Analysis of Probabilistic Systems Bootcamp Lecture 2: Measure and Integration

Prakash Panangaden¹

¹School of Computer Science McGill University

Fall 2016, Simons Institute

- We want to assign a "size" to sets so that we can use it for quantitative purposes, like integration or probability.
- We could count the number of points, but this is useless for a continuous space.
- We want to generalize the notion of "length" or "area."
- What is the "length" of the rational numbers between 0 and 1?
- We want a consistent way of assigning sizes to these and (all?) other sets.
- Alas! Not all sets can be given a sensible notion of size that generalizes the notion of length of an interval.
- We take a family of sets satisfying "reasonable" axioms and deem them to be "measurable."
- **Countable** unions are the key.

A **measurable space** (X, Σ) is a set *X* together with a family Σ of subsets of *X*, called a σ -algebra or σ -field, satisfying the following axioms:

- $\bullet \emptyset \in \Sigma$.
- $A \in \Sigma$ implies that $A^c \in \Sigma$, and
- \bullet if {*A*_{*i*} ∈ Σ |*i* ∈ *I*} is a *countable* family then $\cup_{i \in I} A_i$ ∈ Σ .
- **•** The intersection of any collection of σ -algebras on a set is another σ -algebra.
- **•** Thus, given any family of sets $\mathcal F$ there is a least σ -algebra containing F: the σ -algebra *generated* by F; written $\sigma(F)$.
- Measurable sets are complicated beasts, we often want to work with the sets of family of simpler sets that generate the σ -algebra.
- \bullet *X* a set, $\Sigma = \{X, \emptyset\}$
- $\sigma = \mathcal{P}(X)$, the power set.
- **•** The *σ*-algebra generated by intervals in R is called the *Borel* algebra. For any topological space the σ -algebra generated by the opens (or the closed sets) is called its Borel algebra.
- **•** There is a larger σ -algebra containing the Borel sets called the Lebesgue σ -algebra; more later.
- Fix a finite set $A: A^\infty =$ finite and infinite sequences of elements from *A*. Define, for $x \in A^*$, $x \uparrow = \{y : x \le y\}$. The σ -algebra generated by the $x \uparrow$ is very commonly used to study discrete-step processes.
- $\operatorname{\sf Notation:}\nolimits$ If $A_1\subseteq A_2\subseteq\ldots\subseteq A_n\ldots\text{\sf and}\n A=\bigcup A_n$ we write $A_n\uparrow A;$ *n* similarly $A_n \downarrow A$.
- \bullet If M is a collection of sets and is closed under up and down arrows it is called a **monotone class**.
- Arbitrary intersections of monotone classes form a monotone class; hence we have the monotone class *generated* by a family of sets.
- A collection of sets closed under complements and finite unions is called a **field** of sets.
- Any σ -algebra is a monotone class and if a monotone class is also a field it is a σ -algebra.
- **Theorem:** If F is a field of sets then the monotone class that it generates is the same as the σ -algebra that it generates.
- \bullet A π -system is a family of sets closed under finite intersections.
- The open intervals of **R** form a π -system. It generates the Borel sets.
- Slogan: π -systems are usually easy to describe but they can generate complicated σ -algebras. Try to use a generating π -system.
- A λ-**system** over *X* is a family of subsets of *X* containing *X*, closed under complements and closed under countable unions of pairwise disjoint sets.
- **Prop**: If Ω is a π -system and a λ -system it is a σ -algebra.
- **If** Ω is a π -system and Λ is a λ -system and $\Omega \subseteq \Lambda$ then $\sigma(\Omega) \subseteq \Lambda$. Dynkin's $\lambda - \pi$ theorem.
- $f:(X,\Sigma)\to (Y,\Omega)$ is *measurable* if for every $B\in \Omega, f^{-1}(B)\in \Sigma.$
- Just like the definition of continuous in topology.
- Why is this the definition? Why backwards?
- *x* ∈ *f*⁻¹(*B*) if and only if *f*(*x*) ∈ *B*.
- No such statement for the forward image.
- Exactly the same reason why we give the Hoare triple for the assignment statement in terms of preconditions.
- Older books (Halmos) give a more general definition that is not compositional.
- Measurable spaces and measurable functions form a category.
- \bullet If *A* ⊂ *X* is a measurable set, $\mathbf{1}_A(x) = 1$ if $x \in A$ and 0 otherwise is called the *indicator* or *characteristic* function of *A* and is measurable.
- The sum and product of real-valued measurable functions is measurable.
- If we take *finite* linear combinations of indicators we get *simple* functions: measurable functions with finite range.
- If $\left\{f_i: \mathbf{R} \to \mathbf{R} \right\}_{i \in \mathbf{N}}$ converges pointwise to f and all the f_i are measurable then so is *f* .
- Stark difference with continuity.
- \bullet If $f : (X, \Sigma) \to (\mathbb{R}, \mathcal{B})$ is non-negative and measurable then there is a sequence of non-negative *simple* functions *sⁱ* such that $s_i \leq s_{i+1} \leq f$ and the s_i converge pointwise to *f*.
- The secret of integration.

A **measure** (**probability measure**) μ on a measurable space (X, Σ) is a function from Σ (a set function) to $[0,\infty]$ $([0,1])$, such that if $\{A_i|i\in I\}$ is a countable family of pairwise disjoint sets then

$$
\mu(\bigcup_{i\in I} A_i)=\sum_{i\in I}\mu(A_i).
$$

In particular if *I* is empty we have

$$
\mu(\emptyset)=0.
$$

A set equipped with a σ -algebra and a measure defined on it is called a **measure space**.

Fix a set *X* and a point *x* of *X*. We define a measure, in fact a probability measure, on the σ -algebra of all subsets of *X* as follows. We use the slightly peculiar notation $\delta(x, A)$ to emphasize that x is a parameter in the definition.

$$
\delta(x, A) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}
$$

This measure is called the *Dirac delta measure*. Note that we can fix the set *A* and view this as the definition of a (measurable) function on *X*. What we get is the characteristic function of the set *A*, χ*A*.

- Fix (X, Σ, μ) ; write A, B, C, \ldots for sets in Σ .
- \bullet If *A* ⊆ *B* then $\mu(A)$ ≤ $\mu(B)$.
- If $A_n \uparrow A$ then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- If $A_n \downarrow A$ and $\mu(A_1)$ is finite then $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- **Consider combining probability and nondeterminism.**
- Given (X,Σ) , suppose we have a family of measures $\mu_i.$ Define $c(A) := \sup_i \mu_i(A)$. Is it a measure?
- No! It is not additive, not even finitely.
- But, it does satisfy monotonicity and *both* continuity properties.
- Such a thing is called a "Choquet capacity."
- Not all capacities arise in this way.
- For any subset A of $\mathbb R$ we define the outer measure of A, $\mu^*(A)$, as the infimum of the total length of any family of intervals covering *A*.
- **The rationals have outer measure zero.**
- μ^* is not additive so it does not give a measure defined on all sets.
- It does however satisfy countable subadditivity: $\mu^*(\cup A_i) \leq \sum_i \mu^*(A_i).$
- We define an outer measure to be a set function satisfying monotonicity and countable subadditivity and defined on *all* sets.
- Let X be a set and μ^* an other measure defined on it.
- There are some sets that "split all other sets nicely."
- For some sets $A, \forall E \subseteq X, \mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E)$. Call the collection of all such sets Σ .
- Define $\mu(A) = \mu^*(A)$ for $A \in \Sigma$.
- \bullet (X, Σ, μ) is a measure space.
- The proof uses the $\lambda \pi$ theorem.
- Applied to $\mathbb R$ with the outer measure above we get the Lebesgue measure on the Borel sets.
- Want to define measures on "nice" sets and *extend* to all the sets in the generated σ -algebra.
- A family of sets F is called a *semi-ring* if:
	- $\bullet \emptyset \in \mathcal{F}$
	- $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$
	- *A* ⊂ *B* implies there are finitely many pairwise disjoint sets C_1, \ldots, C_k , all in \mathcal{F} , such that $B \setminus A = \cup_{i=1}^k C_i$.
- If μ defined on a semi-ring satisfies:
	- $\bullet \mu(\emptyset) = 0,$
	- \bullet μ is finitely additive and
	- \bullet μ is countably subadditive,
- then μ extends uniquely to a measure on $\sigma(\mathcal{F})$.
- Given two measures, μ_1, μ_2 on (X, Σ) ; are they the same?
- Suppose that $\Sigma = \sigma(\mathcal{P})$ where $\mathcal P$ is a π -system.
- Then if μ_1, μ_2 agree on P they will agree on Σ .
- We need to know in advance that μ_1, μ_2 are measures.
- Recall: *A* a finite set, *A*[∞] = finite and infinite sequences of elements from *A*. Define, for $x \in A^*$, $x \uparrow = \{y : x \le y\}$. Here $A = \{H, T\}.$
- We have $Pr(H)$, $Pr(T)$. Want to define a measure on sets of $H T$ (possibly infinite) sequences.
- \bullet Define, $Pr(a_1 \ldots a_n) = \prod_i Pr(a_i)$.
- The sets of the form *x* ↑ form a semi-ring so Pr extends to a measure on the generated σ -algebra.

Lebesgue integration

- Proceed by working up from "simple" functions.
- Fix (X, Σ, μ) . If $A \in \Sigma$ define $\chi_A : X \to \mathbb{R}$ by $\chi_A(x) = 1$ if $x \in A$ else Ω .
- Natural definition: $\int \chi_A \mathrm{d}\mu = \mu(A)$
- Define *simple* functions as finite linear combinations of $\mathsf{characteristic}$ functions: $s = \sum_i r_i \chi_{A_i}; \, r_i \in \mathbb{R}, A_i \in \Sigma.$
- $\int s d\mu = \sum_i r_i \mu(A_i).$
- Need to verify that the integral of *s* does not depend on how it is represented.
- Fact: every positive measurable function is the pointwise limit of a sequence of simple functions.
- For a positive measurable function f we define $\int f\mathrm{d}\mu=\bigvee_{s\leq f}\int s\mathrm{d}\mu.$
- For a general measurable function we split it into positive and negative parts and compute the integrals separately.
- I have skated over some issues about integrability.
- Suppose that *fⁿ* : *X* −→ R is a sequence of measurable functions such that
- $\bullet \forall x \in X, 0 \leq f_1(x) \leq f_2(x) \leq \ldots \leq f_n(x) \leq \ldots < \infty$ and
- $∀x ∈ X, √_nf_n(x) = f(x)$ then
- *f* is measurable and

•
$$
\int f d\mu = \bigvee_n \int f_n d\mu
$$
.

• One uses this theorem to prove that the integral is linear.

- Let $T: (X, \Sigma, \mu) \to (Y, \Omega, \nu)$ be measurable.
- Let $f: Y \to \mathbb{R}$ be measurable.
- Suppose that $\nu=\mu\circ T^{-1}$ then for any $B\in\Omega,$

$$
\bullet \ \int_{T^{-1}(B)} f \circ T d\mu = \int_B f d\nu.
$$

- \bullet Easy to check that the equation holds for $f = \chi_A$.
- Hence true for *f* a simple function by linearity of integration.
- Hence true for any positive measurable function by the monotone convergence theorem.
- Hence true for any measurable function by splitting.

The Radon-Nikodym theorem

- **•** Fix a measurable space (X, Σ) and two measures μ, ν .
- \bullet We say μ, ν are *mutually singular* if there are disjoint measurable sets *A*, *B* with $\mu(X \setminus A) = 0 = \nu(X \setminus B)$. We write $\mu \perp \nu$.
- We say ν is absolutely continuous with respect to μ , written $\nu << \mu$, if $\mu(A) = 0$ implies $\nu(A) = 0$.
- If we define ν by $\nu(A) = \int_A f \, \mathrm{d}\mu$ for some positive measurable function we will have $\nu << \mu$.
- **If both** μ, ν **are (** σ **-) finite measures, then** ν **can be decomposed** into $\nu = \nu_a + \nu_s$ with $\nu_a << \mu$ and $s \perp \mu$.
- There is a non-negative measurable function *h* such that $\nu_a(A) = \int_A h \, \mathrm{d}\mu.$
- If h' satisfies the same property as h then h, h' differ at most on a set of μ -measure 0.
- *h* is called the Radon-Nikodym derivative of ν_a with respect to μ and is sometimes written as $\frac{\mathrm{d}\nu_a}{\mathrm{d}\mu}$.
- Product space $X \times Y$, joint probability measure P on $X \times Y$; marginals P_X, P_Y .
- Suppose I know that the *X* coordinate is *x*, how do I revise my estimate of the probability distribution over *Y*?
- Fix a measurable subset *A* ⊆ *X*, there is a measurable function $P_A: Y \to [0, 1]$ which satisfies: $\forall B \subseteq Y, P(A \times B) = \int_B P_A(y) \, dP_Y$.
- \bullet Similarly there is a function P_B such that $\forall A \in \Sigma_X, P(A \times B) = \int P_B(x) dP_X.$
- How do we know such things exist? Radon-Nikodym! $P(A \times \cdot) \ll P(X \times \cdot).$
- I will write $P(x, B)$ and $P(y, A)$.
- We have a probability space (X, Σ, P) .
- **•** Suppose we have $\Lambda \subset \Sigma$. I tell you for every $B \in \Lambda$ whether the result is in *B* or not. How do we now estimate probabilities?
- **•** For any $A \in \Sigma$, there is a Λ -measurable function, written $P[A||\Lambda](\cdot)$ such that for any $B \in \Lambda$ we have:

$$
\bullet \ \ P(A \cap B) = \int_B P[A||\Lambda](x) \mathrm{d}P.
$$

Disintegration

- Back to the product case: I wrote $P(x, B)$.
- For fixed *x* it is a probability measure. For fixed *B* it is a measurable function.
- Not quite! For a fixed countable family of measurable sets we get countable additivity *almost everywhere*.
- But there are lots of countable families; we could end up with something that is not a proper measure anywhere!
- We want something stronger than what RNT promises: regular conditional probabilities or *disintegrations*.
- For disintegrations the statements of (2) are true everywhere.
- How do we construct disintegrations? They can be constructed on spaces that are equipped with *metric* structure.
- A Polish space is the topological space underlying a complete separable metric space. On Polish spaces disintegrations can always be constructed.