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The true logic!

The “true” logic of the World.
The actual science of logic is conversant at present only with things
either certain, impossible or entirely doubtful; none of which,
fortunately, we have to reason on. Therefore the true logic for this
world is the calculus of Probabilities which takes account of the
magnitude of the probability which is, or ought to be, in a reasonable
man’s mind — James Clerk Maxwell (1850)
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The age of stochasticity!?

The dawning of the age of stochasticity
For over two millenia, Aristotle’s logic has ruled over the thinking of
Western intellectuals. All precise theories, all scientific models, even
models of the process of thinking itself, have in principle conformed to
the straight- jacket of logic. But from its shady beginnings devising
gambling strategies and counting corpses in medieval London,
probability theory and statistical inference now emerge as better
foundations for scientific models,... — David Mumford
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Conditioning as inference

p p⇒ q
q or (p ∧ (p⇒ q))⇒ q

Pr(A | B) = Pr(A ∩ B)
Pr(B)

or

Pr(A ∧ B) = Pr(A | B) · Pr(B).
Conditioning allows you to revise your probability estimates as you
gain information.

(Bayes’ theorem) Pr(H | O) =
Pr(O | H) · Pr(H)

Pr(O)
.

What if Pr(B) = 0?
In discrete probability Pr(B) > 0 is a side condition.
On continuous spaces; one cannot just dismiss this case.
One needs conditional probability distributions or regular
conditional probability densities aka disintegrations.
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Basic discrete probability

S: a finite set; the sample space.
A,B, . . . ⊆ S: events.
Pr(·) : S −→ [0, 1] assigns probabilties to elements of S and hence
to events.
X : S −→ R a random variable.
Pr(U ⊂ R)X := Pr({s|X(s) ∈ U}); probability distribution on R
induced by X.
Notation Pr({X = r}) or Pr({X ∈ U}).
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Independence

Fix (S,Pr(·)).
Two events A,B are independent if Pr(A ∧ B) = Pr(A) · Pr(B).
Two random variables X,Y are independent if for all r1, r2,
Pr({X = r1}) and Pr({Y = r2}) are independent.
Given three random variables X,Y,Z we say X,Y are independent
conditional on Z if
Pr(X = r1 ∧ Y = r2 | Z = r3) =
Pr(X = r1 | Z = r3) · Pr(Y = r2 | Z = r3).
For 3 or more we can define pairwise independence and mutual
independence. They are not the same.
Consider two tosses of a fair coin. A: first toss is H, B second toss
is H and C: the two tosses give the same result.
Pr(A) = Pr(B) = Pr(C) = 1

2 .
Pr(AB) = Pr(AC) = Pr(BC) = 1

4 .
However Pr(ABC) = 1

4 not 1
8 .
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Probabilistic models

Reasoning under uncertainty involves the interplay between
independence and conditioning: Bayes nets.
Hugely successful framework: graphical models – a way of
representing Bayes nets.
Conditional independence structure captures the model in a
compact way and is useful for computing marginals and
conditional probabilities.
Claim: these models are indeed useful for many situations but
they are not compositional and they often “flatten out” the
structure inherent in a situation.
Example: Perhaps a subgraph is repeated many times in a regular
pattern.
A new hope: use the theory of programming languages to give a
structural way of presenting and reasoning about probabilistic
models.
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Other developments

Verification of probabilistic systems: Vardi, de Alfaro, Segala,
Baier, Katoen, Kwiatkowska, Hermanns, ....
Performance analysis: Jane Hillston
Probabilistic transition systems: Larsen, Skou, van Glabbeek, ...
Continuous state spaces: Desharnais, Edalat, P.; Doberkat,
Rutten and de Vink, Mislove et al.,
Metrics and approximation theory: Smolka et al.; Desharnais
Gupta, Jagadesan, P.; Chaput, Danos, P. and Plotkin; van Breugel
and Worrell.
Combining probability and non-determinism: Mislove, Keimel and
Plotkin, Varacca, Winskel, Goubault-Larrecq,...
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Probability and domains

Saheb-Djahromi (1978) developed probabilistic LCF.
(1980) Developed probability distributions on domains. Showed
that dcpo structure is preserved.
Higher-order language but probabilities only at ground types.
Claire Jones and Gordon Plotkin (1989) developed a probabilistic
power domain.
Tix, Jung: showed that this was a “vexing” construction. No known
cartesian-closed categories suitable for programming language
semantics in which this lives.
Edalat: integration on domains.
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Kozen’s language (1981)

Syntax

S ::== xi := f (~x)|S1; S2|if B then S1 else S2|while B do S.

Semantics: programs transform input distributions to output
distributions.
Backward semantics: expectation value transformers.
Many contributions from the “Oxford group”: Hoare, He, Seidel,
Morgan, McIver, ...
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Probabilistic ccp

Saraswat, Gupta, Jagadeesan (1997): Combined probability with
the concurrent constraint programming paradigm.
Gupta, Jagadeesan, P. (1999) added recursion, showed
interesting computational effects with no pure measure-theory
counterpart.
Explicit use of conditioning.
Largely ignored.
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The ask/tell model
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CCP processes

CCP processes

ask(�) : does the current store (�) entail �?

tell(�) : add � to the current store.

P1||P2 : run P1 and P2 in parallel.

new X in P : fresh local variable; ⌫X.P .

recursive procedures

Underlying (first-order) language and `.

6Tuesday, 3 June, 14
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Prob CCP

Probabalistic CCP

New ingredient: choose X from Dom in P

X: local variable, scope is P

Dom is a finite set

• Random variables are hidden

• Each random variable has its own
independent probability distribution.

19Tuesday, 3 June, 14
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Conditioning

Constraints and conditioning

choose X from {0, 1, 2, 3} in

tell(X  2) || [ask((X = 0) _ (X = 1)) ! tell(a)] ||
[ask(X = 2) ! tell(b)]

Produces a with probability 0.5 and b with probability 0.25,

however, it cannot produce true because of the constraint on X.

Inconsistent stores are discarded and the probabilities are renormalized.

21Tuesday, 3 June, 14
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Modelling probabilistic systems

Systems feature probabilistic components: protocols using
randomization, bluetooth, controllers, cells,...
Probabilistic transition systems as abstractions of real systems
Logics for reasonong about probability
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Labelled Transition Systems

A set of states S,
a set of labels or actions, L or A and
a transition relation ⊆ S×A× S, usually written

→a⊆ S× S.

The transitions could be indeterminate (nondeterministic).
We write s a−−→ s′ for (s, s′) ∈→a.
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Discrete probabilistic transition systems

Just like a labelled transition system with probabilities associated
with the transitions.

(S,L, ∀a ∈ L Ta : S× S −→ [0, 1])

The model is reactive: All probabilistic data is internal - no
probabilities associated with environment behaviour.
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Examples of PTSs
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Probability at higher type

Conditioning as a basic primitive: CCP+prob, CHURCH, Tabular
Domain theory in conjunction with probability: Saheb-Djahromi,
Ramsey & Pfeffer, Ugo Dal Lago, Varacca & Goubault-Larrecq,...
Prof. Scott’s work showing that random variables can be
introduced in a model of λ-calculus. Application of a random
variable to another produces a random variable.
Recent work (2016) by Staton et al. on semantics and reasoning
principles for a higher-order probabilistic programming language.
Recent work (2016) on approximate equational reasoning by
Mardare, P. and Plotkin.
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The Shock

Ackerman, Freer, Roy
There is a pair of computable probability random variables such that
the conditional probability distribution is not computable.

We need to control how we allow conditioning.
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Four more lectures

Review of measure and integration
Lawvere-Gìry monad
Logical characterization of bisimulation
Metrics measuring behavioural similarity of Markov processes
Guest lecture: Mislove on probability theory and domain theory
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