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Beginnings . . .

The first axiom I learnt in Computer Science:

Computers might as well be made of green cheese

It is no longer safe to assume this!
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Some Agendas for Quantum Computer Science

Information processing systems are physically embodied. The underlying
physics is ultimately quantum-mechanical. Taking this seriously forces us to
re-examine many of our basic assumptions about Computer Science.

It has already led to some exciting developments: remarkable new algorithms,
cryptographic schemes, and basic questions in computational complexity.

Beyond algorithms and complexity it offers new challenges and opportunities
across the range of Computer Science: in programming languages and
methods, logic and semantics.

There is a fascinating two-way interplay developing between Computer
Science and Physics, extending to the foundations of both, as well as to more
practical matters. Quantum technology — “hacking matter” — will be a
huge feature of 21st Century science and engineering, and a lot of it will be
to do with information.

This is an exciting emerging area, attracting students with backgrounds in
CS, Physics, Mathematics, Logic, Philosophy, . . .
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Contextual Semantics

At the heart of quantum non-classicality are the phenomena of non-locality,
contextuality and entanglement.

These concepts play a central rôle in the rapidly developing field of quantum
information, in delineating how quantum resources can transcend the bounds
of classical information processing.

They also have profound consequences for our understanding of the very
nature of physical reality.

We shall describe recent work in which tools from Computer Science are used
to shed new light on these phenomena.

There are also striking and unexpected connections with a number of topics
in classical computer science, including relational databases and constraint
satisfaction.
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First Loophole-free Bell test, 2015
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Timeline

1932 von Neumann’s Mathematical Foundations of Quantum Mechanics

1935 EPR Paradox, the Einstein-Bohr debate

1964 Bell’s Theorem

1982 First experimental test of EPR and Bell inequalities

(Aspect, Grangier, Roger, Dalibard)

1984 Bennett-Brassard quantum key distribution protocol

1985 Deutch Quantum Computing paper

1993 Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)

1994 Shor’s algorithm

2015 First loophole-free Bell tests (Delft, NIST, Vienna)
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Alice and Bob look at bits

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0
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A Probabilistic Model Of An Experiment

Example: The Bell Model

The entry in row 2 column 3 says:

If Alice looks at a1 and Bob looks at b2, then 1/8th of the time,
Alice sees a 0 and Bob sees a 1.

How can we explain this behaviour?
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Classical Correlations: The Classical Source

0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

0 1 0 1

...

Source
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A Simple Observation

Suppose we have propositional formulas φ1, . . . , φN

Suppose further we can assign a probability pi = Prob(φi ) to each φi .

(Story: perform experiment to test the variables in φi ; pi is the relative frequency
of the trials satisfying φi .)

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N−1∧
i=1

φi ⇒ ¬φN , or equivalently φN ⇒
N−1∨
i=1

¬φi .

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi ) ≤
N−1∑
i=1

Prob(¬φi ) =
N−1∑
i=1

(1− pi ) = (N − 1)−
N−1∑
i=1

pi .

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.
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Logical analysis of the Bell table

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the table
are represented by the following propositions:

ϕ1 = (a1 ∧ b1) ∨ (¬a1 ∧ ¬b1) = a1 ↔ b1

ϕ2 = (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2) = a1 ↔ b2

ϕ3 = (a2 ∧ b1) ∨ (¬a2 ∧ ¬b1) = a2 ↔ b1

ϕ4 = (¬a2 ∧ b2) ∨ (a2 ∧ ¬b2) = a2 ⊕ b2.

These propositions are easily seen to be contradictory.
The violation of the logical Bell inequality is 1/4.
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Example: the Hardy model
The support of the Hardy model:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1 1 1 1

(a′, b) 0 1 1 1

(a, b′) 0 1 1 1

(a′, b′) 1 1 1 0

If we interpret outcome 0 as true and 1 as false, then the following formulas all
have positive probability:

a ∧ b, ¬(a ∧ b′), ¬(a′ ∧ b), a′ ∨ b′.

However, these formulas are not simultaneously satisfiable.

In this model, p2 = p3 = p4 = 1.

Hence the Hardy model achieves a violation of p1 = Prob(a ∧ b) for the logical
Bell inequality.
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What Do ‘Observables’ Observe?

Surely objective properties of a physical system, which are independent of our
choice of which measurements to perform — of our measurement context.

More precisely, this would say that for each possible state of the system, there is a
function λ which for each measurement m specifies an outcome λ(m),
independently of which other measurements may be performed.

This point of view is called non-contextuality. It is equivalent to the assumption
of a classical source.

However, this view is impossible to sustain in the light of our actual
observations of (micro)-physical reality.
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Hidden Variables: The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1
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Quantum Mechanics changes the game

It seems then that the kind of behaviour exhibited in these tables is not realisable.

However, if we use quantum rather than classical resources, it is realisable!

More specifically, if we use an entangled pair of qubits as a shared resource
between Alice and Bob, who may be spacelike separated, then behaviour of
exactly the kind we have considered can be achieved.

Alice and Bob’s choices are now of measurement setting (e.g. which direction
to measure spin) rather than “which register to load”.
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The Quantum Case: Spin Measurements

States of the system can be described by complex unit vectors in C2. These can
be visualized as points on the unit 2-sphere:

|+〉

|−〉

|+〉

|−〉

|Ψ〉

Spin can be measured in any direction; so there are a continuum of possible
measurements. There are two possible outcomes for each such measurement;
spin in the specified direction, or in the opposite direction. These two directions
are represented by a pair of orthogonal vectors. They are represented on the
sphere as a pair of antipodal points.

Note the appearance of quantization here: there are not a continuum of possible
outcomes for each measurement, but only two!
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The Stern-Gerlach Experiment
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The Bloch sphere representation of qubits

|ψ〉

φ

θ

Z = |↑〉

|↓〉

Y

X
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Quantum Entanglement

Bell state:

|↑↑〉+ |↓↓〉

EPR state:

|01〉+ |10〉

Compound systems are represented by tensor product: H1 ⊗H2. Typical
element: ∑

i

λi · φi ⊗ ψi

Superposition encodes correlation.

Einstein’s ‘spooky action at a distance’. Even if the particles are spatially
separated, measuring one has an effect on the state of the other.

Bell’s theorem: QM is essentially non-local.
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A Probabilistic Model Of An Experiment

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

This model can be physically realised in quantum mechanics.

There is an entangled state of two qubits, and directions for spin measurements
a1, a2 for Alice and b1, b2 for Bob, which generate this table according to the
predictions of quantum mechanics.

Moreover, behaviour of this kind has been extensively experimentally confirmed.

This is really how the world is!
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The XOR Game
Alice and Bob play a cooperative game against Nature:

Nature chooses an input x ∈ {0, 1} for Alice (x = 0 corresponds to a1, x = 1
to a2) and similarly an input y for Bob, i.e. the context. We assume the
uniform distribution for Nature’s choices.

Alice and Bob each have to choose an output, a ∈ {0, 1} for Alice, b ∈ {0, 1}
for Bob, depending on their input.

The winning condition: a⊕ b = x ∧ y .

A probability table defines a strategy for this game. The success probability for
this strategy is:

1/4[p(a = b|x = 0, y = 0) + p(a = b|x = 0, y = 1) + p(a = b|x = 1, y = 0)

+p(a 6= b|x = 1, y = 1)]

These are exactly the probabilities of events we used in our derivation of the
logical Bell inequality.
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Classical Strategies, Bell Inequalities and the Quantum
Advantage

A classical strategy is one in which Alice and Bob can have shared initial
information (e.g. shared randomness) but cannot communicate once the game
starts.

Our logical Bell inequality bounds the maximum success probability of any
classical strategy.

It shows that the classical bound is 3/4.

The Bell table exceeds this bound. Since it is quantum realizable, it shows that
quantum resources yield a quantum advantage in an information-processing task.
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