Finite and Algorithmic Model Theory II: Automata-Based Methods

Anuj Dawar

University of Cambridge Computer Laboratory

Simons Institute, 30 August 2016

Review

We aim to develop tools for studying the expressive power of logic in *finite structures*.

The relation of *elementary equivalence* coincides with isomorphism; every property of finite structures is definable by a *first-order theory*.

To study definability in the finite we *stratify* the relation of elementary equivalence by

- quantifier rank;
- number of variables.

These stratified equivalences can be characterized by means of *Spoiler-Duplicator* games.

Review

We used the games to show that some properties are not definable by first-order sentences:

- Connectivity;
- 2-colourability.

And some cannot even be axiomatized with a finite number of variables:

- Evenness;
- Perfect matching;
- Hamiltonicity

The Hanf locality theorem shows that structures that look *locally* the same are not distinguished by first-order formulas.

Hanf Locality Theorem

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius $r (\mathbb{A} \simeq_r \mathbb{B})$ if, there is a bijection $f : A \to B$ such that

 $\operatorname{Nbd}_r^{\mathbb{A}}(a) \cong \operatorname{Nbd}_r^{\mathbb{B}}(f(a)).$

Theorem (Hanf)

For every vocabulary σ and every p there is $r \leq 3^p$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_r \mathbb{B}$ then $\mathbb{A} \equiv_p \mathbb{B}$.

In other words, if $r \geq 3^p$, the equivalence relation \simeq_r is a refinement of \equiv_p .

Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the proofs of undefinability of

- connectivity;
- 2-colourability

A simple illustration can suffice.

Connectivity

This illustrates the undefinability of *connectivity* and *2-colourability*.

Acyclicity

A figure illustrating that *acyclicity* is not first-order definable.

Planarity

A figure illustrating that *planarity* is not first-order definable.

Gaifman's Theorem

We write $\delta(x, y) > d$ for the formula of FO that says that the distance between x and y is greater than d. We write $\psi^N(x)$ to denote the formula obtained from $\psi(x)$ by relativising all quantifiers to the set N.

A basic local sentence is a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \psi^{\mathrm{Nbd}_r(x_i)}(x_i) \right)$$

Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

Composing Strategies

For structures A and B, the *disjoint sum* of A and B, denoted $A \oplus B$ is the structure whose universe is the *disjoint union* of the universes of A and B and for each relation R

 $R^{\mathbb{A} \oplus \mathbb{B}} = R^{\mathbb{A}} \cup R^{\mathbb{B}}$

If $\mathbb{A}_1 \equiv_p \mathbb{A}_2$ and $\mathbb{B}_1 \equiv_p \mathbb{B}_2$ then

 $\mathbb{A}_1 \oplus \mathbb{B}_1 \quad \equiv_p \quad \mathbb{A}_2 \oplus \mathbb{B}_2$

Similarly for \equiv^k .

These are proved by a simple composition of *Duplicator*'s winning strategies.

Ordered Sum

Suppose A and B are structures in a vocabulary τ that includes a binary relation symbol \leq interpreted as a linear order of the universe.

Define the ordered sum $\mathbb{A} \oplus_{<} \mathbb{B}$ of \mathbb{A} and \mathbb{B} to be τ -structure where

- the universe is the disjoint union of the universes of A and B;
- $a \leq b$ if either $a \leq^{\mathbb{A}} b$ or $a \leq^{\mathbb{B}} b$ or $a \in \mathbb{A}$ and $b \in \mathbb{B}$;
- every other relation symbol R is interpreted as the union of $R^{\mathbb{A}}$ and $R^{\mathbb{B}}.$

Again, a simple game argument shows that:

If $\mathbb{A}_1 \equiv_p \mathbb{A}_2$ and $\mathbb{B}_1 \equiv_p \mathbb{B}_2$ then

 $\mathbb{A}_1 \oplus_{\leq} \mathbb{B}_1 \quad \equiv_p \quad \mathbb{A}_2 \oplus_{\leq} \mathbb{B}_2$

Similarly for \equiv^k .

Disjoint Sum over X

Suppose A and B are structures in a vocabulary τ with universe A and B respectively and $A \cap B = X$.

Define $\mathbb{A} \oplus_X \mathbb{B}$, the sum of \mathbb{A} and \mathbb{B} over X to be the structure with universe $A \cup B$ and every $R \in \tau$ interpreted by $R^{\mathbb{A}} \cup R^{\mathbb{B}}$

Writing (\mathbb{A}, X) for the structure \mathbb{A} expanded with constants for each element of X, we have:

If $(\mathbb{A}_1, X) \equiv_p (\mathbb{A}_2, Y)$ and $(\mathbb{B}_1, X) \equiv_p (\mathbb{B}_2, Y)$ then

 $(\mathbb{A}_1 \oplus_X \mathbb{B}_1, X) \equiv_p (\mathbb{A}_2 \oplus_Y \mathbb{B}_2, Y)$

Second-Order Logic

Second-Order Logic extends first-order logic with quantification over *relations*.

$\exists X\,\varphi$

where X has arity m is true in a structure A if, and only if, A can be expanded by an m-ary relation interpreting X to satisfy φ .

ESO or Σ_1^1 —*existential second-order logic* consists of those formulas of second-order logic of the form:

 $\exists X_1 \cdots \exists X_k \varphi$

where φ is a first-order formula.

Monadic Second-Order Logic

MSO consists of those second order formulas in which all relational variables are *unary*.

That is, we allow quantification over sets of elements, but not other relations.

Any MSO formula can be put in prenex normal form with second-order quantifiers preceding first order ones.

Mon. Σ_1^1 — MSO formulas with only *existential* second-order quantifiers in prenex normal form.

Mon. Π_1^1 — MSO formulas with only *universal* second-order quantifiers in prenex normal form.

Example - 3-Colourability

A Mon. Σ_1^1 sentence defining 3-colourable graphs:

```
 \exists R \subseteq V \exists B \subseteq V \exists G \subseteq V \\ \forall x (Rx \lor Bx \lor Gx) \land \\ \forall x (\neg (Rx \land Bx) \land \neg (Bx \land Gx) \land \neg (Rx \land Gx)) \land \\ \forall x \forall y (Exy \to (\neg (Rx \land Ry) \land \\ \neg (Bx \land By) \land \\ \neg (Gx \land Gy)))
```

Example - Connectivity

Connectivity of graphs can be defined by the following Mon. Π_1^1 sentence.

 $\forall S(\exists x \, Sx \land (\forall x \forall y \, (Sx \land Exy) \rightarrow Sy)) \rightarrow \forall x \, Sx$

However, it is not definable by any Mon. Σ_1^1 sentence (Fagin 1974)

Connectivity

Hanf's Locality Theorem can be used to show that graph connectivity is not definable by any sentence of *existential monadic second-order logic*.

Idea: For n sufficiently large, take

- C_{2n} —a cycle of length 2n; and
- $C_n \oplus C_n$ the disjoint union of two cycles of length n.

For any *colouring* of C_{2n} , we can find a colouring of $C_n \oplus C_n$, so that the resulting coloured graphs are \simeq_p equivalent for arbitrary p.

MSO Game

The *m*-round monadic Ehrenfeucht game on structures \mathbb{A} and \mathbb{B} proceeds as follows:

• At the *i*th round, *Spoiler* chooses one of the structures (say **B**) and plays either a point move or a set move.

In a point move, it chooses one of the elements of the chosen structure $(say b_i) - Duplicator$ must respond with an element of the other structure $(say a_i)$. In a set move, it chooses a subset of the universe of the chosen structure $(say S_i) - Duplicator$ must respond with a subset of the other structure $(say R_i)$.

MSO Game

• If, after *m* rounds, the map

 $a_i \mapsto b_i$

is a partial isomorphism between

 $(\mathbb{A}, R_1, \ldots, R_q)$ and $(\mathbb{B}, S_1, \ldots, S_q)$

then *Duplicator* has won the game, otherwise *Spoiler* has won.

MSO Game

If we define the *quantifier rank* of an MSO formula by adding the following inductive rule to those for a formula of FO:

if $\varphi = \exists S \psi$ or $\varphi = \forall S \psi$ then $qr(\varphi) = qr(\psi) + 1$

then, we have

Duplicator has a winning strategy in the *p*-round monadic Ehrenfeucht game on structures A and B if, and only if, for every sentence φ of MSO with $qr(\varphi) \leq p$

 $\mathbb{A}\models \varphi$ if, and only if, $\mathbb{B}\models \varphi$

MSO Types

We write $\mathsf{Type}_p^{\mathsf{MSO}}(\mathbb{A})$ for the set of all sentences φ with $\operatorname{qr}(\varphi) \leq p$ such that $\mathbb{A} \models \varphi$.

Write $\mathbb{A} \equiv_p^{\mathsf{MSO}} \mathbb{B}$ for

$$\mathsf{Type}_p^{\mathsf{MSO}}(\mathbb{A}) = \mathsf{Type}_p^{\mathsf{MSO}}(\mathbb{B})$$

In a fixed finite relational vocabulary, there are only finitely many inequivalent sentences of quantifier rank p, so

 \equiv_p^{MSO} has finite index; and there is a single sentence $\theta_{\mathbb{A}}$ that characterizes $\text{Type}_n^{\text{MSO}}(\mathbb{A})$.

MSO Equivalence

Using the MSO game, we can show that \equiv_p^{MSO} is a *congruence* with respect to:

disjoint sums: $\mathbb{A} \oplus \mathbb{B}$; ordered sums: $\mathbb{A} \oplus_{\leq} \mathbb{B}$; sums over X: $\mathbb{A} \oplus_X \mathbb{B}$

Moreover, in each case $\operatorname{Type}_p^{\mathsf{MSO}}(\mathbb{A} + \mathbb{B})$ is *computable* from $\operatorname{Type}_p^{\mathsf{MSO}}(\mathbb{A})$ and $\operatorname{Type}_p^{\mathsf{MSO}}(\mathbb{B})$.

Note: Contrast with general second-order logic.

Strings

Structures A with a binary relation \leq that is a linear order of the universe and a collection \mathcal{U} of unary relations can be viewed as words over the alphabet $\mathsf{Pow}(\mathcal{U})$.

Theorem (Büchi, Elgot, Trakhtenbrot) For any sentence φ of MSO, the language $L_{\varphi} = \{s \mid s \text{ a string and } s \models \varphi\}$ is regular.

A particularly perspicuous proof of this is obtained by using the *Myhill-Nerode theorem*.

Indeed, the $\ensuremath{\textit{converse}}$ holds and the connection between finite automata and MSO runs much deeper.

Myhill-Nerode Theorem

Let \sim be an equivalence relation on Σ^* .

```
We say \sim is right invariant if, for all u, v \in \Sigma^*,
if u \sim v, then for all w \in \Sigma^*, uw \sim vw.
```

Theorem (Myhill-Nerode)

The following are equivalent for any language $L \subseteq \Sigma^*$:

- *L* is regular;
- L is the union of equivalence classes of a right invariant equivalence relation of finite index on Σ*.

If φ has quantifier rank p, then L_{φ} is closed under \equiv_p^{MSO} , a right invariant equivalence relation of finite index.

Applications

We can show that there is no sentence of MSO in the language of graphs that defines the class of *Hamiltonian graphs*:

Suppose φ is an MSO formula that defines this class.

Let φ' be obtained from φ by replacing every atomic subformula

E(x,y)

by

 $(a(x) \wedge b(y)) \vee (b(x) \wedge a(y))$

This defines the set of words in which the *complete bipartite graph* formed by putting an edge between *a*s and *b*s is *Hamiltonian*.

Hamiltonian Graphs

A complete bipartite graph is *Hamiltonian* if, and only if, the two parts have the same number of vertices.

Rooted Directed Trees

A rooted, directed tree (T, a) is a directed graph with a distinguished vertex a such that for every vertex v there is a *unique* directed path from a to v.

For any rooted, directed tree (T, a) define r(T, a) to be the rooted directed tree obtained by adding to (T, a) a new vertex, which is the root and whose only child is a.

Note: Type^{MSO}_p(r(T, a)) can be computed from Type^{MSO}_p(T, a).

MSO on Trees

Any rooted, directed tree can be obtained from *single-node* trees through repeated applications of the operations of *adding a root* (i.e. r(T, a)) and *sum over the root*: (i.e. $(T_1, a) \oplus_a (T_2, a)$).

From an MSO formula φ , we can define a *bottom-up tree automaton* A_{φ} which accepts the trees that satisfy φ

- the states are the equivalence classes of \equiv_p^{MSO} (where *m* is the quantifier rank of φ);
- there are transitions corresponding to r and \oplus_a ;
- the accepting states are the \equiv_p^{MSO} -classes that satisfy φ .

Treewidth

The *treewidth* of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k+1 nodes in a tree-like fashion.

This gives a *tree decomposition* of the graph.

Treewidth

Treewidth is a measure of how tree-like a graph is.

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V,$ the set $\{t \mid (v,t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *treewidth* of G is the least k such that there is a tree T and a tree decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

- Trees have treewidth 1.
- Cycles have treewidth 2.
- The *clique* K_k has treewidth k-1.
- The $m \times n$ grid has treewidth $\min(m, n)$.

Dynamic Programming

Graphs of small treewidth admit efficient *dynamic programming* algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree decomposition of G.

At any stage, a small set of vertices form the "*interface*" to the rest of the graph.

This allows a recursive decomposition of the problem.

Treewidth

Looking at the decomposition *bottom-up*, a graph of treewidth k is obtained from graphs with at most k + 1 nodes through a finite sequence of applications of the operation of taking *sums over sets* of at most k elements.

We let \mathcal{T}_k denote the class of graphs G such that $tw(G) \leq k$.

Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices $C = \{c_0, \ldots, c_k\}$. We have the operation $(G \oplus_C H)$ that forms the sum over C of G and H. Also define erase_i(G) that erases the name c_i .

Then a graph G is in \mathcal{T}_k if it can be formed from graphs with at most k+1 vertices through a sequence of such operations.

Congruence

• If $G_1, \rho_1 \equiv_p^{\mathsf{MSO}} G_2, \rho_2$, then

$$erase_i(G_1, \rho_1) \equiv_p^{MSO} erase_i(G_2, \rho_2)$$

• If $G_1, \rho_1 \equiv_p^{\mathsf{MSO}} G_2, \rho_2$, and $H_1, \sigma_1 \equiv_p^{\mathsf{MSO}} H_2, \sigma_2$ then $(G_1, \rho_1) \oplus_C (H_1, \sigma_1) \equiv_p^{\mathsf{MSO}} (G_2, \rho_2) \oplus_C (H_2, \sigma_2)$

Courcelle's Theorem

Theorem (Courcelle)

For any MSO sentence φ and any k there is a linear time algorithm that decides, given $G \in \mathcal{T}_k$ whether $G \models \varphi$.

Given $G \in \mathcal{T}_k$ and φ , compute:

- from G a labelled tree T; and
- from φ a bottom-up tree automaton $\mathcal A$

such that \mathcal{A} accepts T if, and only if, $G \models \varphi$.