s ∈ q−1({t}).
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ρ is well defined - I

Easy to check that q−1(q(JφK)) = JφK:
s ∈ q−1(q(JφK)) implies that q(s) ∈ q(JφK), i.e. ∃s′ ∈ JφK.s ' s′, so s |= φ so s ∈ JφK. Yes, I know this is too small

to read.

Thus q(JφK) is measurable.
Thus the σ-algebra generated -say, Λ - by q(JφK) is a
sub-σ-algebra of Ω.
Λ is countably generated and separates points so by UST it is Ω.
Thus q(JφK) generates Ω.
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ρ is well defined - II

The collection q(JφK) is a π-system (because L0 has conjunction)
and it generates Ω; thus if we can show that two measures agree
on these sets they agree on all of Ω.
If q(s) = q(s′) = t then τa(s, JφK) = τa(s′, JφK) (simple interpolation).
Thus τa(s, q−1(q(JφK))) = τa(s′, q−1(q(JφK))) and hence ρ is well
defined. We have ρa(q(s),B) = τa(s, q−1(B)).
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Finishing the Argument

Let X be any '-closed subset of S.
Then q−1(q(X)) = X and q(X) ∈ Ω.
If s ' s′ then q(s) = q(s′) and

τa(s,X) = τa(s, q−1(q(X))) = ρa(q(s), q(X)) =

ρa(q(s′), q(X)) = τa(s′, q−1(q(X))) = τa(s′,X).
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Simulation

Let S = (S,Σ, τ) be a labelled Markov process. A preorder R on S is a
simulation if whenever sRs′, we have that for all a ∈ A and every
R-closed measurable set A ∈ Σ, τa(s,A) ≤ τa(s′,A). We say s is
simulated by s′ if sRs′ for some simulation relation R.
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Logic for simulation?

The logic used in the characterization has no negation, not even a
limited negative construct.
One can show that if s simulates s′ then s satisfies all the formulas
of L that s′ satisfies.
What about the converse?
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Counter example!

In the following picture, t satisfies all formulas of L that s satisfies but t
does not simulate s.
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All transitions from s and t are labelled by a.
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Counter example (contd.)

A formula of L that is satisfied by t but not by s.

〈a〉0(〈a〉0T ∧ 〈b〉0T).

A formula with disjunction that is satisfied by s but not by t:

〈a〉 3
4
(〈a〉0T ∨ 〈b〉0T).
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A logical characterization for simulation

The logic L does not characterize simulation. One needs
disjunction.

L∨ := L | φ1 ∨ φ2.

With this logic we have:
An LMP s1 simulates s2 if and only if for every formula φ of L∨ we
have

s1 |= φ⇒ s2 |= φ.

The only proof we know uses domain theory.
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Other Logics

LCan := L0 | Can(a)

L∆ := L0 | ∆a

L¬ := L0 | ¬φ
L∨ := L0 | φ1 ∨ φ2

L∧ := L¬ |
∧
i∈N

φi

where

s |= Can(a) to mean that τa(s, S) > 0;
s |= ∆a to mean that τa(s, S) = 0.

We need L∨ to characterise simulation.
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Conclusions

Strong probabilistic bisimulation is characterised by a very simple
modal logic with no negative constructs.
There is a logical characterisation of simulation.
There is a “metric” on LMPs which is based on this logic.
Why did the proof require so many subtle properties of analytic
spaces? There is a more general definition of bisimulation for
which the logical characterisation proof is “easy” but to prove that
that definition coincides with this one in analytic spaces requires
roughly the same proof as that given here.
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