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What is measure theory?

We want to assign a “size” to sets so that we can use it for
quantitative purposes, like integration or probability.
We could count the number of points, but this is useless for a
continuous space.
We want to generalize the notion of “length” or “area.”
What is the “length” of the rational numbers between 0 and 1?
We want a consistent way of assigning sizes to these and (all?)
other sets.

Panangaden (McGill) Analysis of Probabilistic Systems Measure and Integration 3 / 28



What are measurable sets ?

Alas! Not all sets can be given a sensible notion of size that
generalizes the notion of length of an interval.
We take a family of sets satisfying “reasonable” axioms and deem
them to be “measurable.”
Countable unions are the key.
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Measurable spaces

A measurable space (X,Σ) is a set X together with a family Σ of
subsets of X, called a σ-algebra or σ-field, satisfying the following
axioms:

∅ ∈ Σ,
A ∈ Σ implies that Ac ∈ Σ, and
if {Ai ∈ Σ|i ∈ I} is a countable family then ∪i∈IAi ∈ Σ.
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Basic facts

The intersection of any collection of σ-algebras on a set is another
σ-algebra.
Thus, given any family of sets F there is a least σ-algebra
containing F : the σ-algebra generated by F ; written σ(F).
Measurable sets are complicated beasts, we often want to work
with the sets of family of simpler sets that generate the σ-algebra.
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Examples

X a set, Σ = {X, ∅}
σ = P(X), the power set.
The σ-algebra generated by intervals in R is called the Borel
algebra. For any topological space the σ-algebra generated by the
opens (or the closed sets) is called its Borel algebra.
There is a larger σ-algebra containing the Borel sets called the
Lebesgue σ-algebra; more later.
Fix a finite set A; A∞ = finite and infinite sequences of elements
from A. Define, for x ∈ A∗, x ↑= {y : x ≤ y}. The σ-algebra
generated by the x ↑ is very commonly used to study discrete-step
processes.
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Monotone classes

Notation: If A1 ⊆ A2 ⊆ . . . ⊆ An . . . and A =
⋃

n

An we write An ↑ A;

similarly An ↓ A.
IfM is a collection of sets and is closed under up and down
arrows it is called a monotone class.
Arbitrary intersections of monotone classes form a monotone
class; hence we have the monotone class generated by a family of
sets.
A collection of sets closed under complements and finite unions is
called a field of sets.
Any σ-algebra is a monotone class and if a monotone class is also
a field it is a σ-algebra.
Theorem: If F is a field of sets then the monotone class that it
generates is the same as the σ-algebra that it generates.
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π and λ systems

A π-system is a family of sets closed under finite intersections.
The open intervals of R form a π-system. It generates the Borel
sets.
Slogan: π-systems are usually easy to describe but they can
generate complicated σ-algebras. Try to use a generating
π-system.
A λ-system over X is a family of subsets of X containing X, closed
under complements and closed under countable unions of
pairwise disjoint sets.
Prop: If Ω is a π-system and a λ-system it is a σ-algebra.
If Ω is a π-system and Λ is a λ-system and Ω ⊆ Λ then σ(Ω) ⊆ Λ.
Dynkin’s λ− π theorem.
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Measurable functions

f : (X,Σ) −→ (Y,Ω) is measurable if for every B ∈ Ω, f−1(B) ∈ Σ.
Just like the definition of continuous in topology.
Why is this the definition? Why backwards?
x ∈ f−1(B) if and only if f (x) ∈ B.
No such statement for the forward image.
Exactly the same reason why we give the Hoare triple for the
assignment statement in terms of preconditions.
Older books (Halmos) give a more general definition that is not
compositional.
Measurable spaces and measurable functions form a category.
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Examples

If A ⊂ X is a measurable set, 1A(x) = 1 if x ∈ A and 0 otherwise is
called the indicator or characteristic function of A and is
measurable.
The sum and product of real-valued measurable functions is
measurable.
If we take finite linear combinations of indicators we get simple
functions: measurable functions with finite range.
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Convergence properties

If {fi : R −→ R}i∈N converges pointwise to f and all the fi are
measurable then so is f .
Stark difference with continuity.
If f : (X,Σ) −→ (R,B) is non-negative and measurable then there is
a sequence of non-negative simple functions si such that
si ≤ si+1 ≤ f and the si converge pointwise to f .
The secret of integration.
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Measures

A measure (probability measure) µ on a measurable space (X,Σ) is
a function from Σ (a set function) to [0,∞] ([0, 1]), such that if {Ai|i ∈ I}
is a countable family of pairwise disjoint sets then

µ(
⋃
i∈I

Ai) =
∑
i∈I

µ(Ai).

In particular if I is empty we have

µ(∅) = 0.

A set equipped with a σ-algebra and a measure defined on it is called
a measure space.
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A simple example

Fix a set X and a point x of X. We define a measure, in fact a
probability measure, on the σ-algebra of all subsets of X as follows.
We use the slightly peculiar notation δ(x,A) to emphasize that x is a
parameter in the definition.

δ(x,A) =

{
1 if x ∈ A,
0 if x 6∈ A.

This measure is called the Dirac delta measure. Note that we can fix
the set A and view this as the definition of a (measurable) function on
X. What we get is the characteristic function of the set A, χA.
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Monotonicity and Continuity

Fix (X,Σ, µ); write A,B,C, . . . for sets in Σ.
If A ⊆ B then µ(A) ≤ µ(B).
If An ↑ A then lim

n−→∞µ(An) = µ(A).

If An ↓ A and µ(A1) is finite then lim
n−→∞µ(An) = µ(A).
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Digression: Choquet Capacities

Consider combining probability and nondeterminism.
Given (X,Σ), suppose we have a family of measures µi. Define
c(A) := supi µi(A). Is it a measure?
No! It is not additive, not even finitely.
But, it does satisfy monotonicity and both continuity properties.
Such a thing is called a “Choquet capacity.”
Not all capacities arise in this way.
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Outer measure on R

For any subset A of R we define the outer measure of A, µ∗(A), as
the infimum of the total length of any family of intervals covering A.
The rationals have outer measure zero.
µ∗ is not additive so it does not give a measure defined on all sets.
It does however satisfy countable subadditivity:
µ∗(∪Ai) ≤

∑
i µ
∗(Ai).

We define an outer measure to be a set function satisfying
monotonicity and countable subadditivity and defined on all sets.
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From outer measure to measure

Let X be a set and µ∗ an other measure defined on it.
There are some sets that “split all other sets nicely.”
For some sets A, ∀E ⊆ X, µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E). Call the
collection of all such sets Σ.
Define µ(A) = µ∗(A) for A ∈ Σ.
(X,Σ, µ) is a measure space.
The proof uses the λ− π theorem.
Applied to R with the outer measure above we get the Lebesgue
measure on the Borel sets.
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An extension theorem

Want to define measures on “nice” sets and extend to all the sets
in the generated σ-algebra.
A family of sets F is called a semi-ring if:

∅ ∈ F
A,B ∈ F implies A ∩ B ∈ F
A ⊂ B implies there are finitely many pairwise disjoint sets
C1, . . . ,Ck, all in F , such that B \ A = ∪k

i=1Ci.
If µ defined on a semi-ring satisfies:

µ(∅) = 0,
µ is finitely additive and
µ is countably subadditive,

then µ extends uniquely to a measure on σ(F).
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Why I like π-systems

Given two measures, µ1, µ2 on (X,Σ); are they the same?
Suppose that Σ = σ(P) where P is a π-system.
Then if µ1, µ2 agree on P they will agree on Σ.
We need to know in advance that µ1, µ2 are measures.
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A measure on {H,T}∞

Recall: A a finite set, A∞ = finite and infinite sequences of
elements from A. Define, for x ∈ A∗, x ↑= {y : x ≤ y}. Here
A = {H,T}.
We have Pr(H),Pr(T). Want to define a measure on sets of H − T
(possibly infinite) sequences.
Define, Pr(a1 . . . an) = ΠiPr(ai).
The sets of the form x ↑ form a semi-ring so Pr extends to a
measure on the generated σ-algebra.
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Lebesgue integration

Proceed by working up from “simple” functions.
Fix (X,Σ, µ). If A ∈ Σ define χA : X −→ R by χA(x) = 1 if x ∈ A else
0.
Natural definition:

∫
χAdµ = µ(A)

Define simple functions as finite linear combinations of
characteristic functions: s =

∑
i riχAi ; ri ∈ R,Ai ∈ Σ.∫

sdµ =
∑

i riµ(Ai).
Need to verify that the integral of s does not depend on how it is
represented.
Fact: every positive measurable function is the pointwise limit of a
sequence of simple functions.
For a positive measurable function f we define

∫
f dµ =

∨
s≤f

∫
sdµ.

For a general measurable function we split it into positive and
negative parts and compute the integrals separately.
I have skated over some issues about integrability.
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Monotone convergence theorem

Suppose that fn : X −→ R is a sequence of measurable functions
such that
∀x ∈ X, 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ≤ . . . <∞ and
∀x ∈ X,

∨
n fn(x) = f (x) then

f is measurable and∫
f dµ =

∨
n

∫
fndµ.

One uses this theorem to prove that the integral is linear.
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The monotone convergence mantra: an example

Let T : (X,Σ, µ) −→ (Y,Ω, ν) be measurable.
Let f : Y −→ R be measurable.
Suppose that ν = µ ◦ T−1 then for any B ∈ Ω,∫

T−1(B) f ◦ Tdµ =
∫

B f dν.

Easy to check that the equation holds for f = χA.
Hence true for f a simple function by linearity of integration.
Hence true for any positive measurable function by the monotone
convergence theorem.
Hence true for any measurable function by splitting.
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The Radon-Nikodym theorem

Fix a measurable space (X,Σ) and two measures µ, ν.
We say µ, ν are mutually singular if there are disjoint measurable
sets A,B with µ(X \ A) = 0 = ν(X \ B). We write µ⊥ν.
We say ν is absolutely continuous with respect to µ, written
ν << µ, if µ(A) = 0 implies ν(A) = 0.
If we define ν by ν(A) =

∫
A f dµ for some positive measurable

function we will have ν << µ.
If both µ, ν are (σ-) finite measures, then ν can be decomposed
into ν = νa + νs with νa << µ and s⊥µ.
There is a non-negative measurable function h such that
νa(A) =

∫
A hdµ.

If h′ satisfies the same property as h then h, h′ differ at most on a
set of µ-measure 0.
h is called the Radon-Nikodym derivative of νa with respect to µ
and is sometimes written as dνa

dµ .
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Conditional probability I

Product space X × Y, joint probability measure P on X × Y;
marginals PX,PY .
Suppose I know that the X coordinate is x, how do I revise my
estimate of the probability distribution over Y?
Fix a measurable subset A ⊆ X, there is a measurable function
PA : Y −→ [0, 1] which satisfies: ∀B ⊆ Y,P(A× B) =

∫
B PA(y)dPY .

Similarly there is a function PB such that
∀A ∈ ΣX,P(A× B) =

∫
PB(x)dPX.

How do we know such things exist? Radon-Nikodym!
P(A× ·) << P(X × ·).
I will write P(x,B) and P(y,A).
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Conditional probability II

We have a probability space (X,Σ,P).
Suppose we have Λ ⊂ Σ. I tell you for every B ∈ Λ whether the
result is in B or not. How do we now estimate probabilities?
For any A ∈ Σ, there is a Λ-measurable function, written P[A||Λ](·)
such that for any B ∈ Λ we have:
P(A ∩ B) =

∫
B P[A||Λ](x)dP.
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Disintegration

Back to the product case: I wrote P(x,B).
For fixed x it is a probability measure. For fixed B it is a
measurable function.
Not quite! For a fixed countable family of measurable sets we get
countable additivity almost everywhere.
But there are lots of countable families; we could end up with
something that is not a proper measure anywhere!
We want something stronger than what RNT promises: regular
conditional probabilities or disintegrations.
For disintegrations the statements of (2) are true everywhere.
How do we construct disintegrations? They can be constructed on
spaces that are equipped with metric structure.
A Polish space is the topological space underlying a complete
separable metric space. On Polish spaces disintegrations can
always be constructed.
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