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Generalizing Distributions

We have already seen an interplay between probabilistic and possibilistic notions.
We now put this in a more general setting.

Recall firstly that a probability distribution of finite support on a set X can be
specified as a function

d : X - R≥0
where R≥0 is the set of non-negative reals, satisfying the normalization condition∑

x∈X

d(x) = 1.

This guarantees that the range of the function lies within the unit interval [0, 1].

The finite support condition means that d is zero on all but a finite subset of X .
The probability assigned to an event E ⊆ X is then given by

d(E ) =
∑
x∈E

d(x).
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Generalization: Semirings

This is easily generalized by replacing R≥0 by an arbitrary commutative semir-
ing, which is an algebraic structure (R,+, 0, ·, 1), where (R,+, 0) and (R, ·, 1) are
commutative monoids satisfying the distributive law:

a · (b + c) = a · b + a · c .

Examples include the non-negative reals R≥0 with the usual addition and multipli-
cation, and the booleans B = {0, 1} with disjunction and conjunction playing the
rôles of addition and multiplication respectively.

There is also the example of signed measures, giving by taking the reals R.

We can now define a functorDR of R-distributions, parameterized by a commutative
semiring R. Given a set X , DR(X ) is the set of R-distributions of finite support. The
functorial action is defined exactly as for the probabilistic case, as the push-forward
of a measure. If f : X → Y , DR(f ) : DR(X )→ DR(Y ):

DR(f )(d)(U) = d(f −1(U))
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rôles of addition and multiplication respectively.

There is also the example of signed measures, giving by taking the reals R.

We can now define a functorDR of R-distributions, parameterized by a commutative
semiring R. Given a set X , DR(X ) is the set of R-distributions of finite support. The
functorial action is defined exactly as for the probabilistic case, as the push-forward
of a measure. If f : X → Y , DR(f ) : DR(X )→ DR(Y ):

DR(f )(d)(U) = d(f −1(U))

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture V: Mere Possibilities 3 / 44



The Possibilistic Collapse

In the boolean case, B-distributions on X correspond to non-empty finite subsets
of X . In this boolean case, we have a notion of possibilistic contextuality, where
we have replaced probabilities by boolean values, corresponding to possible or im-
possible.

Note that there is a homomorphism of semirings from R≥0 to B, which sends
positive probabilities to 1 (possible), and 0 to 0 (impossible). This lifts to a map
on distributions, which sends a probability distribution to its support. This in turn
sends probabilistic empirical models {dC}C∈M to possibilstic empirical models.

We refer to this induced map as the possibilistic collapse.
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Generalizing Empirical Models

Given a measurement scenario (X ,M,O), and a semiring R, we have the notion
of a compatible family of R-distributions {eC}C∈M, where eC ∈ DR(OC ).

We will write EM(Σ,R) for the set of empirical models over the scenario Σ and the
semiring R.

We refer to probabilistic empirical models for R = R≥0, and possibilistic em-
pirical models for R = B.

All the notions relating to contextuality, global sections etc. work in the same way
as before, across this broader variety of situations.
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The contextuality hierarchy revisited

A homomorphism of semirings h : R - S induces a natural transformation h̄
from the presheaf of R-valued distributions to the presheaf of S-valued distributions.

In particular, if h : R≥0 - B is the unique semiring homomorphism from the
positive reals to the booleans, then h̄ is the possibilistic collapse.

Given a global section dg for an empirical model e ∈ EM(Σ,R), it is easy to see
that h̄(dg ) is a global section for h̄(e). Thus we have the following result.

Proposition

If h̄(e) is contextual, then so is e. In particular, if the possibilistic collapse of a
probabilistic empirical model e is contextual, then e is contextual. The converse is
not true.
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Relational databases

Viewed in this generality, these notions can be seen to arise in a wide range of
situations in classical computer science.

In particular, as we shall now see, there is an isomorphism between the formal
description we have given for the quantum notions of non-locality and contextuality,
and basic definitions and concepts in relational database theory.

Samson Abramsky, ‘Relational databases and Bell’s theorem’, In In Search of El-
egance in the Theory and Practice of Computation: Essays Dedicated to Peter
Buneman, Springer 2013.

branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53

Hanover 10992-35671 Leibniz e11,245.75

. . . . . . . . . . . .
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From possibility models to databases

Consider again the Hardy model:

(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1 1 1 1

(a1, b2) 0 1 1 1

(a2, b1) 0 1 1 1

(a2, b2) 1 1 1 0

Change of perspective:

a1, a2, b1, b2 attributes

0, 1 data values

joint outcomes of measurements tuples
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The Hardy model as a relational database
The four rows of the model turn into four relation tables:

a1 b1

0 0

0 1

1 0

1 1

a1 b2

0 1

1 0

1 1

a2 b1

0 1

1 0

1 1

a2 b2

0 0

1 0

0 1

What is the DB property corresponding to the presence of non-locality/contextuality
in the Hardy table?

There is no universal relation: no table

a1 a2 b1 b2

...
...

...
...

whose projections onto {ai , bi}, i = 1, 2, yield the above four tables.
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A dictionary

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table compatible set of measurements

database schema measurement cover

tuple local section (joint outcome)

relation/set of tuples boolean distribution on joint outcomes

universal relation instance global section/hidden variable model

acyclicity Vorob’ev condition

We can also consider probabilistic databases and other generalisations; cf. prove-
nance semirings.
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The no-signalling polytope

Fix a measurement scenario 〈X ,O,M〉.
N : set of probabilistic empirical models.

convex set: convex combination (done componentwise)

(re + (1− r)e′)C := reC + (1− r)e′C

gives another empirical model.

explicitly represent models as points in RN , with N =
∑

C∈M |C |.
N is a polytope: defined by a finite number of linear constraints.
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The structure of the no-signalling polytope

NS: set of probabilistic empirical models

F : the face lattice of this polytope (vertices, edges, . . . )

S: possibilistic models of the form poss(e) for some e ∈ NS

ordered contextwise by support

Then
F ∼= S⊥
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In fact, the result applies to a much wider class of polytopes.

NS is defined by constraints:

Non-negativity;

Linear equations: viz. normalisation and no-signalling.

In geometric terms: NS = H≥0 ∩ Aff (NS)
where Aff (NS) is the affine subspace generated by NS,
and H≥0 = {v : v ≥ 0}.

For any P is standard form, there is an order-isomorphism between:

F(P), the face lattice of P.

S(P), set of “supports” of points in P, ordered by inclusion.
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Polytopes

A V-polytope is the convex hull Conv(S) of a finite set of points S ⊆ Rn.

An H-polytope is a bounded intersection of a finite set of closed half-spaces
in Rn.

{x : a · x ≥ b} for some a ∈ Rn, b ∈ R.

Fundamental Theorem of Polytopes: the two notions coincide.
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Face lattice

a · x ≥ b is valid for P if it is satisfied by every x ∈ P.

A valid inequality defines a face F of P:

F := {x ∈ P : a · x = b}.

F(P): the set of faces of P; F+(P): the set of non-empty faces.

F(P) is partially ordered by set inclusion.

It is a finite lattice.

It is atomistic, coatomistic, and graded.

Meets in F(P) are given by intersection of faces, joins defined indirectly.

Called the face lattice of P, aka the combinatorial type of P.
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Relative interior

Relative interior of a set S :

relint (S) = {x ∈ S : ∃ε > 0. Aff (S) ∩ Bε(x) ⊆ S}

For a convex set:

relint (S) = {x ∈ S : ∀y ∈ S. ∃ε > 0. (1 + ε)x− εy ∈ S}

Intuitively: a point x is in the relative interior if the line segment [y, x] from any
point y of S in to x can be extended beyond x while remaining in S .
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Carrier face

Every polytope P can be written as the disjoint union of the relative interiors of its
non-empty faces:

P =
⊔

F∈F+(P)

relintF .

This means that for any polytope P we can define a map

carr : P - F+(P)

which assigns to each point x of P its carrier face — the unique face F such that
x ∈ relintF .
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Supports

Polytope P in standard form: P = H≥0 ∩ Aff (P).

Define a map supp : H≥0 - {0, 1}n:

(suppx)i =

 0, xi = 0

1, xi > 0

S(P) := {suppx : x ∈ P}, ordered componentwise.

Join of u, v is componentwise boolean disjunction:
(u ∨ v)i := ui ∨ vi .

For x, y ∈ P and 0 < λ < 1, supp(λx + (1− λ)y) = suppx ∨ suppy .

So S(P)⊥ is a finite lattice.
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P

F+(P)
��

ca
rr

S(P)

supp

--

carr x ⊆ carr y ⇔ suppx ≤ suppy
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For x in P, define a vector xσ in Rn: xσi =

{
0, xi > 0

1, xi = 0
.

Clearly, xσ · z ≥ 0 is valid for all z ∈ P, and defines a face

Fx = {z ∈ P : xσ · z = 0}
= {z ∈ P : suppz ≤ suppx} .

For all x in P, carr x = Fx.

Show that x ∈ relintFx:

Let z ∈ Fx.

Choose ε such that εz ≤ x.

v := (1 + ε)x− εz ≥ 0.

Hence, v ∈ Fx.
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Some consequences

Models are in the relative interior of the same face iff they have the same
support.

An empirical model has full support iff it is in the relative interior of the
no-signalling polytope. Consequently, any logically contextual model must lie
in a proper face of the polytope.

The vertices of the no-signalling polytope are exactly the probability models
with minimal support. Moreover, there is only one probability model for each
such minimal support.

Therefore, the extremal empirical models are exactly those models which are
completely and uniquely determined by their supports.

These vertices of the polytope can be written as the disjoint union of the
non-contextual, deterministic models – the vertices of the polytope of
classical models – and the strongly contextual models with minimal support.
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But . . .

Note the mention of support!

We still start from probabilistic models and take their supports.

Can we characterise the combinatorial type of NS using only possibilistic
notions?
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Recall that empirical models are families of consistent distributions.

These can be defined over any commutative semiring R.

R≥0 gives probabilistic models.

B gives possibilistic models.

Using the (unique) semiring homomorphism R≥0 −→ B, we have a map

poss : NSR≥0
−→ NSB

The support lattice S(NSR≥0
) is the image of this map.

Can we give an intrinsic characterisation of the image of the possibilistic
collapse map, using only possibilistic notions?
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S(NSR≥0
) 6= NSB

i.e. there exist possibilistic empirical models that are not the support of any (prob-
abilistic) empirical model (Abramsky, 2012).

A B 0 0 0 1 1 0 1 1

a1 b1 1 0 0 1

a1 b2 1 1 0 1

a2 b1 1 0 0 1

a2 b2 1 0 0 1
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A B 0 0 0 1 1 0 1 1

a1 b1 c 0 0 c ′

a1 b2 d g 0 d ′

a2 b1 e 0 0 e′
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The requirement that each variable be strictly positive is essential in this
argument.

A sensible question would be: given a possibilistic empirical model, is there
always a (probabilistic) empirical model whose support is at most the original
one?

That is, are minimal possibilistic models always realisable as supports?

Also, NO!
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X = {A,B,C ,D}
M = {{A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {C ,D}}
O = {0, 1, 2}

Possible assignments:

AB 7→ 00, 10, 21

a b c

AC 7→ 00, 11, 21

d e f

AD 7→ 01, 10, 21

k l m

BC 7→ 00, 11

g h

BD 7→ 00, 11

i j

CD 7→ 01, 10

n oSamson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture V: Mere Possibilities 27 / 44



•A

• B
•C

• D

•
•
•

•
••

•

•
•
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AB 7→ 00, 10, 21

a b c

AC 7→ 00, 11, 21

d e f

AD 7→ 01, 10, 21

k l m

BC 7→ 00, 11

g h

BD 7→ 00, 11

i j

CD 7→ 01, 10

n o

a = k , b = l , g = i , h = j , c = n, d = k , e = l , f = m

c = h, h = o, g = n, i = o, j = n, c = j , l = o, d = n.
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AB 7→ 00, 10, 21

a b c

AC 7→ 00, 11, 21

d e f

AD 7→ 01, 10, 21

k l m

BC 7→ 00, 11

g h

BD 7→ 00, 11

i j

CD 7→ 01, 10

n o

All variables must be equated.
Minimality: set any variable to zero, then all must be zero.
Only remaining non-trivial equation is a = a + a.
No non-zero, real solution!
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A Bell-type example

XBell = {A1,B1,C1,D1,A2,B2,C2,D2}
MBell = {A1,B1,C1,D1} × {A2,B2,C2,D2}

O = {0, 1, 2}

Possible sections:

A1A2 7→ 00, 11, 22

B1B2, C1C2, D1D2 7→ 00, 11

A1B2, A2B1 7→ 00, 10, 21

A1C2, A2C1 7→ 00, 11, 21

A1D2, A2D1 7→ 01, 10, 21

B1C2, B2C1 7→ 00, 11

B1D2, B2D1 7→ 00, 11

C1D2, C2D1 7→ 01, 10
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A Bell-type example

•
A1

•
B1

•
C1

•
D1

•A2 •B2 • C2 • D2

•
•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
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Still an open question

Can we give an intrinsic characterization of the image of the possibilistic
collapse map, using only possibilistic notions?
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The Kochen-Specker Theorem

The Kochen-Specker theorem (1967) offers a state-independent proof of strong
contextuality in QM.

Our previous arguments for quantum realizability of contextual models have hinged
on using particular quantum states.

The Kochen-Specker argument rests on properties of certain families of measure-
ments which hold for any quantum state.

A trade-off: Bell’s theorem has weaker conclusions, but also weaker assumptions.
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The Kochen-Specker Property

We fix the set of outcomes to be O = {0, 1}.

Thus measurement scenarios will be determined simply by hypergraphs (X ,U).

Given C ∈ U, we say that s ∈ OC satisfies the KS property if s(x) = 1 for exactly
one x ∈ C .

The Kochen-Specker model over (X ,U) is defined by setting dC , for each C ∈ U,
to be the set of all s ∈ OC which satisfy the KS property.

Note that the model is uniquely determined once we have given (X ,U).

Note that, if we regard the elements of X as propositional variables, we can think
of s ∈ OC as a truth-value assignment.

Then the KS property for an assignment s is equivalent to s satisfying the following
formula:

ONE(C ) :=
∨
x∈C

(x ∧
∧

x′∈C\{x}

¬x ′)
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KS Constructions

A KS construction is a KS model (X ,U) which is strongly contextual.

Explicitly, this is equivalent to saying that the formula∧
C∈U

ONE(C )

is unsatisfiable.

N.B. Generalization to arbitrary O, unsatisfiability of a CSP.
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A Kochen-Specker construction

This uses

A set X of 18 variables, {A, . . . ,O}

A measurement cover U = {U1, . . . ,U9}, where the columns Ui are the sets
in the cover:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

Is this a K-S construction?
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A Combinatorial Condition

For each x ∈ X , we define

U(x) := {C ∈ U : x ∈ C}.

Proposition (SA, A. Brandenburger)
If the Kochen-Specker model on (X ,U) is non-contextual, then every common
divisor of {|U(x)| : x ∈ X} must divide |U|. 2

Applying this to the above example, we note that the cover M has 9 elements,
while each element of X appears in two members of M.

Thus the Kochen-Specker model on (X ,M) is contextual.

Subsumed by our cohomology results.
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Quantum Representations

What do these combinatorial questions have to do with quantum mechanics?

A contextual Kochen-Specker model (X ,U) gives rise to a quantum mechanical
witness of contextuality whenever:

We can label X with unit vectors in Rn, for some fixed n, such that

U consists of those subsets C of X which form orthonormal bases of Rn

The point of our previous example is that we can label the 18 elements of X with
vectors in R4 such that the four-element subsets in M are orthogonal.

This yields one of the most economical known examples of a KS construction.

By contrast, the Specker triangle is not quantum realizable.
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From vectors to observables

Given such a family of vectors, we can construct observables corresponding to each
compatible family where the outcomes encode the eigenvectors.

This means that for any state, the result of measuring that state with this observable
must always yield an outcome satisfying the KS property.

Hence we get a state-independent proof of strong contextuality in QM.
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How many vectors?

There is particular interest in obtaining KS constructions in dimension 3 - the
smallest possible.

The original construction by Kochen and Specker used 117 vectors!

The current record is 31 (Peres).

Computational work by Arends and Ouaknine established a lower bound of 18,
recently improved to 22 by Westerbaan and Uijlen.
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Contextual Semantics

Why do such similar structures arise in such apparently different settings?

The phenomenon of contextuality is pervasive. Once we start looking for it, we can
find it everywhere!
Physics, computation, logic, natural language, . . . biology, economics, . . .

The Contextual semantics hypothesis: we can find common mathematical struc-
ture in all these diverse manifestations, and develop a widely applicable theory.

More than a hypothesis! Already extensive results in

Quantum information and foundations: hierarchy of contextuality, logical
characterisation of Bell inequalities, classification of multipartite entangled
states, cohomological characterisation of contextuality, structural explanation
of macroscopic locality, . . .

And beyond: connections with databases, robust refinement of the constraint
satisfaction paradigm, application of contextual semantics to natural language
semantics, connections with team semantics in Dependence logics, . . .

For an accessible overview of Contextual Semantics, see the article in the Logic in
Computer Science Column, Bulletin of EATCS No. 113, June 2014 (and arXiv).
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