Analysis of Probabilistic Systems Boot camp Lecture 3: Probabilistic relations

Prakash Panangaden¹

¹School of Computer Science McGill University

Fall 2016, Simons Institute

Relations

- 2 Monads and algebras
- 3 The category of measurable spaces
- 4 The Lawvere-Gíry monad

- X, Y, Z sets and R, S relations.
- $R: X \to Y, S: Y \to Z; R \subseteq X \times Y, S \subseteq Y \times Z.$
- Compose $S \circ R \subseteq X \times Z$ given by $x(S \circ R)z$ iff $\exists y \in Y, xRy \land ySz$.
- Composition is associative.
- Rich algebraic structure: Kleene algebra, a compact closed category, the Kleisli category of the powerset monad.

The category Rel

- Objects: sets, an arrow *X* to *Y* is a binary relation $R \subseteq X \times Y$.
- Composition is relational composition. The identity on *X* is $I_X = \{ \langle x, x \rangle : x \in X \}$; also often written as Δ .
- Shares many properties of the category of finite-dimensional vector spaces: tensor structure, transpose, trace, *etc.*
- Any relation $R \subseteq X \times Y$ corresponds uniquely to a function $f_R : X \longrightarrow \mathcal{P}(Y)$: $f_R(x) = \{y : xRy\}$.
- Any function $f: X \rightarrow \mathcal{P}(Y)$ defines a binary relation.
- Any function $f: X \to \mathcal{P}(Y)$ can be *lifted* to a function $f^{\dagger}: \mathcal{P}(X) \to \mathcal{P}(Y)$ where

•
$$f^{\dagger}(A \subseteq X) = \bigcup_{a \in A} f(a)$$
. We usually write just $f(A)$.

- Composition of these functions is exactly the same as relational composition.
- Intimate relation between Set, Rel and the powerset operation.

- Recall Set the category of sets and functions.
- We have a *functor* $\mathcal{P}()$: Set \rightarrow Set which $X \mapsto \mathcal{P}(X)$ and
- $f: X \to Y \mapsto \mathcal{P}(f)$ defined by $\mathcal{P}(f)(A \subseteq X) = f(A)$.
- This has extra structure: $\forall X, \exists \eta_X : X \to \mathcal{P}(X)$ given by $\eta_X(x) = \{x\}$.
- $\forall X, \exists \mu_X : \mathcal{P}(\mathcal{P}(X)) \longrightarrow \mathcal{P}(X)$ given by union.
- These maps are very "natural"!

• C a category, $T : C \to C$ an endofunctor.

• Natural transformations: $\eta: I \to T$ and $\mu: T^2 \to T$ satisfying

The Kleisli category of a monad

- Monads are the main ingredient in the categorical treatment of universal algebra. The Eilenberg-Moore category.
- But it will take us too far afield to do that.
- Given a monad $T : \mathcal{C} \to \mathcal{C}$ we define a new category \mathcal{C}_T : objects are the same as in \mathcal{C} . An arrow from X to Y in \mathcal{C}_T is an arrow of \mathcal{C} from X to TY.
- Composition? $f: X \rightarrow TY, g: Y \rightarrow TZ$.
- Apply *T* to *g* to get $Tg: TX \to T^2Y$, compose with *f* to get $Tg \circ f: X \to T^2Z$.
- Now compose with $\mu_Z : T^2Z \to TZ$ to get an arrow $X \to TZ$.
- Doing this with $\mathcal{P}(\cdot)$ is exactly what we did before and gives relational composition.
- Thus, the Kleisli category of the powerset monad is Rel.

- Mes: objects (*X*, Σ) measurable spaces, arrows measurable functions.
- In many ways, just like Set: products, coproducts, pushouts etc.
- In fact it is a topological concrete category over Set so is complete and cocomplete.
- What about adding probability measures?
- **Prob**: objects (*X*, *Σ*, *P*) and arrows are measurable and *measure preserving*.
- $f: (X, \Sigma, P) \rightarrow (Y, \Lambda, Q)$ satisfies $Q = P \circ f^{-1}$.
- This category does not have products.
- Many variations are possible.
- Slogan: put the probabilities into the arrows.

- The underlying category is Mes.
- Γ : **Mes** \rightarrow **Mes** defined by $\Gamma(X, \Sigma) = \{\nu : \nu \text{ a prob. measure on } \Sigma\}.$
- But $\Gamma(X)$ needs a σ -algebra structure on it too.
- $\forall A \in \Sigma$, define $ev_A : \Gamma(X) \to [0,1]$ by $ev_A(\nu) = \nu(A)$.
- Endow Γ(X) with the *smallest σ*-algebra making all the *p*_A measurable.
- Given $f: (X, \Sigma) \to (Y, \Lambda)$ define $\Gamma(f)(\nu) = \nu \circ f^{-1}$.
- $\eta_X : X \to \Gamma(X)$ is $x \mapsto \delta_x$
- This is like a "probabilistic powerset" with a singleton embedding.
- But what is the analogue of union?

- We need $\mu_X : \Gamma(\Gamma(X)) \to \Gamma(X)$.
- Let $\Omega \in \Gamma(\Gamma(X))$ *i.e.* a measure on $\Gamma(X)$. $\mu_X(\Omega)$ has to be a measure on (X, Σ) .
- It has to assign a number to any measurable set $A \in \Sigma$.
- Recall that $ev_A : \Gamma(X) \to [0,1]$ is a measurable function.

•
$$\mu_X(\Omega)(A) = \int_{\Gamma(X)} e v_A d\Omega.$$

• Checking the various equations is readily done with the monotone convergence theorem.

The Kleisli category – probabilistic relations

- The objects are measurable spaces (X, Σ) .
- A map *h* from (X, Σ) to (Y, Λ) is a measurable function from *X* to $\Gamma(Y)$.
- $h: X \rightarrow (\Lambda \rightarrow [0, 1])$ or, currying, we get
- $h: X \times \Lambda \rightarrow [0,1]$. Write it as h(x,B) for $x \in X$ and $B \in \Lambda$.
- $h(\cdot, B)$ is measurable and $h(x, \cdot)$ is a probability measure.
- In fact these are precisely disintegrations, aka regular conditional probability densities aka Markov kernels.
- Composition $h: X \to Y, k: Y \to Z$ and $(k \circ h)(x, C) = \int_Y k(y, C) dh(x, \cdot).$
- This is the analogue of relational composition with integration replacing ∃.
- In finite discrete spaces this is just the formula for matrix multiplication.
- We will call this category SRel for "stochastic relations."

Kozen's Language

 $S ::= x_i := f(\vec{x})|S_1; S_2|$ if **B** then S_1 else $S_2|$ while **B** do S.

- There are a fixed set of variables *x* taking values in a measurable space (*X*, Σ_X).
- f is a measurable function.
- *B* is a measurable subset.

- State transformer semantics: distribution (measure) transformer semantics.
- Meaning of statements: Markov kernels *i.e.* SRel morphisms.
- The only subtle part: how to give fixed-point semantics to the while loop?

- Instead of Γ we define $\Pi : (X, \Sigma) = \{\nu | \nu(X) \le 1\}.$
- Other structure defined exactly as in Γ .
- We will use SReI to stand for the Kleisli category of Π .
- Why make this tiny change?

- Now we can "add" SRel morphisms!
- Not always, the sum may exceed 1, but we can define *summable families* which may even be countaby infinite.
- The homsets of SRel form partially additive monoids.
- The sums can be rearranged at will (partition-associativity).
- Limit property: If *F* is a countable family in which every *finite* subfamily is summable then *F* is summable.
- In the category SRel, the sums interact properly with composition.
- If $\{f_i \mid i \in \mathbb{N}\}$ is a countable set of morphisms from *X* to *Y* and there is a morphism $f : X \to (Y + Y + ...)$ such that when projected onto the *X*'s we get the f_i , then the family is summable.

Arbib and Manes

Given a partially additive category C and $f : X \to X + Y$ we can find a unique pair $f_1 : X \to X$ and $f_2 : X \to Y$ such that $f = \iota_1 \circ f_1 + \iota_2 \circ f_2$. Furthermore, there is a morphism $f^* : X \to Y$ given by

$$f^* = \sum_{n=0}^{\infty} f_2 \circ f_1^n.$$

The theorem says that the family $f_2 \circ f_1^n$ is summable. It is the *iterate* of *f*.

Semantics of Kozen's Language I

- Statements are SRel morphisms of type $(X^n, \Sigma^n) \rightarrow (X^n, \Sigma^n)$.
- Assignment: $x := f(\vec{x})$

 $[x_i := f(\vec{x})](\vec{x}, \vec{A}) = \delta(x_1, A_1) \dots \delta(x_{i-1}, A_{i-1}) \delta(f(\vec{x}), A_i) \delta(x_{i+1}, A_{i+1}) \dots$

• Sequential Composition: *S*₁; *S*₂

$$\llbracket S_1; S_2 \rrbracket = \llbracket S_2 \rrbracket \circ \llbracket S_1 \rrbracket$$

where the composition on the right hand side is the composition in **SRel**.

• Conditionals: *if* **B** *then* S₁ *else* S₂

 $\llbracket if \mathbf{B} then S_1 else S_2 \rrbracket (\vec{x}, \vec{A}) = \delta(\vec{x}, \mathbf{B}) \llbracket S_1 \rrbracket (\vec{x}, \vec{A}) + \delta(\vec{x}, \mathbf{B}^c) \llbracket S_2 \rrbracket (\vec{x}, \vec{A})$

While Loops: while B do S

 $\llbracket while \mathbf{B} \ do \ S \rrbracket = h^*$

where we are using the * in SRel and the morphism

$$h: (X^n, \Sigma^n) \to (X^n, \Sigma^n) + (X^n, \Sigma^n)$$

is given by

$$h(\vec{x}, \vec{A_1} \uplus \vec{A_2}) = \delta(\vec{x}, \mathbf{B}) \llbracket S \rrbracket (\vec{x}, \vec{A_1}) + \delta(\vec{x}, \mathbf{B}^c) \delta(\vec{x}, \vec{A_2}).$$

- We can construct a category of probabilistic predicate transformers: **SPT**.
- Objects are measurable spaces.
- Given (X, Σ_X) we can construct the (Banach) space of bounded measurable functions on *X* (the "predicates") $\mathcal{F}(X)$.
- A morphism X → Y in SPT is a bounded (continuous) linear map from F(X) to F(Y).
 - **SPT** \simeq **SRel**^{op}.
- This gives us the structure needed for a wp semantics.