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Thematic Roadmap

v Logic and Database Query Languages
— Relational Algebra and Relational Calculus
— Conjunctive queries and their variants
— Datalog
v Query Evaluation, Query Containment, Query Equivalence
— Decidability and Complexity
v Other Aspects of Conjunctive Query Evaluation
« Alternative Semantics of Queries
— Bag Databases: Semantics and Conjunctive Query Containment

— Probabilistic Databases: Semantics and Dichotomy Theorems for
Conjunctive Query Evaluation

— Inconsistent Databases: Semantics and Dichotomy Theorems



Alternative Semantics

« So far, we have examined logic and databases under
classical semantics:

— The database relations are sets.

— Tarskian semantics are used to interpret queries definable
be first-order formulas.

« Qver the years, several different alternative semantics of
qgueries have been investigated. We will discuss three such
scenarios:

— The database relations can be bags (multisets).
— The databases may be probabilistic.
— The databases may be inconsistent.



Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

Relational Algebra Expression:
Tsalary (Udept =GCS (EMPLOYEE))
SQL query:
SELECT salary
FROM EMPLOYEE
WHERE dpt=‘CS’

SQL returns a bag (multiset) of numbers in which a number may
appear several times, provided different faculty had the same salary.

SQL does not eliminate duplicates, in general, because:
— Duplicates are important for aggregate queries (e.g., average)
— Duplicate elimination takes nlogn time.



Relational Algebra Under Bag Semantics

Operation Multiplicity
Union m; + m,

R, U R,

Intersection min(m,, m,)
R, N R,

Product m,x m,

R, xR,

Projection and
Selection

Duplicates are
not eliminated
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Conjunctive Queries Under Bag Semantics

Chaudhuri & Vardi — 1993
Optimization of Real Conjunctive Queries

= (Called for a re-examination of conjunctive-query optimization
under bag semantics.

" |n particular, they initiated the study of the
containment problem for conjunctive queries
under bag semantics.

" This problem has turned out to be much more challenging
than originally perceived.



PROBLEMS

Problems worthy
of attack
prove their worth
by hitting back.

in: Grooks by Piet Hein (1905-1996)



Query Containment Under Set Semantics

Class of Queries

Complexity of Query
Containment

Conjunctive Queries

NP-complete
Chandra & Merlin — 1977

Unions of Conjunctive
Queries

NP-complete
Sagiv & Yannakakis - 1980

Conjunctive Queries with
#,<, >

) )

[I,P-complete
Klug 1988, van der Meyden -1992

First-Order (SQL) queries

Undecidable
Trakhtenbrot - 1949




Bag Semantics vs. Set Semantics

« For bags R;, R.:
R, Ceag R, if m(a,Ry) < m(a,R,), for every tuple a.
« QPAG(D) : Result of evaluating Q on (bag) database D.
« Q, Cgag Qs if for every (bag) database D, we have that
Q;PAG(D) Cgag Q2°44(D).

Fact:
Q1 ~BAG QZ ImplleS Q1 C Q2
" The converse does not always hold.



Bag Semantics vs. Set Semantics

Fact: Q, C Q, does not imply that Q; Cgag Q2.

Example:
" Q,(x) - P(x), T(x)
" Q,(x) - P(x)

" Q, € Q, (obvious from the definitions)

" Q; Epac Qo

" Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:
" Q(D) = {a,a}
" Q;(D) = {a}, so Q;(D) & Q,(D).
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Query Containment under Bag Semantics

« Chaudhuri & Vardi - 1993 stated that:

Under bag semantics, the containment problem for
conjunctive queries is I',P-hard.

 Problem:

— What is the exact complexity of the containment

problem for conjunctive queries under bag
semantics?

— |Is this problem decidable?
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Query Containment Under Bag Semantics

23 years have passed since the containment problem for
conjunctive queries under bag semantics was raised.

Several attacks to solve this problem have failed.

At least two technically flawed PhD theses on this problem
have been produced.

Chaudhuri and Vardi have withdrawn the claimed
[1,P-hardness of this problem; no one has provided a proof.



Query Containment Under Bag Semantics

« The containment problem for conjunctive queries under bag
semantics remains open to date.

« However, progress has been made towards the containment
problem under bag semantics for the two main extensions of
conjunctive queries:

— Unions of conjunctive queries
— Conjunctive queries with #
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Unions of Conjunctive Queries

Theorem (loannidis & Ramakrishnan — 1995):
Under bag semantics, the containment problem for
unions of conjunctive queries is undecidable.

Hint of Proof:
Reduction from Hilbert’s 10t Problem.
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Hilbert’s 10t Problem

Hilbert’s 10t Problem — 1900
(10t in Hilbert’s list of 23 problems)

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To devise
a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.

In effect, Hilbert’s 10" Problem is:

Find an algorithm for the following problem:

Given a polynomial P(x,,...,x,,) with integer coefficients, does it have
an all-integer solution?
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Hilbert’s 10t Problem

« Hilbert’s 10" Problem — 1900
(10" in Hilbert’s list of 23 problems)
Find an algorithm for the following problem:

Given a polynomial P(x,,...,x,) with integer coefficients, does it
have an all-integer solution?

Y. Matiyasevich — 1971
(building on M. Davis, H. Putnam, and J. Robinson)

— Hilbert’s 10" Problem is undecidable, hence no such
algorithm exists.
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Hilbert’s 10t Problem

« Fact: The following variant of Hilbert’s 10" Problem is
undecidable:

— Given two polynomials p,(Xs,...X,) and ps(Xs,...x,) with
positive integer coefficients and no constant terms, is
it true that p; < p,?

In other words, is it true that p,(ay,...,a,) <
p.(a,,...a,), for all positive integers aj,...,a,?

* Thus, there is no algorithm for deciding questions like:



Unions of Conjunctive Queries

Theorem (loannidis & Ramakrishnan — 1995):
Under bag semantics, the containment problem for unions
of conjunctive queries is undecidable.

Hint of Proof:

® Reduction from the previous variant of Hilbert’s 10t
Problem:

® Use joins of unary relations to encode monomials
(products of variables).

® Use unions to encode sums of monomials.
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Unions of Conjunctive Queries

Example: Consider the polynomial 3x;4X,X5 + 2X,X4
" The monomial x;4X,X5 IS encoded by the conjunctive query
P1(W)=P1(W)=P1(W)s P1(W)= PZ(W)=P3(W)

" The monomial x,x5 IS encoded by the conjunctive query
PZ(W) ) PS(W) .

" The polynomial 3x,4X,X5 + 2X,X5 IS encoded by the union
having:

" three copies of P,(w),P,(w),P(w), P1(w), P,(w),P5(w)
and

" two copies of P,(w),P5(w).



Complexity of Query Containment

Class of Queries | Complexity — Complexity —
Set Semantics Bag Semantics

Conjunctive NP-complete

queries CM - 1977

Unions of con;. NP-complete Undecidable

queries SY - 1980 IR - 1995

Conj. queries with |II,P-complete

=, <, > vdM - 1992

First-order (SQL) | Undecidable Undecidable

qgueries

Trakhtenbrot - 1949
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Conjunctive Queries with #

Theorem (Jayram, K ..., Vee — 2006):
Under bag semantics, the containment problem for
conjunctive queries with # is undecidable.

In fact, this problem is undecidable even if
" the queries use only a single relation of arity 2;

" the number of inequalities in the queries is at most some
fixed (albeit huge) constant.
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Conjunctive Queries with #

Proof Idea:
Reduction from a variant of Hilbert's10t" Problem:

Given homogeneous polynomials

Pi(Xq,.--,X59) @nd P5(Xy,...,X50)

both with integer coefficients and both of degree 5,
IS Py(Xy,... . X59) < (X4)° Pa(Xy,....Xsg),

for all integers Xxq,...,X5q7?
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Proof |dea (continued)

* Given polynomials P, and P,
— Both with integer coefficients
— Both homogeneous, degree 5
— Both with at most n=59 variables

« We want to find Q, and Q, such that

— Q, and Q, are conjunctive queries with inequalities #
— Pi(Xq,-00 X59) < (X4)5 PalXy5...5 Xsg)

for all integers xy, ..., Xsq
If and only if
Q,(D) C_  Q,(D) for all (bag) databases D.

—BAG
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Proof Qutline:

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and
reduce Hilbert’s 10" Problem to conjunctive query containment
over databases of special form (no inequalities are used!)

Step 2: Arbitrary databases
Use inequalities # in the queries to achieve the following:

- If a database D is of special form, then we are back to the
previous case.

- If a database D is not of special form, then Q,(D) Cgas Q,(D).

Step 3: Show that we only need a single relation of arity 2.



Additional Comments

« The reduction uses seven different “control” gadgets.

 In Step 2, inequalities # are used in both queries.

« Number of inequalities # depends on size of special-form
DBs, not counting the tuples in the VALUE table.

— Hence, the number of inequalities depends on the
degree of polynomials and the number of variables.

— It is a huge constant (about 599).



Complexity of Query Containment

Class of Queries | Complexity — Complexity —
Set Semantics Bag Semantics

Conjunctive NP-complete Open

qgueries CM -1977

Unions of con;. NP-complete Undecidable

queries SY - 1980 IR - 1995

Conj. queries with |II,P-complete Undecidable

£, <, > vdM - 1992 JKV - 2006

First-order (SQL) | Undecidable Undecidable

queries

Trakhtenbrot - 1949
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Subsequent Developments

Some progress has been made towards identifying special
classes of conjunctive queries for which the containment
problem under bag semantics is decidable.

— Afrati, Damigos, Gergatsoulis — 2010
 Projection-free conjunctive queries.

— Kopparty and Rossman — 2011
* Alarge class of boolean conjunctive queries on graphs.

27



The Containment Problem for Boolean Queries

* Note:
For boolean conjunctive queries, the containment

problem under bag semantics is equivalent to the
Homomorphism Domination Problem.

* The Homomorphism Domination Problem for graphs
Given two graphs G and H, is it true that
# Hom(G,T) < #Hom(H,T), for every graph T?
(where,
= # Hom(G,T) = number of homomorphisms from Gto T
= #Hom(H,T) = number of homomorphisms from H to T.)

28



The Homomorphism Domination Problem

Theorem (Kopparty and Rossman — 2011):

* There is an algorithm to decide, given a series-parallel
graph G and a chordal graph H, whether or not
# Hom(G,T) < # Hom(H,T), for all directed graphs T.

Equivalently,

« The conjunctive query containment problem Q; Cgag Qs IS
decidable for boolean conjunctive queries Q; and Q, such
that the canonical database D9' is a series-parallel graph
and the canonical database D is a chordal graph.

Note:
The proof using conditional entropy and linear programming.
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Set Semantics vs. Bag Semantics

Question: What is the complexity of conjunctive query evaluation
and of conjunctive query equivalence under bag semantics?

Problem

Set Semantics

Bag Semantics

CQ Evaluation

Combined Complexity / | NP-complete #P-complete

Query Complexity

CQ Equivalence NP-complete GRAPH ISOMORPHISM
- complete

CQ Containment NP-complete Open

30
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Conjunctive Queries with #

Theorem: Jayram, K ..., Vee — 2006

Under bag semantics, the containment problem for
conjunctive queries with # is undecidable.

In fact, this problem is undecidable even if
" the queries use only a single relation of arity 2;

" the number of inequalities in the queries is at most some
fixed (albeit huge) constant.
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Conjunctive Queries with #

Proof Idea:
Reduction from a variant of Hilbert's10t" Problem:

Given homogeneous polynomials

Pi(Xq,.--,X59) @nd P5(Xy,...,X50)

both with integer coefficients and both of degree 5,
IS Py(Xy,... . X59) < (X4)° Pa(Xy,....Xsg),

for all integers Xxq,...,X5q7?
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Proof |dea (continued)

" Given polynomials P, and P,
— Both with integer coefficients
— Both homogeneous, degree 5
— Both with at most n=59 variables
« We want to find Q, and Q, such that
— Q, and Q, are conjunctive queries with inequalities #
= Pi(X1s-o0s X59) < (X4)3 Pa(Xy,..., Xs)

for all integers Xy, ..., Xgq
if and only if
Q,(D) C_ Q,(D) for all (bag) databases D.

BAG
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Proof Qutline:

Proof is carried out in three steps.

Step 1: Only consider DBs of a special form.

Show how to use conjunctive queries to encode polynomials and
reduce Hilbert’s 10" Problem to conjunctive query containment
over databases of special form (no inequalities are used!)

Step 2: Arbitrary databases
Use inequalities # in the queries to achieve the following:

- If a database D is of special form, then we are back to the
previous case.

- If a database D is not of special form, then Q,(D) Cgas Q,(D).

- Step 3: Show that we only need a single relation of arity 2.



Step 1: DBs of a Special Form - Example

" Encode a homogeneous, 2-variable, degree 2
polynomial in which all coefficients are 1.

P(X1,X5) = X142 + X;X5 + X5°
" DBs of special form:
" Ternary relation TERM consisting of
- (X1=X1!T1)= (X1=X2=T2)! (X2!X2=T3)
all special DBs have precisely this table for TERM
" Binary relation VALUE

® Table for VALUE varies to encode different values
for the variables x;, X..

" Query Q :- TERM(u,,upt), VALUE(uy,v,), VALUE(u,,V,)
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Step 1: DBs of a Special Form - Example

" P(X{,Xo) = X412 + X{X5 + Xp?
X;=3,%X =2, P(3,2) =32+3.2+2%=19.
= Query Q :- TERM(uy,u,,t), VALUE(uy,v4), VALUE(u,,v,)
= DB D of special form:
" TERM: (X, X1, Th), (X4,X5,Tp), (X, X5, T5)
= VALUE: (X,1), (X{,2), (X,,3)
(Xo,1), (X2:2)

Claim: P(3,2) = 19 = QBAG(D)
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Step 1: DBs of a Special Form - Example

P(3,2) =32+ 3.2 +2°=19.
Query Q :- TERM(u,,u,,t), VALUE(u,,v,), VALUE(u,,V,)

D has TERM: (X, X,,T,), (X{,X5,T,), (X5,X,,T5)

VALUE: (X,,1), (Xi,2), (X;,3), (X5,1), (X,,2)

QBAG(D) = 19, because:

"t— T, u— X, u,— X,. Hence:

v, — 1,2, or 3and v,— 1 or 2, so we get 32 witnesses.
"t— T, u— X, u,— X,. Hence:

v, — 1,2, or 3 and v,— 1 or 2, so we get 3-2 withesses.

" t— T, u— X,, Uu,— X,. Hence:
vi —1or2, andv,— 1o0r2, sowe get 22 witnesses.
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Step 1: Complete Argument and Wrap-up

* Previous technique only works if all coefficients are 1
* For the complete argument:

— add a fixed table for every term to the DB;

— encode coefficients in the query;

— only table for VALUE can vary.
- Summary:

— If the database has a special form, then we
can encode separately homogeneous polynomials

P, and P, by conjunctive queries Q, and Q..
— By varying table for VALUE, we vary the variable values.

— No #-constraints are used in this encoding; hence,
conjunctive query containment is undecidable, if restricted
to databases of the special form.



Step 2: Arbitrary Databases

Idea:
Use inequalities # in the queries
to achieve the following:

 If a database D is of special form, then we are back to the
previous case.

 |If a database D is not of special form, then
Q,(D) Cgac Q,(D) necessarily.
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Step 2: Arbitrary Databases - Hint

1. Ensure that certain “facts” in special-form DBs appear

(else neither query is satisfied).

" This is done by adding a part of the canonical query of special-
form DBs as subgoals to each encoding query.

2. Modify special-form DBs by adding gadget tuples to TERM and
to VALUE.
= TERM: (X, X;,Ty), (X1, X0,T), (X0,X5,Ta), (T, T, To)
" VALUE: (Xi1), (X4,2), (X4,3), (X3,1), (X3,2), (T, To)

3. Add extra subgoals to Q,, so that if D is not of special form, then
Q. “benefits” more than Q, and, as a result, Q,(D) Cgag Qu(D).
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Step 2: Arbitrary Databases - Example

Pi(X1,X2) = X4 + X1Xp + X5?
Poly,(u;,u,,t) :- TERM(u,,u,,t), VALUE(u,,v,), VALUE(u,,V,)
the query encoding P, on special-form DBs.

" TERM: (X, X, T9), (X4,X5,To), (Xo,X5,T3), (T, Tos To)

" VALUE: (X4,1), (X4,2), (X4,3), (X3,1), (X2,2), (T, To)

Q, :- Poly,(uy,us,t)
Q, :- Poly,(uy, Uy, t), Poly,(wy, Wy, W), W# T,, W # T,, w# T,

Fact:
= |f DB is of special form, then Q, gets no advantage, because
w — Ty, Wy = Ty, W, — T, is the only possible assignment.

= |f DB not of special form, say it has an extra fact (X,,X,,T’), then both Q;,
and Q, can use it equally.
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Step 2: Arbitrary Databases — Wrap-up

« Additional tricks are needed for the full construction.

 Full construction uses seven different control gadgets.

— Additional complications when we encode
coefficients.

— Inequalities # are used in both queries.

* Number of inequalities # depends on size of special-form
DBs, not counting the facts in VALUE table.

— Hence, depends on degree of polynomials, # of
variables.

— It is a huge constant (about 599).



