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Thematic Roadmap

� Logic and Database Query Languages

– Relational Algebra and Relational Calculus

– Conjunctive queries and their variants

– Datalog

� Query Evaluation, Query Containment, Query Equivalence

– Decidability and Complexity

� Other Aspects of Conjunctive Query Evaluation

• Alternative Semantics of Queries

– Bag Databases: Semantics and Conjunctive Query Containment

– Probabilistic Databases: Semantics and Dichotomy Theorems for 
Conjunctive Query Evaluation

– Inconsistent Databases: Semantics and Dichotomy Theorems
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Alternative Semantics

• So far, we have examined logic and databases under 

classical semantics:

– The database relations are sets.

– Tarskian semantics are used to interpret queries definable 

be first-order formulas.

• Over the years, several different alternative semantics of 

queries have been investigated. We will discuss three such 

scenarios:

– The database relations can be bags (multisets).

– The databases may be probabilistic.

– The databases may be inconsistent.
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Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

• Relational Algebra Expression:      

πsalary (σdept = CS (EMPLOYEE))

• SQL query:

SELECT   salary

FROM      EMPLOYEE

WHERE    dpt = ‘CS’

• SQL returns a bag (multiset) of numbers in which a number may 
appear several times, provided different faculty had the same salary.    

• SQL does not eliminate duplicates, in general, because:

– Duplicates are important for aggregate queries (e.g., average)

– Duplicate elimination takes nlogn time.
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Relational Algebra Under Bag Semantics

Operation Multiplicity

Union 

R1 ∪ R2

m1 + m2

Intersection 

R1 � R2

min(m1, m2)

Product 

R1 × R2

m1× m2

Projection and 
Selection

Duplicates are 
not eliminated

• R1 A   B
1   2
1   2 
2   3

• R2 B  C
2  4
2  5

• (R1⋈R2) A  B  C    

1   2  4
1   2  4
1   2  5
1   2  5



Conjunctive Queries Under Bag Semantics

Chaudhuri & Vardi – 1993

Optimization of Real Conjunctive Queries

� Called for a re-examination of conjunctive-query optimization 

under bag semantics.

� In particular, they initiated the study of the 

containment problem for conjunctive queries 

under bag semantics.

� This problem has turned out to be much more challenging 

than originally perceived.
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PROBLEMS

Problems worthy

of attack

prove their worth

by hitting back.

in: Grooks by Piet Hein (1905-1996)
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Query Containment Under Set Semantics

Class of Queries Complexity of Query 
Containment

Conjunctive Queries NP-complete

Chandra & Merlin – 1977

Unions of Conjunctive 

Queries

NP-complete

Sagiv & Yannakakis - 1980

Conjunctive Queries with 

≠≠≠≠ , ≤, ≥

Π2
p-complete

Klug 1988, van der Meyden -1992

First-Order (SQL) queries Undecidable

Trakhtenbrot - 1949
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Bag Semantics vs. Set Semantics

• For bags R1, R2:

R1 ⊆BAG R2 if m(a,R1) ≤ m(a,R2), for every tuple a.

• QBAG(D) : Result of evaluating Q on (bag) database D.

• Q1 ⊆BAG Q2 if for every (bag) database D, we have that 

Q1
BAG(D) ⊆BAG Q2

BAG(D).

Fact: 

� Q1 ⊆BAG Q2 implies Q1 ⊆ Q2.

� The converse does not always hold.
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Bag Semantics vs. Set Semantics

Fact: Q1 ⊆ Q2 does not imply that Q1 ⊆BAG Q2 .

Example:

� Q1(x) :- P(x), T(x)

� Q2(x) :- P(x)

� Q1 ⊆ Q2 (obvious from the definitions)

� Q1 ⊈BAG Q2

� Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:

� Q1(D) = {a,a}

� Q2(D) = {a}, so Q1(D) ⊈ Q2(D).
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Query Containment under Bag Semantics

• Chaudhuri & Vardi  - 1993 stated that:

Under bag semantics, the containment problem for 

conjunctive queries is Π2
p-hard.

• Problem:

– What is the exact complexity of the containment 

problem for conjunctive queries under bag 

semantics?

– Is this problem decidable?
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Query Containment Under Bag Semantics

• 23 years have passed since the containment problem for 

conjunctive queries under bag semantics was raised.

• Several attacks to solve this problem have failed.

• At least two technically flawed PhD theses on this problem 

have been produced.

• Chaudhuri and Vardi have withdrawn the claimed 

Π2
p-hardness of this problem; no one has provided a proof.
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Query Containment Under Bag Semantics

• The containment problem for conjunctive queries under bag 

semantics remains open to date.

• However, progress has been made towards the containment 

problem under bag semantics for the two main extensions of 

conjunctive queries:

– Unions of conjunctive queries

– Conjunctive queries with ≠ 
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Unions of Conjunctive Queries

Theorem (Ioannidis & Ramakrishnan – 1995):

Under bag semantics, the containment problem for

unions of conjunctive queries is undecidable. 

Hint of Proof:

Reduction from Hilbert’s 10th Problem.
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Hilbert’s 10th Problem

• Hilbert’s 10th Problem – 1900  

(10th in Hilbert’s list of 23 problems)

Given a Diophantine equation with any number of unknown 

quantities and with rational integral numerical coefficients: To devise

a process according to which it can be determined in a finite number

of operations whether the equation is solvable in rational integers. 

In effect, Hilbert’s 10th Problem is:

Find an algorithm for the following problem:

Given a polynomial P(x1,...,xn) with integer coefficients, does it have

an all-integer solution?
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Hilbert’s 10th Problem

• Hilbert’s 10th Problem – 1900  

(10th in Hilbert’s list of 23 problems)

Find an algorithm for the following problem:

Given a polynomial P(x1,...,xn) with integer coefficients, does it 

have an all-integer solution?

• Y. Matiyasevich – 1971

(building on M. Davis, H. Putnam, and J. Robinson)

– Hilbert’s 10th Problem is undecidable, hence no such 

algorithm exists. 
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Hilbert’s 10th Problem

• Fact: The following variant of Hilbert’s 10th Problem is 

undecidable:

– Given two polynomials p1(x1,…xn) and p2(x1,…xn) with 

positive integer coefficients and no constant terms, is 
it true that p1 ≤ p2? 

In other words, is it true that p1(a1,…,an) ≤

p2(a1,…an), for all positive integers a1,…,an?

• Thus, there is no algorithm for deciding questions like:

– Is  3x1
4x2x3 + 2x2x3 ≤ x1

6 + 5x2x3
?
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Unions of Conjunctive Queries

Theorem (Ioannidis & Ramakrishnan – 1995):

Under bag semantics, the containment problem for unions

of conjunctive queries is undecidable.

Hint of Proof:  

� Reduction from the previous variant of Hilbert’s 10th

Problem:

� Use joins of unary relations to encode monomials 

(products of variables).

� Use unions to encode sums of monomials. 
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Unions of Conjunctive Queries

Example: Consider the polynomial 3x1
4x2x3 + 2x2x3

� The monomial x1
4x2x3 is encoded by the conjunctive query

P1(w),P1(w),P
1
(w), P

1
(w), P2(w),P3(w).

� The monomial x2x3 is encoded by the conjunctive query 
P2(w),P3(w).

� The polynomial 3x1
4x2x3 + 2x2x3 is encoded by the union 

having:

� three copies of P1(w),P1(w),P1(w), P
1
(w), P2(w),P3(w)   

and 

� two copies of P2(w),P3(w).
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Complexity of Query Containment

Class of Queries Complexity –

Set Semantics

Complexity –

Bag Semantics

Conjunctive 

queries

NP-complete

CM – 1977

Unions of conj. 

queries 

NP-complete

SY - 1980

Undecidable

IR - 1995

Conj. queries with 

≠≠≠≠ , ≤, ≥

Π2
p-complete

vdM - 1992

First-order (SQL) 

queries

Undecidable

Trakhtenbrot - 1949

Undecidable
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Conjunctive Queries with ≠

Theorem  (Jayram, K …, Vee – 2006):

Under bag semantics, the containment problem for

conjunctive queries with ≠ is undecidable.

In fact, this problem is undecidable even if

� the queries use only a single relation of arity 2;

� the number of inequalities in the queries is at most some 

fixed (albeit huge) constant. 
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Conjunctive Queries with ≠

Proof Idea: 

Reduction from a variant of Hilbert’s10th  Problem:

Given homogeneous polynomials 

P1(x1,…,x59) and P2(x1,…,x59)

both with integer coefficients and both of degree 5,

is P1(x1,…,x59)  ≤ (x1)
5 P2(x1,…,x59), 

for all integers x1,…,x59?
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Proof Idea (continued)

• Given polynomials P1 and P2

– Both with integer coefficients

– Both homogeneous, degree 5

– Both with at most n=59 variables

• We want to find Q1 and Q2 such that

– Q1 and Q2 are conjunctive queries with inequalities ≠

– P1(x1,…, x59)  ≤ (x1)5 P2(x1,…, x59) 

for all integers x1, …, x59

if and only if

Q1(D) ⊆
BAG

Q2(D) for all (bag) databases D.
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Proof Outline: 

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and

reduce Hilbert’s 10th Problem to conjunctive query containment 

over databases of special form (no inequalities are used!)

Step  2: Arbitrary databases

Use inequalities ≠ in the queries to achieve the following:

• If a database D is of special form, then we are back to the 
previous case.

• If a database D is not of special form, then Q1(D) ⊆BAG Q2(D). 

Step 3: Show that we only need a single relation of arity 2.
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Additional Comments

• The reduction uses seven different “control” gadgets. 

• In Step 2, inequalities ≠ are used in both queries.

• Number of inequalities ≠ depends on size of special-form 

DBs, not counting the tuples in the VALUE table.

– Hence, the number of inequalities depends on the 

degree of polynomials and the number of variables.

– It is a huge constant (about 5910). 
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Complexity of Query Containment

Class of Queries Complexity –

Set Semantics

Complexity –

Bag Semantics

Conjunctive 

queries

NP-complete

CM – 1977

Open

Unions of conj. 

queries 

NP-complete

SY - 1980

Undecidable

IR - 1995

Conj. queries with 

≠≠≠≠ , ≤, ≥

Π2
p-complete

vdM - 1992

Undecidable

JKV - 2006

First-order (SQL) 

queries

Undecidable

Trakhtenbrot - 1949

Undecidable
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Subsequent Developments

• Some progress has been made towards identifying special 

classes of conjunctive queries for which the containment 

problem under bag semantics is decidable.

– Afrati, Damigos, Gergatsoulis – 2010

• Projection-free conjunctive queries.

– Kopparty and Rossman – 2011

• A large class of boolean conjunctive queries on graphs.
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The Containment Problem for Boolean Queries

• Note:

For boolean conjunctive queries, the containment 

problem under bag semantics is equivalent to the 

Homomorphism Domination Problem.

• The Homomorphism Domination Problem for graphs

Given two graphs G and H, is it true that 

# Hom(G,T)  ≤ # Hom(H,T),  for every graph T?

(where,

� # Hom(G,T)  =  number of homomorphisms from G to T 

� # Hom(H,T)  =  number of homomorphisms from H to T.)
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The Homomorphism Domination Problem 

Theorem (Kopparty and Rossman – 2011):

• There is an algorithm to decide, given a series-parallel

graph G and a chordal graph H, whether or not

# Hom(G,T) ≤ # Hom(H,T), for all directed graphs T.

Equivalently,

• The conjunctive query containment problem Q1 ⊆BAG Q2 is 

decidable for boolean conjunctive queries Q1 and Q2 such

that the canonical database DQ1 is a series-parallel graph

and the canonical database DQ2 is a chordal graph.

Note:

The proof using conditional entropy and linear programming.



Set Semantics vs. Bag Semantics

Problem Set Semantics Bag Semantics

CQ Evaluation 

Combined Complexity /

Query Complexity

NP-complete #P-complete

CQ Equivalence NP-complete GRAPH ISOMORPHISM 

- complete

CQ Containment NP-complete Open
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Question: What is the complexity of conjunctive query evaluation
and of conjunctive query equivalence under bag semantics?



Backup Slides
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Conjunctive Queries with ≠

Theorem: Jayram, K …, Vee – 2006

Under bag semantics, the containment problem for

conjunctive queries with ≠ is undecidable.

In fact, this problem is undecidable even if

� the queries use only a single relation of arity 2;

� the number of inequalities in the queries is at most some 

fixed (albeit huge) constant. 



33

Conjunctive Queries with ≠

Proof Idea: 

Reduction from a variant of Hilbert’s10th  Problem:

Given homogeneous polynomials 

P1(x1,…,x59) and P2(x1,…,x59)

both with integer coefficients and both of degree 5,

is P1(x1,…,x59)  ≤ (x1)
5 P2(x1,…,x59), 

for all integers x1,…,x59?
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Proof Idea (continued)

� Given polynomials P1 and P2

– Both with integer coefficients

– Both homogeneous, degree 5

– Both with at most n=59 variables

• We want to find Q1 and Q2 such that

– Q1 and Q2 are conjunctive queries with inequalities ≠

– P1(x1,…, x59)  ≤ (x1)5 P2(x1,…, x59) 

for all integers x1, …, x59

if and only if

Q1(D) ⊆
BAG

Q2(D) for all (bag) databases D.
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Proof Outline: 

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and

reduce Hilbert’s 10th Problem to conjunctive query containment 

over databases of special form (no inequalities are used!)

Step  2: Arbitrary databases

Use inequalities ≠ in the queries to achieve the following:

• If a database D is of special form, then we are back to the 
previous case.

• If a database D is not of special form, then Q1(D) ⊆BAG Q2(D). 

• Step 3: Show that we only need a single relation of arity 2.
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Step 1: DBs of a Special Form - Example

� Encode a homogeneous, 2-variable, degree 2 

polynomial in which all coefficients are 1.

P(x1,x2) = x1
2 + x1x2 + x2

2

� DBs of special form:

� Ternary relation TERM consisting of 

� (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

all special DBs have precisely this table for TERM

� Binary relation VALUE 

�Table for VALUE varies to encode different values 

for the variables x1, x2.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)
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Step 1: DBs of a Special Form - Example

� P(x1,x2) = x1
2 + x1x2 + x2

2

x1 = 3, x2 = 2,  P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� DB D of special form:

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

� VALUE:   (X1,1),  (X1,2),  (X1,3)

(X2,1),  (X2,2)

Claim: P(3,2) = 19 = QBAG(D)
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Step 1: DBs of a Special Form - Example

� P(3,2) = 32 + 3·2 + 22 = 19.

� Query Q :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

� D has   TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3)

VALUE:    (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) 

� QBAG(D) = 19, because:

� t → T1, u1→ X1, u2→ X1. Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 32 witnesses.

� t → T2, u1→ X1, u2→ X2.  Hence:

v1 → 1,2, or 3 and v2→ 1 or 2, so we get 3·2 witnesses.

� t → T3, u1→ X2, u2→ X2. Hence:

v1 → 1 or 2,  and v2→ 1 or 2, so we get 22 witnesses.
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Step 1: Complete Argument and Wrap-up

• Previous technique only works if all coefficients are 1

• For the complete argument:

– add a fixed table for every term to the DB;

– encode coefficients in the query;

– only table for VALUE can vary.

• Summary: 

– If the database has a special form, then we 
can encode separately homogeneous polynomials 

P1 and P2 by conjunctive queries Q1 and Q2.

– By varying table for VALUE, we vary the variable values.

– No ≠-constraints are used in this encoding; hence, 
conjunctive query containment is undecidable, if restricted 
to databases of the special form.
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Step 2: Arbitrary Databases

Idea:

Use inequalities ≠ in the queries

to achieve the following:

• If a database D is of special form, then we are back to the 

previous case.

• If a database D is not of special form, then
Q1(D) ⊆BAG Q2(D) necessarily.
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Step 2: Arbitrary Databases - Hint

1. Ensure that certain “facts” in special-form DBs appear 

(else neither query is satisfied).

� This is done by adding a part of the canonical query of special-
form DBs as subgoals to each encoding query.

2. Modify special-form DBs by adding  gadget tuples to TERM and 

to VALUE.

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)

� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2) , (T0,T0)

3. Add extra subgoals to Q2, so that if D is not of special form, then

Q2 “benefits” more than Q1 and, as a result,  Q1(D) ⊆BAG Q2(D).
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Step 2: Arbitrary Databases - Example

� P1(x1,x2) = x1
2 + x1x2 + x2

2

� Poly1(u1,u2,t) :- TERM(u1,u2,t), VALUE(u1,v1), VALUE(u2,v2)

the query encoding P1 on special-form DBs.

� TERM:    (X1,X1,T1), (X1,X2,T2), (X2,X2,T3), (T0,T0,T0)

� VALUE:   (X1,1),  (X1,2),  (X1,3), (X2,1),  (X2,2), (T0, T0)

� Q1 :- Poly1(u1,u2,t)

� Q2 :- Poly2(u1, u2, t), Poly1(w1, w2, w), w ≠ T1, w ≠ T2, w ≠ T3

Fact: 
� If DB is of special form, then Q2 gets no advantage, because 

w → T0, w1 → T0, w2 → T0 is the only possible assignment.

� If DB not of special form, say it has an extra fact (X2,X1,T’), then both Q1
and Q2 can use it equally.
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Step 2:  Arbitrary Databases – Wrap-up

• Additional tricks are needed for the full construction.

• Full construction uses seven different control gadgets. 

– Additional complications when we encode 
coefficients.

– Inequalities ≠ are used in both queries.

• Number of inequalities ≠ depends on size of special-form 
DBs, not counting the facts in VALUE table.

– Hence, depends on degree of polynomials, # of 
variables.

– It is a huge constant (about 5910). 


