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What Do ‘Observables’ Observe?

Surely objective properties of a physical system, which are independent of our
choice of which measurements to perform — of our measurement context.

More precisely, this would say that for each possible state of the system, there is a
function λ which for each measurement m specifies an outcome λ(m),
independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption
of a classical source.

However, this view is impossible to sustain in the light of our actual
observations of (micro)-physical reality.
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Hidden Variables: The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 3 / 31



The ‘Hardy Paradox’: Bell’s theorem without inequalities

Hardy models: those whose support satisfies

However, this would require the outcome (0, 0) for measurements (a2, b1) to be
possible, and this is precluded.

Thus Hardy models are contextual. They cannot be explained by a classical
source.
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Bundle Pictures

Logical Contextuality

Ignore precise probabilities

Events are possible or not

E.g. the Hardy model:

00 01 10 11

ab X X X X

ab′ × X X X

a′b × X X X

a′b′ X X X ×

•a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•
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Strong Contextuality

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box

Note this achieves the algebraic maximum of 4 for our logical Bell inequality.

In terms of the XOR game, it is a winning strategy.
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Bundle Pictures

Strong Contextuality

E.g. the PR box:

00 01 10 11

ab X × × X

ab′ X × × X

a′b X × × X

a′b′ × X X × •a
• b

• a′
•b′

•0

•1
•

•
1

• 0

• 1

•0

•
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Visualizing Contextuality

•a1
•
b1

• a2
•

b2

•0

•1
•

•
1

• 0

• 1

•0

•

•a1
•
b1

• a2
•

b2

•0

•1
•

•
1

• 0

• 1

•0

•

The Hardy table and the PR box as bundles

A hierarchy of degrees of contextuality:

Bell < Hardy < GHZ
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Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1 : S2 is true,

S2 : S3 is true,
...

SN−1 : SN is true,

SN : S1 is false.

For N = 1, this is the classic Liar sentence

S : S is false.

Following Cook, Walicki et al. we can model the situation by boolean equations:

x1 = x2, . . . , xn−1 = xn, xn = ¬x1

The “paradoxical” nature of the original statements is now captured by the
inconsistency of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which
occur in it:

{x1, x2} : x1 = x2

{x2, x3} : x2 = x3
...

{xn−1, xn} : xn−1 = xn

{xn, x1} : xn = ¬x1

Any subset of up to n − 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the
PR box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds
precisely to the attempt to find a univocal path in the bundle diagram.
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precisely to the attempt to find a univocal path in the bundle diagram.
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Paths to contradiction

•a1
•
b1

• a2
•

b2

•0

•1
•

•
1

• 0

• 1

•0

•

Suppose that we try to set a2 to 1. Following the path on the right leads to the
following local propagation of values:

a2 = 1 ; b1 = 1 ; a1 = 1 ; b2 = 1 ; a2 = 0

a2 = 0 ; b1 = 0 ; a1 = 0 ; b2 = 0 ; a2 = 1

We have discussed a specific case here, but the analysis can be generalised to a
large class of examples.
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The Robinson Consistency Theorem

A classic result:

Theorem (Robinson Joint Consistency Theorem)

Let Ti be a theory over the language Li , i = 1, 2. If there is no sentence φ in
L1 ∩ L2 with T1 ` φ and T2 ` ¬φ, then T1 ∪ T2 is consistent.

Thus this theorem says that two compatible theories can be glued together. In
this binary case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails.
That is, if we have three theories which are pairwise compatible, it need not be
the case that they can be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
“triangle”:

T1 = {x1 ←→ ¬x2}, T2 = {x2 ←→ ¬x3}, T3 = {x3 ←→ ¬x1}.

This example is well-known in the quantum contextuality literature as the
Specker triangle.
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Formalizing Contextuality: Measurement Scenarios
A measurement scenario is a triple (X ,M,O) where:

X is a set of variables which can be measured, observed or evaluated

M is a family of sets of variables, those which can be measured together.
These form the contexts.

O is a set of possible outcomes or values for the variables.

Example:

In our tables, the set of variables is X = {a, a′, b, b′}.
The measurement contexts are:

{{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}}

The outcomes are
O = {0, 1}

A joint outcome or event in a context C is s ∈ OC , e.g. s = {a 7→ 0, b 7→ 1}.
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A Kochen-Specker construction

This uses

A set X of 18 variables, {A, . . . ,O}

A measurement cover U = {U1, . . . ,U9}, where the columns Ui are the sets
in the cover:

U1 U2 U3 U4 U5 U6 U7 U8 U9

A A H H B I P P Q

B E I K E K Q R R

C F C G M N D F M

D G J L N O J L O

The original K-S construction used 117 variables!
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Empirical Models

Let (X ,M,O) be a measurement scenario. An empirical model for this scenario
is a family

{dC}C∈M
where dC ∈ Prob(OC ) for C ∈M.

In other words, the empirical model specifies a probability distribution over the
events in each context.

These distributions are the rows of our probability tables.
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Mathematical Structure of Probability Tables

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b 0 1/2 1/2 0

a′ b 3/8 1/8 1/8 3/8

a b′ 3/8 1/8 1/8 3/8

a′ b′ 3/8 1/8 1/8 3/8

The measurement contexts are

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

Each measurement has possible outcomes 0 or 1. The matrix entry at row (a′, b)
and column (0, 1) indicates the event

{a′ 7→ 0, b 7→ 1}.

Each row of the table specifies a probability distribution on events OC for a
given choice of measurements C .
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Gluing functional sections

sU

sV

U

V

U ∩ V O

If sU |U∩V = sV |U∩V , they can be glued to form

s : U ∪ V −→ O

such that s|U = sU and s|V = sV .
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The need for restriction

We would like to express the condition that an empirical model is compatible,
i.e. “locally consistent”.

We want to do this by saying that the distributions “agree on overlaps”. For all
C ,C ′ ∈M:

dC |C∩C ′ = dC ′ |C∩C ′ .

Cf. the usual notion of compatibility of a family of functions defined on subsets.

A formula for restriction of distributions: if C ′ ⊆ C , d ∈ Prob(OC ),
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Compatibility and No-Signalling

There is an important physical principle of No-Signalling:

Suppose that C = {a, b}, and C ′ = {a, b′}, where a is a variable measured
by an agent Alice, while b and b′ are variables measured by Bob, who may be
spacelike separated from Alice.

Then under relativistic constraints, Bob’s choice of measurement — b or b′

— should not be able to affect the distribution Alice observes on the
outcomes from her measurement of a.

This is captured by saying that the distribution on {a} = {a, b} ∩ {a, b′} is
the same whether we marginalize from the distribution eC , or the distribution
eC ′ .

This condition is generalized by compatibility – and this general form is
satisfied by quantum systems.
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No-Signalling for Alice-Bob Tables

Consider the following schematic representation of an Alice-Bob table:

A B (0, 0) (1, 0) (0, 1) (1, 1)

a b c d e f

a′ b g h i j

a b′ k l m n

a′ b′ o p q r

where we have labelled the entries with the letters c , . . . , r .

The no-signalling conditions for the non-empty intersections of contexts are given
by the following equations:

c + e = k + m, d + f = l + n, g + i = o + q, h + j = p + r

c + d = g + h, e + f = i + j , k + l = o + p, m + n = q + r

You can check that these conditions are satisfied by the Bell table.

Moreover, the PR box has a unique family of distributions which satisfy these
conditions.
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Contextuality defined

An empirical model {dC}C∈M on a measurement scenario (X ,M,O) is
non-contextual if there is a distribution d ∈ Prob(OX ) such that, for all C ∈M:

d |C = dC .

That is, we can glue all the local information together into a global consistent
description from which the local information can be recovered.

We call such a d a global section.

If no such global section exists, the empirical model is contextual.

The import of Bell’s theorem and similar results is that there are empirical models
arising from quantum mechanics which are contextual.
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Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



Classes of Empirical Models

There is a class of empirical models, for each measurement scenario (X ,M,O),
which are quantum realizable.

That is, we can find quantum states and local observables which generate the
family of distributions {dC}C∈M.

It turns out that all quantum realizable models are compatible.

Compatibility is in fact the general form of an important physical principle known
as No-Signalling, which ensures the consistency of quantum mechanics with
Special Relativity.

However, there are compatible (i.e. No-Signalling) empirical models which are not
quantum realizable.

We thus get a strict hierarchy of empirical models:

NC ⊂ QM ⊂ NS

Samson Abramsky (Department of Computer ScienceThe University of Oxford)Logic and Quantum InformationLecture II: The Topology of Paradox 22 / 31



The PR Box

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

The PR Box

This satisfies No-Signalling, so is consistent with SR, but it is not quantum
realisable.
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Empirical Models as Vectors

We can regard an empirical model {dC}C∈M as a vector

v = (vC ,s)C∈M,s∈OC , vC ,s := dC (s)

in a high-dimensional real vector space.

Note that, in a Bell-type scenario with n parties, k measurement choices at each
site, and ` possible outcomes for each measurement, the dimension is kn`n.

Note that empirical models over a given measurement scenario are closed under
convex combinations:

(µd + (1− µ)d ′)C (s) := µdC (s) + (1− µ)d ′C (s).

Moreover, convex combinations of compatible models are compatible.
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The Quantum Set

A subtle convex set sandwiched between two polytopes.

NC

C
LC

SC

Q

Key question: find compelling principles to explain why Nature picks out the
quantum set.
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The Support of a Model

The support of an empirical model {dC}C∈M is defined as follows. For each
C ∈M, we define S(C ) ⊆ OC :

S(C ) := {s ∈ OC | dC (s) 6= 0}

If the empirical model is compatible, so is the support in the following sense: for
all C ,C ′ ∈M

{s|C∩C ′ : s ∈ S(C )} = {s ′|C∩C ′ : s ′ ∈ S(C ′)}

Thus the support satisfies No-Signalling at the level of possibilities.

This is equivalent to saying that, for all C ⊆ C ′, the restriction map

ρC
′

C : S(C ′) - S(C ) :: s 7→ s|C

is surjective.
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Degrees of contextuality

Firstly, we say that a global assignment t ∈ OX is consistent with the support
of a model if for all C ′ ∈M, t|C ′ is in the support at C ′.

An empirical model is

logically contextual if some possible joint outcome s ∈ OC in the support is
not accounted for by any global assignment t ∈ OX which is consistent with
the support of the model. That is, for no such t do we have t|C = s.

Geometrically, this is saying that some local section cannot be extended to a
global one. Equivalently, that the support of the model cannot be covered by
the consistent global assignments.

It is strongly contextual if its support has no global section; that is, there
is no consistent global assignment.

This says that no possible joint outcome is accounted for by any global
section!

Obviously, strong contextuality implies logical contextuality.
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A Hierarchy

We can distinguish three degrees of contextuality among models:

Strong contextuality implies logical contextuality, which implies (probabilistic)
contextuality.

The Bell model is contextual, but not logically contextual.

The Hardy model is logically contextual, but not strongly contextual.

The PR box is strongly contextual.

Thus we have a strict hierarchy

probabilistic contextuality < logical contextuality < strong contextuality

The model arising from the GHZ quantum state (with 3 or more parties) with X ,
Y measurements at each site is strongly contextual.

Thus in terms of well-known quantum examples, we have

Bell < Hardy < GHZ
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Degrees of contextuality for quantum states

We can lift these concepts to define a novel way of classifying quantum states in
terms of their degree of contextuality.

In particular, we shall focus on n-qubit pure states. If we fix local observables for
each party, such a state gives rise to a probability model as above.

We can lift the properties of models to states.

We say that a state is strongly contextual if for some choice of local
observables for each party, the resulting empirical model is strongly
contextual.

We can similarly define logical contextuality for states; we say that a state is
logically contextual if for some choice of local observables, the resulting
empirical model is logically contextual; while the state is not strongly
contextual.

Finally, a state is weakly contextual if it is contextual, but neither of the
previous two cases apply.
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The Characterization Problem

This gives rise to a natural and challenging problem:

Problem
Characterize the multipartite states in terms of their maximum degree of
contextuality.

We believe that an answer to this problem will shed considerable light on the
structure of multipartite states, not least because it will necessitate solving the
following task:

Given a multipartite state, find local observables which witness its
highest degree of contextuality.
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A Recent Result and a Question

SA, Carmen Constantin and Shenggang Ying. Hardy is (almost) everywhere.
Information and Computation 2016. arXiv:1506.01365

This paper provides an algorithm which given an n-qubit entangled state,
constructs n + 2 local observables leading to a logically contextual model.

Proof of correctness is non-trivial.

This leads us on to the main question which is the natural next challenge:

For which quantum states can we find local observables which give rise to a
strongly contextual empirical model?

This question remains open, and appears difficult!
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