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Empirical Data (e.g. CHSH)
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Measurement Scenarios: CHSH
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A measurement scenario is a triple 〈X ,M ,O〉 where:

X a finite set of measurements — e.g.

X = {a,a′,b,b′}

M the (maximal) contexts — e.g.

M = {{a,b}, {a,b′}, {a′,b}, {a′,b′}}

O a finite set — e.g.
O = {0,1}
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Measurement Scenarios: ‘Triangle’
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Measurement Scenarios: 18-vector KS

A set of 18 variables: X = {A, . . . ,O}

A set of outcomes: O = {0,1}

A measurement cover: M = {C1, . . . ,C9}
whose contexts Ci correspond to the columns in the following table:

C1 C2 C3 C4 C5 C6 C7 C8 C9

A A H H B I P P Q
B E I K E K Q R R
C F C G M N D F M
D G J L N O J L O



Empirical Models
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Fix a measurement scenario 〈X ,M ,O〉

Empirical model: family {eC}C∈M where each eC ∈ Prob(OC )

Distribution for each context:

e{a,b} = prob(o1,o2|a,b), . . . , e{a′,b′} = prob(o1,o2|a′,b′)

‘Local’ consistency:

prob(o1|a,b) = prob(o1|a,b′) = prob(o1|a), etc.

NO-SIGNALLING
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(Contextuality rules out deterministic HVs; non-locality is a special case)
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Strong Contextuality

Strong Contextuality:
no event can be extended to a global
assignment.

E.g. K–S models, GHZ, the PR box:
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The Contextual Fraction

Proposition
Every empirical model admits a convex decomposition

e = λeNC + (1−λ )eSC

into a non-contextual and a strongly contextual model. The maximum value λ for
such decompositions, which is attained, is the non-contextual fraction of e, NC(e).

Contextual fraction: CF(e) = 1−NC(e)

CF(e) ∈ [0,1]
e is non-contextual iff CF(e) = 0
e is strongly contextual iff CF(e) = 1
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Computing the Contextual Fraction

Given a measurement scenario 〈X ,M ,O〉, the incidence matrix M has
rows indexed by 〈C ,s〉, C ∈M , s ∈ OC

columns indexed by global assignments g ∈ OX

M[〈C ,s〉,g ] :=

{
1 if g |C = s

0 otherwise
.

The columns of the matrix correspond to the deterministic NCHV models. Every
NCHV model is equivalent to a mixture of deterministic models.

A probability distribution on (i.e. mixture of) deterministic NCHV models is given
by a column vector c ; while an empirical model over the scenario can be flattened
into a row vector ve ∈ Rm, e.g.

ve = {1/2,0,0,1/2, 3/8,1/8,1/8,3/8, 3/8,1/8,1/8,3/8, 1/8,3/8,3/8,1/8}
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(Non-)Contextual Fraction via Linear Programming

Checking contextuality of e corresponds to solving

Find d ∈ Rn

such that Md = ve
and d ≥ 0

Computing the non-contextual fraction corresponds to solving the following linear
program:

Find c ∈ Rn

maximising 1 ·c
subject to Mc ≤ ve
and c ≥ 0
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Bell Inequality Violations



Generalised Bell Inequalities

An inequality for a scenario 〈X ,M ,O〉 is given by:
A set of coefficients α = {α(C ,s)}C∈M ,s∈OC

A bound R

For a model e,
Bα(e) ≤ R ,

where
Bα(e) := ∑

C∈M ,s∈E (C)

α(C ,s)eC (s)

Wlog we can take R non-negative (in fact, we can take R = 0)

Bell inequality if it is satisfied by every NC model
Bell inequality is tight if it is saturated by some NC model
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Violation of a Bell inequality

Bell inequality −→ a bound for Bα(e) amongst NC models

For general (no-signalling) models, Bα(e) is limited only by

‖α‖ := ∑
C∈M

max
{

α(C ,s)
∣∣ s ∈ OC

}

The normalised violation of a Bell inequality 〈α,R〉 by e is

max{0,Bα(e)−R}
‖α‖−R

∈ [0,1]
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Contextual Fraction & Bell Violations

Proposition
Let e be an empirical model

Normalised violation by e of any Bell inequality is at most CF(e)

There exists a Bell inequality for which this is attained

This Bell inequality is tight at “the” non-contextual model eNC

e = NC(e)eNC +CF(e)eSC



Contextual Fraction & Bell Violations

Quantifying Contextuality LP:

Find c ∈ Rn

maximising 1 ·c
subject to Mc ≤ ve
and c ≥ 0

e = NC(e)eNC +CF(e)eSC

NC

C

SC

Qve

Dual LP:

Find y ∈ Rm

minimising y ·ve
subject to MT y ≥ 1
and y ≥ 0

ααα := 1−|M |y

Find ααα ∈ Rm

maximising ααα ·ve
subject to MT

ααα≤0
and ααα ≤ 1

computes tight Bell inequality (separating
hyperplane)
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Contextual Fraction (Recap)

Fully general: applicable to any measurement scenario

Normalised: allowing comparison across scenarios

0 for non-contextuality . . . 1 for strong contextuality

Computable using linear programming

Precise relationship to violations of Bell inequalities

What else?

Computational tools (Mathematica package) implementing all this

Resource Theory: Monotonicity properties wrt operations that don’t
introduce contextuality
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2 Calculate the incidence matrix for any measurement scenario

3 Quantify the degree of contextuality of any empirical model using the LP
method

4 Find the Bell inequality using the dual LP
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1. Equatorial measurements on
∣∣φ+

〉
two-qubit Bell state |φ+〉= |↑↑〉+|↓↓〉√

2

Equatorial measurements at angles (φ1,φ2)

e.g. (φ1,φ2) = (0,π/3) gives Bell–CHSH model

A B (0,0) (0,1) (1,0) (1,1)
a1 b1 1/2 0 0 1/2
a1 b2 3/8 1/8 1/8 3/8
a2 b1 3/8 1/8 1/8 3/8
a2 b2 1/8 3/8 3/8 1/8

|0〉

|1〉

φ1 φ2

θ = π

2

φ = 0
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1. Equatorial measurements on
∣∣φ+

〉

Plot CF(e) against measurement angles (φ1,φ2)

Maxima:

{φ1,φ2} ∈
{{

π

8
,
5π

8

}
,

{
7π

8
,
3π

8

}}
A B (0,0) (0,1) (1,0) (1,1)
a1 b1 p (1/2−p) (1/2−p) p
a1 b2 (1/2−p) p p (1/2−p)
a2 b1 (1/2−p) p p (1/2−p)
a2 b2 (1/2−p) p p (1/2−p)

p =

√
2+2
8

Note that these achieve Tsirelson violation of the CHSH inequality.
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2. Equatorial measurements on GHZ(n)

n-partite GHZ states, given for n > 2 by:

∣∣ψGHZ(n)
〉
=
|↑〉⊗n+ |↓〉⊗n√

2

For n > 2, Mermin considered Pauli X or Y measurements to provide logical
proofs of non-locality

Again, equatorial measurements on the Bloch sphere
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2. Equatorial measurements on GHZ(n)

(a) (b)

Figure : CF(e) for equatorial measurements at φ1 and φ2 on each qubit of
∣∣∣ψGHZ(n)

〉
with: (a) n = 3; (b) n = 4.



2. Equatorial measurements on GHZ(n)
n = 3: minima of the plot reach 0 (strong contextuality) at

{φ1,φ2} ∈
{{

π

2
,0
}
,

{
2π

3
,

π

6

}
,

{
5π

6
,

π

3

}}

(φ1,φ2) = (π/2,0) corresponds to the Pauli Y and X , yielding the usual GHZ
model. Other minima: alternative sets of measurements on the GHZ state that still
lead to the familiar parity argument

n = 4: minima of 0 occur at

{φ1,φ2} ∈
{{

π

2
,0
}
,

{
5π

8
,

π

8

}
,

{
3π

4
,

π

4

}
,

{
7π

8
,
3π

8

}}
.

General n: local equatorial measurements at

(φ1,φ2) ∈
{{

(n+k)π

2n
,
k π

2n

} ∣∣∣∣ 0≤ k < n

}
on GHZ(n) state give rise to strong contextuality
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Towards a Resource Theory of
Contextuality



Contextuality as a Resource

May be more than one useful measure of contextuality

What properties should a good measure satisfy?

Monotone wrt operations that do not introduce contextuality

Towards a resource theory, as for entanglement (e.g. LOCC), non-locality, . . .

Algebra of empirical models, towards a process calculus?
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Operations

relabelling
e : 〈X ,M ,O〉, α : (X ,M )∼= (X ′,M ′)  e[α] : 〈X ′,M ′,O〉

For C ∈M ,s : α(C)−→O, e[α]α(C)(s) := eC (s ◦α−1)

restriction
e : 〈X ,M ,O〉, (X ′,M ′)≤ (X ,M )  e �M ′ : 〈X ′,M ′,O〉

For C ′ ∈M ′,s : C ′ −→O, (e �M ′)C ′(s) := eC |C ′(s)
with any C ∈M s.t. C ′ ⊆ C

coarse-graining
e : 〈X ,M ,O〉, f : O −→ O ′  e/f : 〈X ,M ,O ′〉

For C ∈M,s : C −→O ′, (e/f )C (s) := ∑t : C−→O,f ◦t=s eC (t)
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Operations
mixing
e : 〈X ,M ,O〉, e ′ : 〈X ,M ,O〉,λ ∈ [0,1]  e+λ e ′ : 〈X ,M ,O〉

For C ∈M,s : C −→O ′,
(e+λ e ′)C (s) := λeC (s)+(1−λ )e ′C (s)

choice
e : 〈X ,M ,O〉, e ′ : 〈X ′,M ′,O〉  e&e ′ : 〈X tX ′,M tM ′,O〉

For C ∈M, (e&e ′)C := eC
For D ∈M ′, (e&e ′)D := e ′D

tensor
e : 〈X ,M ,O〉, e ′ : 〈X ′,M ′,O〉  e⊗ e ′ : 〈X tX ′,M ?M ′,O〉

M ?M ′ := {C tD | C ∈M ,D ∈M ′}
For C ∈M ,D ∈M ′,s = 〈s1,s2〉 : C tD −→O,

(e⊗ e ′)CtD〈s1,s2〉 := eC (s1)e
′
D(s2)
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(e⊗ e ′)CtD〈s1,s2〉 := eC (s1)e
′
D(s2)



Operations and the Contextual Fraction

relabelling
CF(e[α]) = CF(e)

restriction
CF(e � σ ′)≤ CF(e)

coarse-graining
CF(e/f )≤ CF (e)

mixing
CF(e+λ e ′)≤ λCF(e)+(1−λ )CF(e ′)

choice
CF(e&e ′) =max{CF(e),CF(e ′)}
NCF(e&e ′) =min{NCF(e),NCF(e ′)}

tensor (**)
CF(e1⊗ e2) =
CF(e1)+CF(e2)−CF(e1)CF(e2)
NCF(e1⊗ e ′2) = NCF(e1)NCF(e2)
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Quantifying Quantum Advantage

We want to use the contextual fraction to quantify advantage in various
information-processing tasks.

The general form for such results:
The greater the violation of the classical bound we want, the more

contextuality there has to be.

We shall look at one such result in terms of games. The class of games we will
consider are a (vast) generalization of XOR games (but can be generalized much
further). They subsume what are sometimes called “pseudo-telepathy games”.
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Games on Measurement Scenarios

Given a measurement scenario (X ,M ,O), a game is specified by winning
conditions WC ⊆ OC , for each context C ∈M .

An empirical model e = {eC} can be viewed as a strategy for this game. Given a
context C , chosen by Nature uniformly at random, it chooses an outcome
according to the distribution eC .

The success probability of e is given by

1
|M | ∑

C∈M
eC (WC )

The classical bound for the game is the maximum success probability for any
non-contextual strategy.
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Logical Bell inequalities give the classical bound

Say that a game {WC} is K -consistent if the maximum cardinality of a consistent
sub-family of {WC} is K .

A sub-family {WCi
} is consistent is there is an assignment v :

⋃
i Ci →O such that

v |Ci
∈WCi

for all i .

Theorem
The classical bound for a K -consistent game is 1

|M |K .

A suitable measure of the non-classicality (or “hardness”) of a K -consistent game
G is µG := |M |−K .
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Relating the contextual fraction to hardness of a task

Theorem
Consider a game G , and a strategy (empirical model) e, with success probability
pS(e), and failure probability pF (e) := 1−pS(e). Then we have

µG −pF (e)

µG
≤ CF(e)

This says that for any game with a given level of difficulty µG , the higher we want
the success probability for a strategy e to be, the more contextual e has to be.
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An analogous result for quantum computation

A similar result can be proved for the measurement-based quantum computation
paradigm, refining a result by Robert Raussendorf:

Theorem
Given a boolean function f with a level of difficulty νf measured by how far it is
from being mod 2 linear, then

νf −pF (e)

νf
≤ CF(e)

Here pF (e) refers to the failure probability for e, viewed as a generalized MBQC,
to compute f .

These results are early steps towards developing a quantitative theory of
contextuality as a resource for exceeding classical bounds on information
processing tasks.
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Contextuality in the presence of signalling

Real experimental data (e.g. recent "loophole-free Bell tests" at Delft, NIST etc.)
will typically have signalling effects which need to be filtered out.

Also, non-quantum applications may well feature signalling.

Given a possibly signalling empirical model e (i.e. we are not assuming
compatibility), we can consider maximal convex decompositions

e = λeNS+(1−λ )eSS.

where eNS is no-signalling, and eSS is “strongly signalling”, i.e. with no
no-signalling fraction.

We write NS(e) for the maximum value of λ , which is attained.

Note that NS(e) = 1 if and only if e is no-signalling.
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Computing the No-Signalling Fraction

This can be computed by the following linear program:

Find w ∈ Rn

maximising
1
|M |

1 ·w

subject to Nw = 0
and w ≤ ve

and w ≥ 0 .

(1)

Here N is the No-Signalling matrix.
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The Tricolour

This leads us to a refined version of the contextual fraction, which takes possible
signalling in the empirical data into account.

CF(e) = NS(e) − NC(e).

Note that this agrees with our previous definition of the contextual fraction in the
no-signalling case.

This measure expresses how contextual e is as

how no-signalling it is minus how non-contextual it is

SS CF NC

NS︷ ︸︸ ︷
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Real Experimental Data

Recent loophole free Bell tests (Delft, NIST and Vienna)

Delft:
(0,0) (0,1) (1,0) (1,1)

(a,b) 23 3 4 23
(a,b′) 33 11 5 30
(a′,b) 22 10 6 24
(a′,b′) 4 20 21 6

NIST:
(0,0) (0,1) (1,0) (1,1)

(a,b) 6378 3289 3147 44336240
(a,b′) 6794 2825 23230 44311018
(a′,b) 6486 21358 2818 44302570
(a′,b′) 106 27562 30000 44274530



Real Experimental Data

Recent loophole free Bell tests (Delft, NIST and Vienna)

Delft:
(0,0) (0,1) (1,0) (1,1)

(a,b) 23 3 4 23
(a,b′) 33 11 5 30
(a′,b) 22 10 6 24
(a′,b′) 4 20 21 6

NIST:
(0,0) (0,1) (1,0) (1,1)

(a,b) 6378 3289 3147 44336240
(a,b′) 6794 2825 23230 44311018
(a′,b) 6486 21358 2818 44302570
(a′,b′) 106 27562 30000 44274530



Real Experimental Data

Recent loophole free Bell tests (Delft, NIST and Vienna)

Delft:
(0,0) (0,1) (1,0) (1,1)

(a,b) 23 3 4 23
(a,b′) 33 11 5 30
(a′,b) 22 10 6 24
(a′,b′) 4 20 21 6

NIST:
(0,0) (0,1) (1,0) (1,1)

(a,b) 6378 3289 3147 44336240
(a,b′) 6794 2825 23230 44311018
(a′,b) 6486 21358 2818 44302570
(a′,b′) 106 27562 30000 44274530



Real Experimental Data

Recent loophole free Bell tests (Delft, NIST and Vienna)

Delft:
(0,0) (0,1) (1,0) (1,1)

(a,b) 23 3 4 23
(a,b′) 33 11 5 30
(a′,b) 22 10 6 24
(a′,b′) 4 20 21 6

NIST:
(0,0) (0,1) (1,0) (1,1)

(a,b) 6378 3289 3147 44336240
(a,b′) 6794 2825 23230 44311018
(a′,b) 6486 21358 2818 44302570
(a′,b′) 106 27562 30000 44274530



No-signalling?

(0,0) (0,1) (1,0) (1,1)
(a,b) 23/53 3/53 4/53 23/53
(a,b′) 33/79 11/79 5/79 30/79
(a′,b) 22/31 10/31 6/31 24/31
(a′,b′) 4/51 20/51 21/51 6/51

Local data: distributions p(o1,o2|a,b), . . . , p(o1,o2|a′,b′)

Local consistency: p(o1|a,b) = p(o1|a,b′) = p(o1|a), etc.
NO-SIGNALLING

Experimental data does not perfectly satisfy no-signalling. . .
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Quantifying Signalling

e is no-signalling iff

Nve = 0

where

N[i , j ] :=


1 if sj ∈ OCi and sj |C ′i = ti

−1 if sj ∈ OC ′i and sj |Ci
= ti

0 otherwise

(〈t,C ,C ′〉i ) an enumeration of {〈t,C ,C ′〉 | t ∈ OC∩C ′ and (C ,C ′) ∈M 2}

(sj) an enumeration of {s | t ∈ OC and C ∈M 2}



Quantifying Signalling

e is no-signalling iff

Nve = 0

Otherwise we can obtain the no-signalling fraction with the LP

maximise 1 ·z
subject to Nz = 0
and z≤ ve
and z≥ 0



Quantifying Signalling & Contextuality

NC

C

SC

Q

ve

maximise 1 ·z
subject to Nz = 0
and z≤ ve
and z≥ 0

Setting µ = 1 ·z∗

e = µeNS+(1−µ)eSS

maximise 1 ·x
subject to Mx≤ veNS
and x≥ 0

Setting λ = 1 ·x∗

e = µλeNC+µ(1−λ )eSC+(1−µ)eSS
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Analysis of Real Data (Delft)

Decomposition of data:

eDelft ≈ 0.0664eSS + 0.4073eSC + 0.5263eNC

Quantum maximum (Tsirelson’s bound):
√
2−1≈ 0.4142

Ratio of signalling to genuine contextuality:

0.163
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Analysis of Real Data (NIST)

Decomposition of data:

eNIST ≈ 0.0000049eSS + 0.0000281eSC + 0.9999670eNC

Reported Bell violation:
0.0000116

(Different data?)

Ratio of signalling to genuine contextuality:

0.175
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Negative Probabilities

The basis for a measure based on negative probabilities is the following result.

Theorem (Abramsky and Brandenburger 2011)
If e is any compatible empirical model, there is a signed measure d : X → R with
∑x∈X d(x) = 1 such that d |C = eC for all C ∈M .

Thus if we used signed measures (“negative probabilities”) we can find a global
section for any compatible empirical model.

We now define a measure of how far it is necessary to deviate from a standard
probability distribution to get a global section.

NP(e) := min{(‖d‖−1)/2 | d is a signed global section for e}

Here ‖d‖= ∑x∈X |d(x)|, the `1-norm. We take d+−1, where d = d+−d−.
Clearly if e is non-contextual, NP(e) = 0.

Question: How does NP relate to CF?
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