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Discovery of a Higgs Boson 
July 4, 2012; Nobel Prize 2013-

Theory : 1964
LHC + Experiments 

Concept: 1984
Construction: 2001

Operation and 
Discovery: 2009-12

Advanced Computational Methods 
and Networks Were Essential to the 

Higgs Discovery and Every Ph.D
Thesis of the last 20+ Years

New Innovative Methods will be 
Essential to Future Discoveries, 

the Ph. D Theses to Come

Englert

2013

Higgs

3



3

The LHC: Deep into the Multi-TeV Scale

1.1x1011 Æ 1.5x1011 ppb                     L X 2
Emittance: ε 3.5Æ 2.3 Æ 2 micron  L X 1.8        
2012:  8 TeV X 50 nsec β* Æ 0.6m

2010, <µ> = 2

2011, <µ> = 7

2012, <µ> = 21

HEP: Complex Data. Challenge of Pileup

Run2 and Beyond will bring:
� Higher energy and intensity
� Greater science opportunity
� Greater data volume & 

complexity
� A new Realm of Challenges

2016, <µ> = 30

HL LHC 140-200

~4 X 1015 pp Collisions 
~2M Higgs Bosons 

created So Far



CMS is a Highly Heterogeneous System
Raw data is 100M channels sampling every 25 nsec: 1 petabit/sec

50 Exabytes/Day in Readout and Online Processing



Finding Rare Signals: Down to 1 in 1013

Many Orders of Magnitude Rejection Required 
in Order to Extract Interesting Events

Common 
Processes

Rare and 
Interesting

Good Understanding 
of Standard Model 

Processes

Higgs



Event Triggering

Massively parallel electronic infrastructure makes a prime selection
Refined decision in a software defined trigger: N X 10k cores

Little processing time for selection: ML for a faster algorithms 



Global Data Flow: LHC Grid Hierarchy
A Worldwide System Invented by Caltech (1999)

Tier 1

Tier2 Center

Online System

CERN Center 
100 PBs of Disk; 

Tape Robot

Chicago

InstituteInstituteInstituteInstitute 

Workstations

~1000 
MBytes/sec

10 to 100 GbpsPhysics data 
cache

~PByte/sec

N X100 Gbps

Tier2 CenterTier2 CenterTier2 Center10 to 100 Gbps

Tier 0

Tier 3

Tier 4

Tier 2

Experiment

London Paris Taipei

CACR

13 Tier1, 170 Tier2 
+ 300 Tier3 Centers: 
1k to N X 10k Cores

� Tier0: Real Time Data Processing
Tier1 and Tier2: Data and Simulation
Production Processing

Tier2 and Tier3: Data Analysis 
Increased Use as a Cloud Resource (Any Job Anywhere)
Increasing Use of Additional HPC and Cloud Resources

A Global Dynamic System: Fertile Ground for Control with ML

Bologna



� Volume of Global Data Flow + Expansion Rate: 
Challenging the World’s Research and Education Networks
� Complex Data and Workflow
� Worldwide Inter-Facility Connections: A Complex System 

Over Networks of Varying Capacity and Reliability
� Plan to Meet the Challenges: Integrating Worldwide 

Operations in an Intelligent, SDN-Driven System
� Optimized Using Deep Learning
� Coupled to Modeling and Simulation, 

Pervasive Monitoring and State Tracking
� Game Theory to Find Effective Metrics

and Stable Solutions

Global Networks Today and Tomorrow
Science Program Data Flow Challenges



Energy Sciences Network

� Long term traffic growth trend is 72%/year (10X per 4 Yrs)
� But 2015-16 growth is above this trend: +104% in 12 Months
� LHCONE growth in 2015-16: +254%, to 16.4 Pbytes/month

�150-250 Gbps Typical; Peaks to 300+ Gbps
�45.7 PB input data volume in May 2016

� ESnet6: the next SDN-enabled generation, is planned by ~2019

�My.es.net portal 



Complex Workflow: the Flow Patterns Have Increased in 
Scale and Complexity, even at the start of LHC Run2

28 GBytes/s Typical 
To 40 GBytes/s 

Peak Transfer Rates
Complex Workflow

� Multi-TByte Dataset 
Transfers
� Transfers of 13-41 

Million Files Daily
� Access to Tens of 

Millions of Object 
Collections/Day
� >100k of remote 

connections (e.g. AAA) 
simultaneously 

WLCG Dashboard Snapshot April-May: Patterns Vary by Experiment
Transfer Throughput Transfers Done/Day

CMS

ATLAS

ALICE

LHCb

2.7X Traffic Growth (+166%) in Last 12 Months; +60% in April



LHCONE: a Virtual Routing and Forwarding (VRF) Fabric

W. Johnston ESNet
Good News: The Major R&E Networks Have Mobilized on behalf of HEP

Issue: A complex system with limited scaling properties. 
LHCONE traffic grew by 3.5X in last 12 months: a challenge during Run2

A global infrastructure for HEP (LHC and Belle II) data management



High Luminosity LHC Era 2026-2037 
A New Era of Exascale Network Challenges

1 EB = 2 milligrams 
of DNA

Earth 
Observation

�Networks
� Projected needs are growing at an 

exponential rate: beyond affordable 
budgets, Moore’s Law. 

100-1000X by HL LHC in 2026 
�Needs of other fields continue to 

grow, HEP will face stiff competition 
for network resources. 
� Need for innovation: a new 

generation of Intelligent software 
driven global systems coordinating 
computing, storage and network 
resources



LSST + SKA Data Movement 
Upcoming Real-time Challenges for Astronomy

3.2 Gigapixel
Camera 

(10 Bytes / pixel)

�Networks: Dedicated 2 X 100G for image data, Additional 100Gs 
for other traffic, and diverse paths

�Lossless compressed Image size = 2.7GB 
(~5 images transferred in parallel over a 100 Gbps link)
�Custom transfer protocols for images (UDP Based)

�Real-time Challenge: delivery in seconds to catch cosmic “events”
�+ SKA in Future: 3000 Antennae covering > 1 Million km2; 

15,000 Terabits/sec to the correlators¨ 1.5 Exabytes/yr Stored
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Higgs Boson Discovery 
and Properties

Example Analysis with BDTs



Higgs Boson Decays 
Many Modes Contribute

Rare High Mass Resolution Channels Have a Special Role: 
HÆγγ and HÆ ZZ Æ 4 Leptons

125 GeV Region: Rich and Challenging: ZZ,,γγ, WW,,ττ, bb

0.23% 0.01%

High Rate 
but No Peak

22% 57%



Higgs Discovery at the LHC: H→ γγ
Narrow diphoton mass peak over smooth background

Main 
background

gg�γγ

16

Weighted

Unweighted

Diphoton Mass Spectrum

Keys: 1) Precise Calibration  2) Optimized Photon Identification
3) Precise Energy Scale 4) Innovative Analysis Methods

+ Many Caltech postdocs and students over last 20+ years
A Stream of Innovations; from the first BDT Analysis

“Razor Variables” for New Physics Searches
Next: Deep Learning Approaches



H Îγγ
candidateSearch for a narrow mass peak 

with two isolated high ET photons
on a smoothly falling background
� High Resolution: ~1% in barrel 

Yong 
Yang

Thesis Defense 11/7/12

� Analysis optimized categorizing events by γ ID 
and vertex efficiency; purity & mass resolution.
� Specific di-jet tag categories targeting VBF

production mode (Higher S/B)
� Exclusive categories (e,µ, ET

Miss) targeting 
WH, ZH Associated Production

Mγγ=125.9 GeV
σM/M=0.9%



H → γγ Analysis Overview
� BDT Analysis: Fit to Diphoton mass mγγ in event categories
� 4 event classes based on a diphoton BDT output , 2 di-jet categories

(VBF) + 3 Exclusive categories (VH): Electron, Muon, ET
Miss

� Score according to Probability (correct vertex), per-event mγγ
resolution estimate, prompt photon ID score, + diphoton kinematics

� Cross-checked with
traditional cut based 
analysis
� photon ID & mass fit 

in categories
� 2 angular x 2 shower shape 

categories with different  
Signal/Background ratios; 
+ 2 di-jet + 3 Exclusive 
Categories

18



Diphoton MVA
� Encode all relevant information on 

signal vs background (aside from mγγ
itself) into a single MVA diphoton
discriminant, with input variables 
largely independent of mγγ

� Photon ID MVA for each photon:  
based on isolation, shower shape, 
energy density per event 

� Kinematics and Topology: pT and η
of each photon, and cos ∆φ between 
the two photons

� Per-event mass resolution and 
correct-vertex probability

� Trained on MC signal and background
� Validation of the inputs (photon ID, 

energy resolution): uses Z→ee, μμγ
� Validation of the output with Z→ee
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H ¨γγ : Extracing the Signal
Leading to the Discovery

�20

By Convention, you need 
“5 Sigma” for a Discovery

� Had 4 Sigma significance in this channel 
alone at the discovery (June 2012)

� In final 2012 analysis (with 4X Data), 
we had 6 Sigma in this channel alone

� Measure the probability 
that an excess in the data can 
be explained by an upward 
background fluctuation, 
without a SM  Higgs boson  

� Use of MVAs (BDTs) Boosts 
Sensitivity by a Factor of 1.8 relative 
to traditional “cut and count” method

� Without MVA we would have had run 
80% Longer for the discovery, and 

� Many years longer to reach the same 
final sensitivity to rare and/or new 
processes 



Function Sampling
and Event Generators

� Using Boosted Decision Trees to build a multidimensional    
function approximation that can be directly sampled

� For high efficiency numerical Integration or phase space 
sampling
� Application to Complex (Higher Order) Event Generation

� Example of 4D Camel Function Integration
� 10X Acceleration with an order of magnitude improved accuracy 

over the best previous methods in HEP
J. Bendavid, Caltech



� Science at the LHC
� Triggering on 

rare signals
� Data processing 

and simulation
� Data movement 

and + computation
� Search strategy

The LHC Program Areas 
Great Potential for Machine Learning

� High Luminosity LHC
� Ever Increasing 

Event Complexity
� Global Computing and 

Network Challenges of 
with Exascale Data

� Data Science at the LHC: Deep 
Learning Approaches to Solutions
� Advanced Tracking Algorithms
� Object Identification
� Faster Simulation
� Low Energy Computation
� Beyond Computing Needs Alone
� Optimized Computing; 

Global Workflow 
� Model Independent Searches
� Faster Time to Discovery
� New Opportunities for

Science Discoveries 
Not Otherwise Realized   



Example 1: Charged Particle Reconstruction

23

Only hits associated 
to tracks shown

Reconstruction: From raw measurements in subdetectors to  
kinematics and properties of the particles created in Collisions



Cost of Charged Particle Tracking
� 65-200X Greater overall CPU need in the HL LHC Era (Est.)
� In spite of more optimization, Moore’s Law, needs    

will surpass the computing budget by 4-12X
� Charged particle tracking is one 

of the most CPU consuming tasks
� Code Optimizations (to fit in 

computing budgets) are saturated
� Large fraction of available CPU is 

required in the HLT
� So can only perform tracking 

for pre-filtered subsamples

�Need for much faster algorithms
�Apply machine learning to the challenge



Calorimeter Reconstruction

� Energy deposit per Crystal computed from time-samples
� Crystal energies collected in clusters then super-clusters
� Photon, electron, jets identified; then energy calibrated
� Multi-step reconstruction process
� More and more challenging with higher granularity, pileup
� Pattern recognition, identification and regression:

become all-in-one with machine learning



ML and HEP: Simulation of Collisions
� Most analyses have data driven background estimations
� Cross checks and analysis tailoring nevertheless require large 

sets (to billions) of simulated events for the main backgrounds
� Simulating events is a costly process
� Particle vectors are generated randomly according to physics processes

computed from theoretical matrix elements and amplitude calculations
� Particles propagate, bend, slow down, interact, and deposit energy 

in a complete representation of the CMS experimental apparatus 
� Energy in sensitive elements is digitized, emulating the real CMS readout 

� Billions of CPU hours are spent in Monte Carlo Simulation

� Complex showering process in One Crystal of 76000 in CMS
� An opportunity for generative models with machine learning
� Generate the energies and topology of the resulting pattern 

seen in the crytals (and its fluctuations) directly from raw data
26



Machine Learning: Learn to Discover in HEP 
� Taxonomy

Balazs Kegl at CERN 2014: https://indico.cern.ch/event/316800/



Machine Learning: Scene Labeling
Approach to Calorimeter and Track Reconstruction

� Group and classify what 
each pixel belongs to:
� Real-time video processing 

with deep learning

� Associate each Crystal 
energy to a cluster with DL
� Associate each tracker hit to 

a charged particle with DL

� Real time helmet cam



Application: “Something Like Tracking” 
One example among many from NIPS 2014 : 

http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf

� Note that these are real-time 
applications, with CPU constraints

Also

� Worry about efficiency, 
“track swap”

David Rousseau, HiggsML Visits CERN May 19 2015

http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf


Object ID to Sentence Generation from “Raw” Images

Deep Visual Image Alignments for Generating Image Descriptions
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/
Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf

Region-Level ID and Annotations with a Multimodal RNN 
Karpathy and Fei-fei Li, CVPR 2015

Generate a Decay Process Description 
from a Collision representation

Raw hits 
Not even  
Tracks !

Penta
quark !

Create Description 
of a (Scene) Image

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/
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Deep Learning Applications
Pilot Projects in CMS 

and Other HEP Experiments

J-R Vlimant, 
M. Spiropulu et al.



Advanced Tracking Algorithms

� Pilot project: recurrent neural nets for Kalman filtering

� Further investigation may involve
� Application of scene labeling to seed formation
� Application of object detection to track assembling

� Medium/High risk, very high reward problem
� Exploratory phase on the model definition



Jet Tagging

� Available discriminators are 
performing well 

� Not yet taking advantage of 
the full substructure of the jets

� Image processing methods are 
natural candidates to perform 
the classification

� Hadronic activity results in a 
bundle of collimated particles
� The more energetic, the more 

collimated : W-jet
� With even higher energy, even 

mother particles are collimated: 
top-jet, Higgs-jet

Small dataset, 11 categories, 60% 
accuracy on gluon jet versus any

quark jet. Pre-preliminary

Energy Topology



Tagging Boosted Objects: W and Top

Neural
net

Train

W tagger arXiv: 1511.05190, Oliveira, Kagan, Mackey, Nachman, Schwartzman

Top Tagger arXiv: 1501.05968 Almeida, Backovic, Cliche, Lee, Perelstein

W Vs QCD Jet Discrimination

TopQCD

Maxo
ut Maxout

Maxout is best

1/
ba

ck
gr

ou
nd

 e
ff



NOνA: Long Baseline (Fermilab – Minn.) 
Muon to Electron Neutrino Oscillations

40% Better Electron Efficiency
for same background; Faster 

CNN to Convolutional Visual Net Neutrino Event Classifier



Generative Models: Rendered 3D Models 
to 3D Object Recognition, Correspondence, Invention

� Generate, 3D objects 
from rendered images
� Derive a 3D object’s key 

attributes and component parts
� Evaluate similarity, perform 

Image Arithmetic
� Generate New Views and/or 

New Objects from known ones
� HEP Application: Replace 

complex multi-step simulation 
with Generative Models
� Address Computing 

Bottleneck
� Enable science program:
� Increased speed, agility 

and/or scope of investigations

Learning to Generate Chairs, 
Tables and Cars with CNNs



Neuromorphic Computing
Chip and Systems Hardware

� Brain emulating low power systems 
of silicon neural chips
� Spiking neurons and spike-driven 

synapses for general computation
� Demonstrated to perform well 

on pattern recognition problems
� Unsupervised learning capabilities 

shown on some chip types

Real time unsupervised learning of visual 
stimuli in neuromorphic VLSI systems
http://www.nature.com/articles/srep14730

� Ongoing collaboration with
iniLab & INI Zurich

� Aimed at calorimeter pattern recognition
using NM chips in CMS Trigger level 1

� Potential application: NM accelerator 
cards for tracking, patt. rec. etc

� Involvement with IBM TrueNorth team
� Application: pattern recognition in HEP
� Possible synergy with LBNLJ-R Vlimant, Caltech

http://www.nature.com/articles/srep14730


Plus: Data Analytics 
Beyond the Need 

for Computation [a la Watson]
38

Machine Learning So Far

J-R Vlimant, 
M. Spiropulu et al.

� Faster algorithms
� Highly relevant for triggers
� Reduce software maintenance
� Faster event simulation
� Facilitate detector design
� Mitigate operational cost
� Offer New Science Opportunities



Data Certification Robot
� Not all of the data taken at the experiments is good for analysis:

(detector channel or readout effects, software defect, calibration  )
� Histograms made per luminosity block (23s of beam time)

are scrutinized by experts to decide on good/bad data
� Huge number of histograms, several layers of scrutiny:

Labor Intensive
� The machine learning 

approach identifies 
relevant features

� Calculates good data 
percentage per lumiblock

� Trains rolling classifiers

J-R Vlimant, Caltech with Yandex

Average labor fraction

� By accepting 1% data loss 
we could  save 40% of 
the certification team’s 
workload



Self Organizing Analysis

J-R Vlimant, Caltech

� Train a 4D self organizing map (SOM) on synthetic data
composed of one signal and 3 backgrounds

� Injection performed at varying signal/background ratio
� Interpretation using only backgrounds allows one

to single out the events from signal: deviation
� Significance of deviation estimated as function of signal injection

10-4 Injected
Signal

backgrounds
+

Si
gn

ifi
ca

nc
e

16
14
12
10
8
6
4
2
0

Signal/Background



�Applying Deep Learning + Self-Organizing 
systems methods to optimize LHC workflow
� Unsupervised: extract key variables/functions
� Supervised: to derive optima
� Iterative and model based: to find 

effective metrics and stable solutions [*]
�Complemented by game theory methods, 

modeling and simulation
� Shown to be effective to solve traffic, 

communications and workflow problems
� Starting with logged monitoring information 
� Progressing to real-time agent-based 

pervasive monitoring
[*] T. Roughgarden (2005). Selfish routing and the price of anarchy

Key Developments from the HEP Side 
Enabling the Vision: Machine Learning 

Self-organizing neural network 
for job scheduling in 
distributed systems

Run on 
Local FarmRun 

on 
Remote 

Farm

MONARC 
Simulation
Circa 1998

https://en.wikipedia.org/wiki/Tim_Roughgarden
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Towards a Next Generation
Network-Integrated System

Facing the Challenges 
of Exascale Global Data 

with Deep Learning



Exploit the Synergy among:
1. Global operations data and workflow 

management systems developed by 
HEP programs
� Enabled by distributed operations 

and security infrastructures
� Riding on high capacity (but mostly

still-passive) networks
� Being geared to more diverse resources

Vision: Next Gen Integrated Systems for Exascale
Science: Synergy ¨ a Major Opportunity 

2. Deeply programmable, agile software-defined networks (SDN) 
Emerging as multi-domain network “operating systems”
� With Proactive and reactive site-network interactions 

3. � Machine Learning, modeling and simulation, 
and game theory methods; Extract key variables; 
Optimize; move to real time self-optimizing workflows

� Watershed: A new ecosystem with ECFs as focal points in 
the global workflow 

WLCG



Provisioning

Machine
Learning & 
Prediction

Service Diagram: LHC Pilot
Resources Scheduler

Job
Scheduler 

Network 
Resources
Scheduler

SDN 
Controller(s)
ODL, ONOS

OVS

SENOS
Request 
Manager

Schedd
(HTCondor)

Monitoring  
and  

State 
Tracking

WMAgent

Modeling 
and 

Simulation

CRAB3 
backend

Data Transfer
Scheduler 

VO Apps

ASO

PhEDEx

On Ramp to 
NGenIA



Computing Optimization R&D
Machine Learning Coupled to Modeling and Simulation

� Learn complex models using deep learning 
with monitoring data and the chosen metric(s) 

� Use simulations together with game theory techniques 
or a reinforcement learning method to find optima
� Balancing among max throughput, balanced resource use, 

predicability of time to completion (predictable workflow) etc.   
� Variations: evolve towards the metrics yielding stable 

solutions with good throughput
� Steering computing, storage and network elements like robot arms



Game Theory and the Future of Networking
http://blog.eai.eu/game-theory-and-the-future-of-networking/

op
en

la
b.

w
eb

.c
er

n.
ch

� Game theory: Mathematical models of 
conflict and cooperation among intelligent 
rational decision-makers 
� Studies participants’ behavior 

in strategic situations.
� Motive and the need for Increased Reach 

induce selfish entities to cooperate
in pursuit of a common goal 

� Application Pull: the Internet calls for 
analysis and design of systems that span 
multiple entities with diverging information 
and interests

� Technology Push: math and science mindset 
of game theory is similar to that of many 
(computer) scientists

� Diverse Fields of Use: economics, political 
science, psychology, logic, computer science, 
biology, poker and now HEP

� Coherent Interactions among the experiments’ workflow management 
systems, the end sites, the network and the user groups as a System

� GT is now applied to a 
wide range of behaviors

� It has become an 
umbrella term for 
the science of logical 
decision making

� In and among humans  
and computers

�Emergence of the 
internet has motivated 
development of GT 
algorithms for finding 
equilibrium in games, 
markets, auctions, peer-
to-peer systems, security 
and information markets 



Many More 
Public Physics Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResult

http://cms.web.cern.ch/org/cms-higgs-results

Amazon Sunrise
LHC Run2 and Beyond 

We have launched on a River of Discovery

http://cms.web.cern.ch/org/cms-higgs-results


Data Science Workshop
Hands-on workshops on 
contemporary machine 

learning techniques
To foster HEP � ML 

Community Collaboration 

Organized by M. Spiropulu, J-R. Vlimant, et al.

+ Contacts with NVIDIA, Orange Labs Silicon Valley, 
INI Zurich, IBM True North, Yandex, Minds.ai, etc. 

Follow On:  
DS@HEP 2016 Workshop 

July 5-7 at Simons 
Foundation, NYC

Focus on new ideas + 
solutions in tracking, 
calorimetry, anomaly 

detection, and 
New paradigms in 
machine learning; 

close to the raw data



With Thanks to J-R Vlimant, J. Bendavid
and Prof. Maria Spiropulu
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2014+2015 CMS Young Researcher Awards to J-R Vlimant, J. Bendavid

For “His sustained and 
critical contributions to the 

development of software 
for the calorimeter and 

tracking triggers at HLT; 
data quality monitoring, 
detector simulation and 

reconstruction software.”

J-R Vlimant: Sidney Coleman 
Diploma at the 54th  Erice
Subnuclear Physics School for 
his Talk on Machine Learning 
for HEP June 2016

For “His sustained and 
critical contributions to 

the development of 
sphoton and electron 

energy Reconstruction, 
the discovery of the 

Higgs boson in its two 
photon decay mode, 

and the Tier0 operation 
at LHC startup



THANK YOU!

Harvey Newman
newman@hep.caltech.edu

mailto:newman@hep.caltech.edu


Machine Learning: Take Away Messages
� Machine Learning solves problems
� Which are very hard to model

ab initio
� Working from the ground up
� Then extracting relationships 

and even deriving models 
� Without Domain Knowledge

¨ Coding vision: scene labeling,
face and other object recognition;
understanding properties 

� Physicists can solve complex HEP 
problems:
� Real-time event filtering
� Object composition + identification
� Needle in the hay-stack analysis
� But within severe limits

� But: We spend a great deal of 
effort, time and money
� Operating our experiments
� Handling worldwide data
� Dealing with hardware and 

software complexity, 
faults and human error

� All of this narrows or blocks   
our path to science discovery

� We are looking to Machine 
Learning for New Paths with 
� Greater speed + simplicity
� Lower cost and ultimately
�Greater insight



Machine Learning: Our Approach 
� Deep Learning represents an ongoing leap forward 

in computer science and industry to solve complex problems
� Discipline scientists including HEP are beginning to follow;  are 

already reaping benefits, and are contributing 
� Practical advantages are Compelling
� GPU Computing power per $, and Joules/flop 

are increasingly, very favorable
� Training is complex, but execution can be very fast +cheap 

with the right processor (neuromorphic, FPGA, M4-type)
� We will ride and support the deep learning trends towards
� Affordable computation
� Faster algorithms for trigger, pattern rec. and analysis
� Optimized workflow for globally distributed exascale data 
� Enhanced science-industry interface

� Focusing physicists’ efforts on science rather than software
� To meet the challenges in computing and science
� Now and through the next Generation
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Extra Slides Follow



A Special Time  in Particle Physics
The List of Outstanding Questions Grows

�2012 Higgs Discovery;
2013 Nobel Prize
�2011 Nobel: Accelerated 

Expansion of the Universe
�2014 Nobel: Neutrino 

Oscillations Large neutrino 
mixing: θ13

AND New Physics Hints
�Dark Matter in cosmic 

positrons and photons ?
�BSM Effects in 

the Flavor Sector ?
�Gravitational Waves !
AND Mystery: Higgs and SUSY 
Nature is More Subtle
Exciting times just ahead
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The Standard Model of Particle Physics: 
3 Quark, 3 Lepton Families, 3 of 4 Forces

35 Nobel prizes have been awarded for 
the experimental discoveries & 
theoretical breakthroughs 

[Higgs Boson
Generates Masses]

The SM describes the known forces and 
particles, with one important exception:

Gravity 
And it does not explain:

� The existence of dark matter
� The pattern of particle masses
� The unification of all forces
� The matter-antimatter asymmetry
� Dark energy H

A beautifully simple picture with great predictive power. 
Leaving many questions unanswered



T. Virdee, ICHEP08 56

ENTER the LHC and the LHC Experiments

Lake Geneva

Large Hadron Collider
27 km circumference

CMS

ATLAS

LHCb

ALICE



Magnetic length 12.5 m
Free bore diameter 6 m
Central B Field 3.8 Tesla
Temperature             4.2o K
Nominal current 19 kA
Radial Pressure 64 Atm.
Stored energy 2.7 GJ
CMS: KE of a Nimitz Class 

117,000 Ton Carrier 
Moving at 20 mph



A Slice 
of CMS

CMS Design
High Field (3.8T)

Modular
Compact Tracker

Precise ECAL:
inside Coil

Muons in & Out



LHC Run2 Production Rates: 13 Vs 8 TeV
Ratio 2 to 9k Times: Entering a New Era of Discovery

Greater Sensivity to New Physics and Higgs Properties 
Across the Board; Especially for High Masses

Top Partners

Z Partners
SUSY: Gluinos

Excited Quarks
Black Holes



Prospects for Run2 and Beyond: 2016-37
“There’s Plenty of Room at the Bottom” 
An Invitation to Enter a New Field of Physics   
(Feynman Lecture at Caltech, December 29, 1959)

There is So Much Room

We have only just begun: Time for Deep Learning and Innovation

CMS

ATLAS

And if We Improve

Plus Rare Higgs Decays, DiHiggs and BSM Higgs Production,  



Many More 
Public Physics Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResult

http://cms.web.cern.ch/org/cms-higgs-results

The View in LHC Run1

http://cms.web.cern.ch/org/cms-higgs-results


Mining Documentation
IBM Watson Discovery Advisor 

Demonstrated 
the ability to 
make sense 

of a large 
volume of 
research 

papers and 
provide 
insights

http://www.ibm.com/smarterplanet/us/en/ibmwatson/discovery-advisor.html

http://www.ibm.com/smarterplanet/us/en/ibmwatson/discovery-advisor.html


Machine Learning: Exploring New Methods 
Aim to extend CMS’ (and HEP’s) Discovery Reach

Targets: Analysis - Identification/discovery of unknown BSM signals;
Optimization of LHC workflow and distributed system operations

� Synergy with previous Computing Model work on optimization of global 
grid and network systems using Self-organizing Neural Nets in MONARC
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Building Consistent Agile
Network Operations

At the Edges and in the Core 



A New Era of Technical Challenges
as we Move to Exascale Data and Computing

� Beyond network capacity and reliability 
alone, the keys to future success are 
next generation systems able to:
� Respond agilely to peak and shifting 

workloads
� Accommodate a more diverse set of 

computing systems
from the Grid to the Cloud to HPC

� Coordinate the use of globally 
distributed computing and storage, 
and networks that interlink them
� In a manner compatible across 

fields sharing common networks
� The complexity of the data, and hence 

the needs for CPU power, will grow 
disproportionately: by a factor of several 
hundred during the same period

MonALISA: Monitoring 
Agents in a Large Integrated 

Services Architecture

A Global Autonomous 
Real Time System



Next Gen SDN Systems for Exascale Science
Vision: Distributed environments where 
resources can be deployed flexibly to meet 
the demands
� SDN is a natural path to this vision:
� Separating the functions that control the 

flow of traffic, from the switching infra-
structure that forwards the traffic

� Through open deeply programmable 
“controllers”. 

With many benefits: 
� Replacing stovepiped vendor HW/SW solutions 

by open platform-independent software services 
� Virtualizing services and networks: lowering 

cost and energy, with greater simplicity 
� Adding intelligent dynamics to system operations
A major direction of Research networks + Industry
� A Sea Change that is still emerging and maturing

opennetworking.org

A system with 
built in intelligence
Requires excellent 

monitoring at all levelsBuilding on the Caltech/ESnet/Fermilab Pilot Experience



� Diverse network paths to support 
flows among multiple host groups

� Diverse policies governing path 
setup and prioritization of flows

� Assigned bandwidth individually 
or in groups in response to users, 
applications [e.g. PhEDEx, ASO], 
upstream SDN controllers

� Real-time adjustment of allocations 
triggered by: (1) new requests, (2) real-
time feedback on progress of transfers, 
(3) network state changes or error 
conditions, (4) proactive load-balancing 
operations, or (5) rate-limiting operations 
imposed by controllers or emerging 
network operating systems
(e.g. SENOS)

OVS End- and Inter-Site Orchestration 
Design + Implementation: Multiple Host Groups, Paths, Policies

Northbound Interaction 
with SDN Controller(s)



SDN-driven flow 
steering, load 
balancing, site 
orchestration

Over Terabit/sec
Global Networks

SC15: SDN Driven Next Generation Terabit/sec 
Integrated Network for Exascale Science

Open Daylight SDN Controller

Added Goal: Preview
PetaByte Transfers 

to/from Site Edges of 
Exascale Facilities 
With 400G DTNs

Consistent Operations 
with Agile Feedback:
Major Science Flow 

Classes Up to 
High Water Marks

supercomputing.caltech.edu

Tbps Ring Planned for SC1645



69SC15: Terabit/sec SDN Driven Agile Network
Aggregate Results 

Global Topology

Smooth Single Port Flows up to 170G; 120G over the WAN. With 
Caltech’s FDT TCP Application http://monalisa.caltech.edu/FDT

170G

170G

900 Gbps Total
Peak of 360 Gbps in the WAN

29 100G NICs; Two 4 X 100G 
and Two 3 X 100G DTNs;

9 32 X100G Switches



� 11 Openflow switches: Dell, Pica8, Inventec, Brocade
� Many 40G, N X 40G, 100G Servers: Dell, Supermicro, 2CRSI, Echostreams; 

and 40G and 100G Network Interfaces: Mellanox, QLogic
� Caltech Equipment funded through the NSF DYNES, ANSE, CHOPIN 

projects, and vendor donations 

SDN State of the Art Development Testbed  
Caltech, Fermilab, StarLight, Michigan; + CERN, Amsterdam, Korea

Real-time Auto-
Discovered SDN 

Testbed Topology

Starlight

UMich
https://sdnlab.hep.caltech.edu



� Key Components: (1) OVS at edges 
to stably limit flows (2) Application 
Level Traffic Optimization (ALTO) in 
Open Daylight for end-to-end optimal 
path creation, coupled to flow 
metering and high watermarks 
set in the network core

� Real-time flow adjustments 
triggered as above

� Optimization using “Min-Max Fair 
Resource Allocation” (MFRA)     
algorithms on prioritized flows

� Flow metering in the network fed 
back to OVS edge instances;
changes applied to ensure smooth 
progress of flows end-to-end

� High Water Marks to protect the 
world’s R&E networks 

Next Generation “Consistent Operations”  
Site-Core Interactions for Efficient, Predictable Workflow

Consistent Ops Paradigm applied to 
file transfers with ALTO, OVS

and MonALISA FDT Schedulers

Demos: Internet2 Global Summit in May; 
SC16 in November 

With Yale CS
Team: Y. Yang, 
Q. XIang et al
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Bringing Pre-Exascale
and Exascale LCFs 

Into the Global Dynamic Ecosystem



Exascale Ecosystems 
for Next-Generation Data Intensive Sciences 

� The opportunity for HEP (CMS example): 
� CPU needs will  grow 65 to 200X by HL LHC
� Dedicated CPU that can be afforded will be 

an order of magnitude less; even after code 
improvements on the present trajectory 

� DOE ASCR/HEP Exascale Workshop June 2015:
� Exposed the favorable LCF outlook + issues 

� Short term Goal: Making such systems a grid 
resource for CPU using data resident 
at Fermilab Tier1 and US Tier2s 
� Important Long Term benefits 
� Folding LCFs into a global ecosystem 

for data intensive sciences 
� Building a modern coding workforce
� Shaping the future architecture 

and operational modes of 
Exascale Computing Facilities

3 Pilot Programs with Argonne 
1. MIRA as a CMS grid resource
2. Precise NLO generators on Mira 

with new more efficient methods
3. DTN and process design 

for 100G+ data transfers 



� Developing system architectures in hardware 
+ software that meet the needs
�Edge clusters with petabyte caches
� Input + output pools: ~10 to 100 Pbytes

�A handful of proxies at the edge
�To manage and focus security efforts

�Extending Science DMZ concepts
� Enabling 100G to Tbps SDNs with 

Edge/WAN Coordination 
� Identifying + matching HEP units of work 

to specific sub-facilities adapted to the task
�Site-Network End-to-End Orchestration
�Efficient, smooth petabyte flows over 

100G then 400G (2018) then ~1 Tbps (2021) networks
�Machine Learning to Optimize the Workflow

Pilot with Argonne: Operational Architecture for LCFs
Work for (LHC and Other) Data Intensive Applications

Next Gen Science DMZ

¨ Developments targeting the CPU Needs at LHC Run3 and HL LHC



Networks and LCFs for HEP and Exascale
Science: Our Journey to Discovery

� Run 1 brought us a centennial discovery: the Higgs Boson
� Run 2 will bring us (at least) greater knowledge, and perhaps 

greater discoveries: Physics beyond the Standard Model. 
� Advanced networks will continue to be a key to the discoveries 

in HEP and other fields of data intensive science and engineering
� Technology evolution might fulfill the short term needs
� A new paradigm of global SDN networks should emerge

during LHC Run2 (in 2015-18) to address the needs, together with 
� New approaches + a new class of global networked systems 

to handle Exabyte-scale data, with a focus on ECFs are needed 
[building on LHCONE, DYNES, ANSE, OliMPS; SDN NGenIA + SENSE] 

� Wide deployment of such systems by ~2023 will be:
� Essential to meet the challenges at the LHC and HL-LHC
� A game-changer with the potential to shape 

both research and daily life: dealing with truly-Big Data
� The ongoing Caltech – Fermilab – ESnet partnership, 

and the comprehensive vision, are the keys to future success
75



Summary
� Advanced networks will continue to be a key to the discoveries 

in HEP and other data intensive fields of science and 
engineering

� Near Term and Decadal Challenges must be addressed:  
Greater scale, complexity and scope

� New approaches + a new class of software driven networked 
systems to handle globally distributed Exabyte-scale data are 
being developed

� Deeply programmable, agile software-defined networks (SDN) 
are a key ingredient of NGenIA

� Adapting Exascale Computing Facilities to meet the highest 
priority needs of data intensive science, including high energy 
physics as a first use case (to be followed by others) will 
empower the HEP community to make the anticipated next and 
future rounds of discoveries 76



The LHC Mission: Opening a Realm of High 
Energies and a New Era of Discovery

gg luminosity @ LHC
qq luminosity @ LHC
gg luminosity @ Tevatron
qq luminosity @ Tevatron

� The LHC is a Discovery 
Machine

� The first accelerator to probe 
deep into the Multi-TeV scale

� Its mission is Beyond the SM
� There are many reasons 

to expect new physics  

Parton-Parton 
CM Energy

1000 2000 3000 4000 5000 6000

SUSY, Substructures, Graviton 
Resonances, Black Holes, 

Low Mass Strings, 
  the Unexpected

We do not know what we will find
Nature is More Subtle
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State of the Higgs on July 1 2012
LEP Precise Electroweak 

Data (Indirect)
MH < 152 GeV (95% CL)

Direct Searches: 
LEP: MH > 114.4 GeV

Fermilab Exclusion
162 - 166 GeV (95%CL)

Direct Searches 
at CMS (by Dec. 2011) 

127 – 600 Excluded

Closing In: Only a Narrow 13 GeV Gap Remained



The Higgs at Last: Signatures

H ¨ γγ

“The delicate, rare fingerprints 

of the Higgs Boson”

H ¨ ZZ ¨ e+e- µ+µ− HZ ¨ bb + 2 Leptons H ¨WW¨Leptons+MET



H � γγ at LHC Run 1 (2015)
Enough for Discovery in this channel alone

ATLAS and CMS Each Observe a Signal with Local Significance > 5σ
CMS 

ATLAS

Phys. Rev. D90 (2014) 112015Arxiv 1407.0558v2    EPJ C74 (2014) 3076

CMS: 5.7σ
(SM: 5.2σ expected)

ATLAS: 5.2σ
(4.6σ expected)



Higgs Signal Strengths µ = σ/σSM
Very SM-Like
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Best Fit σ/σSM by Decay 
Mode χ2/NDF = 1.0/5

σ/σSM by Production 
mode χ2/NDF = 5.4/4  

ttH
within 
2.0σ

σ/σSM by 
Production Mode

Best-fit overall signal strengths:
ATLAS σ/σSM = 1.18
CMS:    σ/σSM = 1.00±0.14 

+0.15
-0.14

+ H � SUSY H, 
exotics, Portal DM,  

σ/σSM by 
Decay Mode

γγ

ZZ*

WW*

VH �bb

ττ

µµ

Ζγ

Combined



The Couplings vs Mass
� We usually say “the 
Higgs boson couplings 
are proportional to the 
mass of the particle”
�More precisely, the 
Feynman rules are:

� Plot the couplings vs
mass using and

More Data is needed to make precise determinations
Especially for the Fermions: b, t, τ



Combined Mass Measurement 
from H � ZZ � 4l, H � γγ
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arXiv:1503.7589 Profiling MH; µ(ggH,ttH) and µ(VBF, VH)  for γγ; µ(4l) for ZZ

Impressive
0.1 – 0.3% Mass
Scale Accuracy

MH Values (ATLAS+CMS)
H � γγ: 125.07 ± 0.25 ± 0.14
H � 4l: 125.15 ± 0.37 ± 0.15

Combined Channels:
MH = 125.09 ± 0.21 ± 0.11

Improvement on syst. uncertainties
• final e, γ, µ calibrations 
• final detector simulation
Impressive ±0.2% accuracy: 
Statistical uncertainty dominates

Calibration with 
Z, Υ, J/ψ � ee, µµMass Determined to 0.2% Accuracy !



Anomalous CP Couplings of a Spin 1 or 2 Higgs 
Using H � V(*)V(*) (V= Z, W, γ) Decays

Effective Amplitude Parametrization

SPIN 2

SPIN 1

CMS:  JP Values: many models Other 
than 0+ Ruled out with ≥ 4σ significance

ATLAS : results on spin/parity (using H→γγ, ZZ and WW) Also favor 0+

ArXiv:1411.3441



Where We Go from Here: Precision 
Measurements of Higgs Spin & CP Properties

H→ZZ→ 4l 

Use 4 lepton production & 
decay configurations to 
Probe the tensor structure 

(J, CP) of the couplings of the 
new particle to elwk gauge 

bosons ZZ, Zγ, γγ
Using the full Lagrangian

For H� 4l and qq� 4l

DiMarcoXieChen

Sample the full 
space including 
detector effects

Quantitative 
In-Depth Study 

Very Computation -
ally Intensive 8D

Calculations 
Made Tractable 

for the First Time
by Yi Chen

Remarkable γγ
and Zγ sensitivity

-

http://dx.doi.org/10.1007/JHEP01(2013)182, CALT-68-2894

Yi Chen Thesis: CP Odd & 
Even γγ Couplings can be 

probed to 1% Level Within the
First 300-400/fb at the LHC !

5 Angles 
3 Masses

Key Challenge to Tackle 
with Machine Learning

� Reduce computing time
� Release simplifying 

assumptions
� Bring out more subtle effects

http://dx.doi.org/10.1007/JHEP01(2013)182


Anomalous CP Couplings of a Spin 0 Higgs
Using H � V(*)V(*) (V= Z, W, γ) Decays

Effective Amplitude Parametrization
• a1: SM CP-even coupling
•Λ1: BSM Scale (GeV)
• a2 (a3): CP even (odd) anomalous Couplings
• Results in cross section fractions f, phases φ

H → Z(γ*)Z(γ*) → 4l : Full 8D phase space:
(5 angles, MZ1, MZ2, M4l)

H → WW → l ν lν : dilepton mass and   
transverse masses constrain the fractions
Scenarios: Real phases; floating phases

Illustration: fΛ1 vs fa3

constraints with φs 0, π 

ArXiv:1411.3441

Best Fit Results very close to SM expectations



Search for diphoton resonances

Diphoton event with m(γγ) = 745 GeV



So Far: No (Clear) Signs of New Massive Particles
� 500 Publications using data from 

7- and 8- TeV pp and 
heavy ion collisions

� Discovery of the Higgs boson,
a new baryon, .

Scores of other results
� Extension of lower limits on

the mass of new particles
� New Limits on the rate 

of rare new phenomena

All CMS pubs: http://cms-results.web.cern.ch/cms-results/public-results/publications/

Ξ0*
b

� Higgs 
Channels:

� We Knew 
what these 
would look 
like

But for New Particles and Phenomena:
� We Do Not Know what we will find
� A Vast target for Unsupervised ML-

Driven, model-independent searches

pp → H → ZZ*

http://cms-results.web.cern.ch/cms-results/public-results/publications/


The Outlook
�SM or not: the 125 GeV Higgs boson 

has taken us to the threshold of an era 
of new physics, with a host of questions

�Natural, Split or High Scale SUSY ?: 
� A nearby 3rd generation at <~1 TeV ?
� Another nearby scale at ~5-50 TeV ?

�OR: new singlets, doublets, triplets; new 
scalars, vectors, composites, extra dim. ? 

�Vacuum (meta)stability ¨
Another new scale at ~1010-12 GeV ?

�Neutrino masses (via seesaws or RH ν):
A “similar” intermediate scale ?

�The Discovery has Expanded our Vision
¨Run2 : a new horizon to explore and test  

our ideas: on EWSB and beyond  
89

Unstable

Stable

1010
Metastable

1012 

Mh in GeV

Degrassi
et al. NNLO

Giudice
Strumia

High Scale SUSY Split SUSY

 λ at High Scales

Apologies for all I could not cover 



Statistics: Computing Limits
for the Higgs Search

CERN-CMS Note-2011-005: Procedure for the LHC 
Higgs Boson Search Combination in Summer 2011



Statistics: Computing Significance 
for the Higgs Search
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