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Review

We aim to develop tools for studying the expressive power of logic in
finite structures.

The relation of elementary equivalence coincides with isomorphism; every
property of finite structures is definable by a first-order theory.

To study definability in the finite we stratify the relation of elementary
equivalence by

• quantifier rank;

• number of variables.

These stratified equivalences can be characterized by means of
Spoiler-Duplicator games.
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Review

We used the games to show that some properties are not definable by
first-order sentences:

• Connectivity;

• 2-colourability.

And some cannot even be axiomatized with a finite number of variables:

• Evenness;

• Perfect matching;

• Hamiltonicity

The Hanf locality theorem shows that structures that look locally the
same are not distinguished by first-order formulas.
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Hanf Locality Theorem

We say A and B are Hanf equivalent with radius r (A 'r B) if, there is a
bijection f : A→ B such that

NbdA
r (a) ∼= NbdB

r (f(a)).

Theorem (Hanf)

For every vocabulary σ and every p there is r ≤ 3p such that for any
σ-structures A and B: if A 'r B then A ≡p B.

In other words, if r ≥ 3p, the equivalence relation 'r is a refinement of
≡p.
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Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the proofs
of undefinability of

• connectivity;

• 2-colourability

A simple illustration can suffice.
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Connectivity

This illustrates the undefinability of connectivity and 2-colourability.
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Acyclicity

A figure illustrating that acyclicity is not first-order definable.
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Planarity

A figure illustrating that planarity is not first-order definable.
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Gaifman’s Theorem

We write δ(x, y) > d for the formula of FO that says that the distance
between x and y is greater than d.
We write ψN (x) to denote the formula obtained from ψ(x) by
relativising all quantifiers to the set N .

A basic local sentence is a sentence of the form

∃x1 · · · ∃xs

∧
i 6=j

δ(xi, xj) > 2r ∧
∧
i

ψNbdr(xi)(xi)


Theorem (Gaifman)

Every first-order sentence is equivalent to a Boolean combination of basic
local sentences.
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Composing Strategies

For structures A and B, the disjoint sum of A and B, denoted A⊕ B is
the structure whose universe is the disjoint union of the universes of A
and B and for each relation R

RA⊕B = RA ∪RB

If A1 ≡p A2 and B1 ≡p B2 then

A1 ⊕ B1 ≡p A2 ⊕ B2

Similarly for ≡k.

These are proved by a simple composition of Duplicator’s winning
strategies.
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Ordered Sum

Suppose A and B are structures in a vocabulary τ that includes a binary
relation symbol ≤ interpreted as a linear order of the universe.

Define the ordered sum A⊕≤ B of A and B to be τ -structure where

• the universe is the disjoint union of the universes of A and B;

• a ≤ b if either a ≤A b or a ≤B b or a ∈ A and b ∈ B;

• every other relation symbol R is interpreted as the union of RA and
RB.

Again, a simple game argument shows that:

If A1 ≡p A2 and B1 ≡p B2 then

A1 ⊕≤ B1 ≡p A2 ⊕≤ B2

Similarly for ≡k.
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Disjoint Sum over X

Suppose A and B are structures in a vocabulary τ with universe A and B
respectively and A ∩B = X.

Define A⊕X B, the sum of A and B over X to be the structure with
universe A ∪B and every R ∈ τ interpreted by RA ∪RB

Writing (A, X) for the structure A expanded with constants for each
element of X, we have:

If (A1, X) ≡p (A2, Y ) and (B1, X) ≡p (B2, Y ) then

(A1 ⊕X B1, X) ≡p (A2 ⊕Y B2, Y )
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Second-Order Logic

Second-Order Logic extends first-order logic with quantification over
relations.

∃X ϕ

where X has arity m is true in a structure A if, and only if, A can be
expanded by an m-ary relation interpreting X to satisfy ϕ.

ESO or Σ1
1—existential second-order logic consists of those formulas of

second-order logic of the form:

∃X1 · · · ∃Xk ϕ

where ϕ is a first-order formula.
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Monadic Second-Order Logic

MSO consists of those second order formulas in which all relational
variables are unary.

That is, we allow quantification over sets of elements, but not
other relations.

Any MSO formula can be put in prenex normal form with second-order
quantifiers preceding first order ones.

Mon.Σ1
1 — MSO formulas with only existential second-order quantifiers

in prenex normal form.

Mon.Π1
1 — MSO formulas with only universal second-order quantifiers in

prenex normal form.
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Example - 3-Colourability

A Mon.Σ1
1 sentence defining 3-colourable graphs:

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V
∀x(Rx ∨Bx ∨Gx)∧
∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧
∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧
¬(Gx ∧Gy)))
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Example - Connectivity

Connectivity of graphs can be defined by the following Mon.Π1
1 sentence.

∀S(∃xSx ∧ (∀x∀y (Sx ∧ Exy)→ Sy))→ ∀xSx

However, it is not definable by any Mon.Σ1
1 sentence (Fagin 1974)
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Connectivity

Hanf’s Locality Theorem can be used to show that graph connectivity is
not definable by any sentence of existential monadic second-order logic.

Idea: For n sufficiently large, take

• C2n—a cycle of length 2n; and

• Cn ⊕ Cn the disjoint union of two cycles of length n.

For any colouring of C2n, we can find a colouring of Cn ⊕ Cn, so that
the resulting coloured graphs are 'p equivalent for arbitrary p.
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MSO Game

The m-round monadic Ehrenfeucht game on structures A and B proceeds
as follows:

• At the ith round, Spoiler chooses one of the structures (say B) and
plays either a point move or a set move.

In a point move, it chooses one of the elements of the
chosen structure (say bi) – Duplicator must respond with
an element of the other structure (say ai).
In a set move, it chooses a subset of the universe of the
chosen structure (say Si) – Duplicator must respond with
a subset of the other structure (say Ri).
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MSO Game

• If, after m rounds, the map

ai 7→ bi

is a partial isomorphism between

(A, R1, . . . , Rq) and (B, S1, . . . , Sq)

then Duplicator has won the game, otherwise Spoiler has won.
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MSO Game

If we define the quantifier rank of an MSO formula by adding the
following inductive rule to those for a formula of FO:

if ϕ = ∃Sψ or ϕ = ∀Sψ then qr(ϕ) = qr(ψ) + 1

then, we have

Duplicator has a winning strategy in the p-round monadic
Ehrenfeucht game on structures A and B if, and only if, for
every sentence ϕ of MSO with qr(ϕ) ≤ p

A |= ϕ if, and only if, B |= ϕ
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MSO Types

We write TypeMSO
p (A) for the set of all sentences ϕ with qr(ϕ) ≤ p such

that A |= ϕ.

Write A ≡MSO
p B for

TypeMSO
p (A) = TypeMSO

p (B)

In a fixed finite relational vocabulary, there are only finitely many
inequivalent sentences of quantifier rank p, so

≡MSO
p has finite index; and

there is a single sentence θA that characterizes TypeMSO
p (A).
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MSO Equivalence

Using the MSO game, we can show that ≡MSO
p is a congruence with

respect to:

disjoint sums: A⊕ B;

ordered sums: A⊕≤ B;

sums over X: A⊕X B

Moreover, in each case TypeMSO
p (A+B) is computable from TypeMSO

p (A)

and TypeMSO
p (B).

Note: Contrast with general second-order logic.
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Strings

Structures A with a binary relation ≤ that is a linear order of the
universe and a collection U of unary relations can be viewed as words
over the alphabet Pow(U).

Theorem (Büchi, Elgot, Trakhtenbrot)

For any sentence ϕ of MSO, the language
Lϕ = {s | s a string and s |= ϕ} is regular.

A particularly perspicuous proof of this is obtained by using the
Myhill-Nerode theorem.

Indeed, the converse holds and the connection between finite automata
and MSO runs much deeper.
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Myhill-Nerode Theorem

Let ∼ be an equivalence relation on Σ∗.

We say ∼ is right invariant if, for all u, v ∈ Σ∗,

if u ∼ v, then for all w ∈ Σ∗, uw ∼ vw.

Theorem (Myhill-Nerode)
The following are equivalent for any language L ⊆ Σ∗:

• L is regular;

• L is the union of equivalence classes of a right invariant equivalence
relation of finite index on Σ∗.

If ϕ has quantifier rank p, then Lϕ is closed under ≡MSO
p , a right

invariant equivalence relation of finite index.
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Applications

We can show that there is no sentence of MSO in the language of graphs
that defines the class of Hamiltonian graphs:

Suppose ϕ is an MSO formula that defines this class.

Let ϕ′ be obtained from ϕ by replacing every atomic subformula

E(x, y)

by
(a(x) ∧ b(y)) ∨ (b(x) ∧ a(y))

This defines the set of words in which the complete bipartite graph
formed by putting an edge between as and bs is Hamiltonian.
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Hamiltonian Graphs

A complete bipartite graph is Hamiltonian if, and only if, the two parts
have the same number of vertices.
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Rooted Directed Trees

A rooted, directed tree (T, a) is a directed graph with a distinguished
vertex a such that for every vertex v there is a unique directed path from
a to v.

For any rooted, directed tree (T, a) define r(T, a) to be the rooted
directed tree obtained by adding to (T, a) a new vertex, which is the root
and whose only child is a.

Note: TypeMSO
p (r(T, a)) can be computed from TypeMSO

p (T, a).
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MSO on Trees

Any rooted, directed tree can be obtained from single-node trees through
repeated applications of the operations of adding a root (i.e. r(T, a)) and
sum over the root: (i.e. (T1, a)⊕a (T2, a)).

From an MSO formula ϕ, we can define a bottom-up tree automaton Aϕ

which accepts the trees that satisfy ϕ

• the states are the equivalence classes of ≡MSO
p (where m is the

quantifier rank of ϕ);

• there are transitions corresponding to r and ⊕a;

• the accepting states are the ≡MSO
p -classes that satisfy ϕ.
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Treewidth

The treewidth of an undirected graph is a measure of how tree-like the
graph is.
A graph has treewidth k if it can be covered by subgraphs of at most
k + 1 nodes in a tree-like fashion.

This gives a tree decomposition of the graph.
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Treewidth

Treewidth is a measure of how tree-like a graph is.

For a graph G = (V,E), a tree decomposition of G is a relation
D ⊂ V × T with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of
T ; and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a tree
decomposition D ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Examples

• Trees have treewidth 1.

• Cycles have treewidth 2.

• The clique Kk has treewidth k − 1.

• The m× n grid has treewidth min(m,n).
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Dynamic Programming

Graphs of small treewidth admit efficient dynamic programming
algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree
decomposition of G.
At any stage, a small set of vertices form the “interface” to the rest of
the graph.
This allows a recursive decomposition of the problem.
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Treewidth

Looking at the decomposition bottom-up, a graph of treewidth k is
obtained from graphs with at most k + 1 nodes through a finite sequence
of applications of the operation of taking sums over sets of at most k
elements.

G1 ⊕X G2

|X| ≤ k

G1 G2

X

We let Tk denote the class of graphs G such that tw(G) ≤ k.
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Treewidth

More formally,
Consider graphs with up to k+ 1 distinguished vertices C = {c0, . . . , ck}.
We have the operation (G⊕CH) that forms the sum over C of G and H.

Also define erasei(G) that erases the name ci.

Then a graph G is in Tk if it can be formed from graphs with at most
k + 1 vertices through a sequence of such operations.
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Congruence

• If G1, ρ1 ≡MSO
p G2, ρ2, then

erasei(G1, ρ1) ≡MSO
p erasei(G2, ρ2)

• If G1, ρ1 ≡MSO
p G2, ρ2, and H1, σ1 ≡MSO

p H2, σ2 then

(G1, ρ1)⊕C (H1, σ1) ≡MSO
p (G2, ρ2)⊕C (H2, σ2)
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Courcelle’s Theorem

Theorem (Courcelle)

For any MSO sentence ϕ and any k there is a linear time algorithm that
decides, given G ∈ Tk whether G |= ϕ.

Given G ∈ Tk and ϕ, compute:

• from G a labelled tree T ; and

• from ϕ a bottom-up tree automaton A
such that A accepts T if, and only if, G |= ϕ.
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