Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research - Almaden

Lecture 4 - Part 2

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Alternative Semantics of Queries

Bag Semantics

We focused on the containment problem for conjunctive queries under bag semantics.

Next, we will discuss:

- Probabilistic Databases
- Inconsistent Databases

The focus will be on the data complexity of conjunctive queries in these two frameworks.

Probabilistic Databases

- So far, data stored in a database have been assumed to exist with certainty
- However, in modern applications, data may be uncertain: noisy, fuzzy, corrupted, or even missing.
 - Such applications include social media, information integration, scientific data management, ...
- Probabilistic Databases provide a framework for modeling and managing uncertain data.
 - Probabilistic Databases extend relational databases with probabilities.
 - Both the data and their probabilities are stored as "standard" relations, but the semantics of query answering takes probabilities into account.

Probabilistic Databases

Definition A probabilistic database is a pair $\mathbf{W} = (\mathbf{D}, P)$ such that

- ► D = {D₁,..., D_k} is a finite set of databases D_i over the same schema.
- $P : \mathbf{D} \to [0, 1]$ is a function such that $\sum_{i=1}^{k} P(D_k) = 1$.

Intuition

- A probabilistic database can be in one of finitely many possible states, each with some probability.
- D is a set of possible worlds representing the possible states of the probabilistic database.

Marginal Probabilities

Definition Let $\mathbf{W} = (\mathbf{D}, P)$ be a probabilistic database.

► Let q be a k-ary query, $k \ge 1$, and let **a** be a k-tuple. The marginal probability $Pr(q, \mathbf{a}, \mathbf{W})$ of **a** is

$$Pr(q, \mathbf{a}, \mathbf{W}) = \sum_{\mathbf{a} \in q(D_i)} P(D_i).$$

Let q be a Boolean query. The marginal probability Pr(q, W) of q is

$$Pr(q, \mathbf{W}) = \sum_{D_i \models q} P(D_i).$$

Query Evaluation over Probabilistic Databases

- Query Evaluation over probabilistic databases:
 Given a *k*-ary query *q*, a *k*-tuple **a**, and a probabilistic database **W**, compute the marginal probability *Pr(q, a, W).*
- Note that this is a combined complexity problem. Here, we will focus on the data complexity of Boolean conjunctive queries over probabilistic databases.
- Fix a Boolean conjunctive query q.
 Then Pr[q] is the following algorithmic problem:
 Given a probabilistic database W, compute the marginal probability Pr(q, W).

Representations of Probabilistic Databases

- A probabilistic database may have an arbitrarily large number of possible worlds, which implies that listing all these possible worlds may be infeasible.
- For this reason, several different compact representations of probabilistic databases have been introduced and investigated.
- Here, we will focus on tuple-independent databases, which is arguably the simplest model for probabilistic database design.
- Intuitively, in a tuple-independent database all tuples are independent probabilistic events.

Tuple-Independent Databases

► A tuple-independent relation is a relation R(A₁,..., A_m, P) in which tuples (a₁,..., a_m) are independent events and the values of P are numbers in the interval [0, 1] denoting the marginal tuple probabilities of the tuples.

Company	Product	Р	
Apple	iphone 6	0.95	
Samsung	Galaxy 7	0.96	
Apple	iphone 7	0.75	
Microsoft	Lumia 640	0.85	

- This table is a compact representation of 16 possible tables.
- For example, the table consisting of the first, the second, and the fourth tuple has probability 0.95 · 0.96 · 0.25 · 0.85.
- A tuple-independent database is a database consisting of tuple-independent relations.

Fix a Boolean query q.

Pr[q] is the following problem: Given a tuple-independent database **W**, compute the marginal probability $Pr(q, \mathbf{W})$.

- This is a data complexity problem because the query is fixed and the input is a tuple-independent database W.
- Recall that the data complexity of unions of conjunctive queries on (deterministic) databases is in LOGSPACE.

Dichotomy Theorem (Dalvi and Suciu - 2012)

If q is a union of Boolean conjunctive queries, then Pr[q] is in P or Pr[q] is #P-complete.

Dichotomy Theorem (Dalvi and Suciu - 2012)

If q is a union of Boolean conjunctive queries, then Pr[q] is in P or Pr[q] is #P-complete.

Note

- #P is the class of counting problems associated with decision problems in NP.
- The prototypical #P-complete problem is #SAT: Given a CNF-formula φ, compute the number of its satisfying assignments.
- Valiant (1979) also showed that #POSITIVE 2SAT is #P-complete.

("easy" decision - "hard" counting phenomenon)

Hierarchical Queries

Definition

- A self-join free conjunctive query is a conjunctive query in which no relation symbol appears more than once.
- Let q be a self-join free conjunctive query.
 - If x is a variable of q, then at(x) is the set of all atoms of x in which x appears.
 - We say that q is hierarchical if for every two variables x and y of q, one of the following holds:

 $at(x) \subseteq at(y), \quad at(y) \subseteq at(x), \quad at(x) \cap at(y) = \emptyset.$

Example

- The query $\exists x \exists y (R(x) \land S(x, y))$ is hierarchical.
- The query $\exists x \exists y (R(x) \land S(x, y) \land T(y))$ is not hierarchical.

The Little Dichotomy Theorem (Dalvi and Suciu - 2004) Let q be a Boolean self-join free conjunctive query.

- If q is hierarchical, then Pr[q] is in P.
- ▶ If *q* is not hierarchical, then Pr[q] is #P-complete.

The Little Dichotomy Theorem (Dalvi and Suciu - 2004) Let q be a Boolean self-join free conjunctive query.

- If q is hierarchical, then Pr[q] is in P.
- ▶ If q is not hierarchical, then Pr[q] is #P-complete.

Proof Idea

- Hierarchical queries admit safe evaluation plans.
- Non-hierarchical queries:
 - Show that $Pr[\exists x \exists y (R(x) \land S(x, y) \land T(y))]$ is #P-complete.
 - Show that if q is not hierarchical, then $Pr[\exists x \exists y (R(x) \land S(x, y) \land T(y))]$ is reducible to Pr[q].

Hierarchical Queries

Let *q* be the hierarchical query $\exists x \exists y (R(x) \land S(x, y))$ and let **W** be a tuple-independent database.

- First, write q as $\exists x(R(x) \land \exists yS(x, y))$.
- Then, using tuple-independence repeatedly, we have that:

$$Pr[q] = 1 - \prod_{a \in adom(W)} (1 - P((R(a) \land \exists y S(a, y))))$$

= $1 - \prod_{a \in adom(W)} (1 - P((R(a)) \cdot P(\exists y S(a, y))))$
= $1 - \prod_{a \in adom(W)} (1 - P((R(a)) \cdot (1 - \prod_{b \in adom(W)} (1 - P(S(a, b)))))))$

• The last expression has size $O(n^2)$, where $n = |adom(\mathbf{W})|$.

Non-Hierarchical Queries

 A positive partitioned 2DNF formula (PP2DNF) is a DNF-formula of the form

 $x_{i_1}y_{j_1} \vee \cdots \vee x_{i_k}y_{j_k}$, where the x_i 's and the y_i 's form disjoint sets of variables.

- Theorem (Provan and Ball 1982) #PP2DNF is #P-complete.
- ► Theorem (Dalvi and Suciu 2004) There is a counting reduction from #PP2DNF to Pr[∃x∃y(R(x) ∧ S(x, y) ∧ T(y))].

Non-Hierarchical Queries

Counting reduction from

#PP2DNF to $Pr[\exists x \exists y (R(x) \land S(x, y) \land T(y))].$

- Suppose φ is the formula $x_1y_1 \lor x_1y_2 \lor x_2y_1$
- Let \mathbf{W}_{φ} be the tuple-independence database

R	X	P	S	X	Y	Ρ	T	Y	Ρ
	<i>x</i> ₁	0.5		<i>x</i> ₁	Y 1	1		<i>Y</i> 1	0.5
	<i>x</i> ₂	0.5		<i>x</i> ₁	y 2	1		<i>y</i> ₂	0.5
				<i>x</i> ₂	Y 1	1			

- There is a 1-1 correspondence between truth assignments for φ and possible worlds for W_φ.
- It is easy to see that

 $\#\varphi = 2^n Pr(\exists x \exists y (R(x) \land S(x, y) \land T(y)), \mathbf{W}_{\varphi}),$ where *n* is the number of variables of φ .

Non-Hierarchical Queries

Let *q* be a Boolean conjunctive query that is **not** hierarchical.

- By definition, there are variables x and y of q such that at(x) ⊈ at(y), at(y) ⊈ at(x), at(x) ∩ at(y) ≠ Ø.
- Since at(x) ⊈ at(y), there is an atom R'(x,...) in which y does not appear.
- Since at(y) ⊈ at(x), there is an atom T'(y,...) in which x does not appear.
- Since $at(x) \cap at(y) \neq \emptyset$, there is an atom T'(x, y, ...) in which both x and y appear.
- ► These atoms can be used to obtain a counting reduction from $Pr[\exists x \exists y (R(x) \land S(x, y) \land T(y))]$ to Pr[q].

The Little Dichotomy Theorem (Dalvi and Suciu - 2004) Let q be a Boolean self-join free conjunctive query.

- If q is hierarchical, then Pr[q] is in P.
- ▶ If q is not hierarchical, then Pr[q] is #P-complete.

The Little Dichotomy Theorem (Dalvi and Suciu - 2004) Let q be a Boolean self-join free conjunctive query.

- If q is hierarchical, then Pr[q] is in P.
- ▶ If q is not hierarchical, then Pr[q] is #P-complete.

Open Problems:

- Dichotomy Theorem for arbitrary conjunctive queries on the block-independent-disjoint model.
 - Dichotomy known for self-join free conjunctive queries.
- Dichotomy Theorem for arbitrary conjunctive queries on the tuple-independent model in the presence of functional dependencies.
 - Dichotomy known for self-join free conjunctive queries.