Physics at the LHC: A New Window
on Matter, Spacetime and the Universe
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= P H - |= A Half-Century Search

"'|* The LHC and CMS
|= Discovery of a New Boson

| = Beyond the Standard
Model: The Future
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Gateway to a New Era

Harvey = Newman Caltech
Simons Institute Workshop on Real-Time Decision Planning
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Discovery of a Higgs Boson
July 4, 2012; Nobel Prize 2013-

of the YEAR
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Theory : 1964 The '. t:;::::j::;:::‘:;:’:,im Advanced Computational Methods
and Networks Were Essential to the
Higgs Discovery and Every Ph.D
Thesis of the last 20+ Years

New Innovative Methods will be
Essential to Future Discoveries, 3
the Ph. D Theses to Come

LHC + Experiments
Concept: 1984

Construction: 2001

Operation and
Discovery: 2009-12

nggs boson




The LHC: Deep into the Multi-TeV Scale

HEP: Complex Data. Challenge of Pileup |~4 X 105 pp Collisions

= ~2M Higgs Bosons
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Run2 and Beyond will bring: 1 .” \
Higher energy and intensity | =S |
Greater science opportunity =T N
Greater data volume &

complexity
A new Realm of Challenges

HL LHC 140-200




9  the Compact Muon Solenoid

CMS DETECTOR

Total weaight V14,000 tonnes

Overall diameter . 15.0 m STEEL RETURN YOKE

Crverall length 28T m

Magnslicfield 287 12,500 tonnas SILICON TRACKERS

Pixel (100%150 pm) —16m? —56M channeals
Microsirps (B0<180 pmi —200m” -0 EM channels

i[ SUPERCOMDOUCTING SOLENOID
Meobaurm titamum ool carmying =18, 000A

_—+MUON CHAMBERS
Barrel; 250 Daft Tube, 480 Resisive Plate Chambers
Endeaps: 468 Cathode Sirip, 432 Resislive Plate Chamber

PRESHOWER
\ Silicon Srips - 16m* - 137,000 channels

FORWARD CALORIMETEH
Sleel + Cuwardz fibers 2,000 Channels
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HADROM CALORIMETER I:Il'::J!'-L:I
Briss + Plaslic scindillator - 7,000 cha rimsials

CMS is a Highly Heterogeneous System

Raw data is 100M channels sampling every 25 nsec: 1 petabit/sec
50 Exabytes/Day in Readout and Online Processing



(CleYoTe MUNTe [T 1o Le [yl 7 TeV CMS measurement (L < 5.0 fb™)

of Standard Model 8 TeV CMS measurement (L < 19.6 fb™)

_._ P - 7 TeV Theory prediction
njets) rocesses - 8 TeV Theory prediction

Ejet“ Zi CMS 95%CL limit
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All results at: http://cern.ch/go/pN;j7 Th. Ac,, in exp. Ac

Many Orders of Magnitude Rejection Required
in Order to Extract Interesting Events




Haie (nzZ) LEVEL-1 Trigger 40 MHz
— ] Hardwired processors (ASIC, FPGA)
-

MASSIVE PARALLEL
r';,. Pipelined Logic Systems
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HIGH LEVEL TRIGGERS 100 kH:
Standard processor FARMs
me 50

1000 Gb/s

Fial) ] 7]
0° 10° 10 1° 100
Available processing time

Massively parallel electronic infrastructure makes a prime selection
Refined decision in a software defined trigger: N X 10k cores
Little processing time for selection: ML for a faster algorithms




Fe™ Global Data Flow: LHC Grid Hierarchy
42 A Worldwide System Invented by Caltech (1999)

(TR, oS 13 Tier1, 170 Tier2
W‘g@ EW. L s— + 300 Tier3 Centers:
i Y s AT 1k to N X 10k Cores
xperlmen

-PBytelsec | 3-.' BT ] CERN Center |
100 PBs of Disk; ’
__Tape Robot
Tier 1 N X100 Gbps
CLondon S W C_Paris S B » @ » -

8
10 to 100 Gbps  Tier 2 ¢ T CACR o penter yenter

E&
3 = Tier0: Real Time Data Processing
r_ Tier1 and Tier2: Data and Simulation

fap S 4ata 10~ to 100 Gbps Production Processing
3§ = Tier2 and Tier3: Data Analysis

Increased Use as a Cloud Resource (Any Job Anywhere)

? Center

Increasing Use of Additional HPC and Cloud Resources
A Global Dynamic System: Fertile Ground for Control with ML



Global Networks Today and Tomorrow g
Science Program Data Flow Challenges ¥

~

= Volume of Global Data Flow + Expansion Rate:
Challenging the World’s Research and Education Networks

= Complex Data and Workflow

= Worldwide Inter-Facility Connections: A Complex System
Over Networks of Varying Capacity and Reliability

* Plan to Meet the Challenges: Integrating Worldwide
Operations in an Intelligent, SDN-Driven System

#* Optimized Using Deep Learning

#* Coupled to Modeling and Simulation,
Pervasive Monitoring and State Tracking

% Game Theory to Find Effective Metrics
and Stable Solutions




*150-250 Gbps Typical; Peaks to 300+ Gbps
=45.7 PB input data volume in May 2016

= Long term traffic growth trend is 72%/year (10X per 4 Yrs)
= But 2015-16 growth is above this trend: +7104% in 12 Months
= LHCONE growth in 2015-16: +254%, to 16.4 Pbytes/month

= 2 #* My.es.net portal [ [N &

100G . >=50 Gbps

— 10G | 20-50
— 1G B 10-20 0-1 ¢
_ <1G . 5-10
A\ - i
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% ESnet6: the next SDN-enabled generation, is planned by ~2019




Complex Workflow: the Flow Patterns Have Increased in
Scale and Complexity, even at the start of LHC Run2

WLCG Dashboard Snapshot April-May: Patterns Vary by Experiment

Transfer Throughput Transfers Done/Day 28 GBytes/s Typical

ALICE To 40 GBytes/s
Peak Transfer Rates
Complex Workflow

= Multi-TByte Dataset
Transfers

» Transfers of 13-41
Million Files Daily

| J = Access to Tens of
| Millions of Object

ATLAS Collections/Day
U M mu | >100k of remote

CMS

0 0 o =TI

\
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i quU\ L 1]

e Bon Be | “enease simultaneously

fll connections (e.g. AAA)

2.7X Traffic Growth (+166%) in Last 12 Months; +60% in April



LHCONE: a Virtual Routing and Forwarding (VRF) Fabric

LHCONE: A global infrastructure for the High Energy Physics (LHC and Belle Il) data management
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Good News: The Major R&E Networks Have Mobilized on behalf of HEP
Issue: A complex system with limited scaling properties.
LHCONE traffic grew by 3.5X in last 12 months: a challenge during Run2




High Luminosity LHC Era 2026-2037

A New Era of Exascale Network Challenges

= Networks

* Projected needs are growing at an
exponential rate: beyond affordable |
budgets, Moore’s Law. N/ =< ona

100-1000X by HL LHC in 2026

= Needs of other fields continue to
grow, HEP will face stiff competition
for network resources.

* Need for innovation: a new
generation of Intelligent software
driven global systems coordinating
computing, storage and network
resources




LSST + SKA Data Movement
Upcoming Real-time Challenges for Astronomy

. Utility Trunk—hous
T support electronics
and utilities

Caaa iy
WL L

S5~ Cryostat—contains focal
- plane & its electronies

3.2 Gigapixel
Camera

: . 10 Bvtes / pixel " o ral oo
Camera % Section ( y es plxe ) o SKA

O Networks: Dedicated 2 X 100G for |mage data Additional 100Gs
for other traffic, and diverse paths

O Lossless compressed Image size = 2.7GB
(~5 images transferred in parallel over a 100 Gbps link)

[ Custom transfer protocols for images (UDP Based)
[JReal-time Challenge: delivery in seconds to catch cosmic “events”

[+ SKA in Future: 3000 Antennae covering > 1 Million km2;
15,000 Terabits/sec to the correlators® 1.5 Exabytes/yr Stored




Higgs Boson Discovery
and Properties
Example Analysis with BDTs

14



Higgs Boson Decays
Many Modes Contribute

125 GeV Region: Rich and Challenging:

vy, WW,

Rare High Mass Resolution Channels Have a Special Role:

H->yy and H> ZZ - 4 Lep

180 200 ||
e\l but No Peak
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Higgs Discovery at the LHC: H—> vy <%
;

Narrow diphoton mass peak over smooth backgroundig
| | Diphoton Mass Spectrum S

CMS H—yy
Vs=7TeV,L=5.1fb"
Vs=8TeV,L=53fb"’

Events / 1.5 Ge\

eighted E
o
3

)]
@)
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S+B Fit
...... Bkg Fit Component
L 1+1o
N 20

120

Keys: 1) Premse Callbratlon 2) Optlmlzed Photon Identification
3) Precise Energy Scale 4) Innovative Analysis Methods

+ Many Caltech postdocs and students over last 20+ years
A Stream of Innovations; from the first BDT Analysis
“Razor Variables” for New Physics Searches
Next: Deep Learning Approaches




= Y3 CMS Experiment at the LHC, CERN

'\ Run/Event: 194108 / 564224000

W& Data recorded: 2012-May-13 20:08:14.621490 GMT ﬂ
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H — yy Analysis Overview

= BDT Analysis: Fit to Diphoton mass m,, in event categories
= 4 event classes based on a diphoton BDT output , 2 di-jet categories
(VBF) + 3 Exclusive categories (VH): Electron, Muon, E;Miss

= Score according to Probability (correct vertex), per-event m,,
resolution estimate, prompt photon ID score, + diphoton kinematics

= Cross-checked with
traditional cut based
analysis

= photon ID & mass fit
in categories

= 2 angular x 2 shower shape
categories with different
Signal/Background ratios;
+ 2 di-jet + 3 Exclusive
Categories

Results

minds.ai visit, DS@LHC Opprotunities, J.-R. Vlimant



Encode all relevant information on
signal vs background (aside from m_,
itself) into a single MVA diphoton
discriminant, with input variables
largely independent of m,,

* Photon ID MVA for each photon:
based on isolation, shower shape,
energy density per event

= Kinematics and Topology: pr and
of each photon, and cos Ay between
the two photons

= Per-event mass resolution and
correct-vertex probability

Trained on MC signal and background

Validation of the inputs (photon ID,
energy resolution): uses Z—ee, upy

Validation of the output with Z—ee

0.5 1.0
di-photon BDT

di-Photon BDT




H %y : Extracing the Signal
Leading to the Discovery

= Measure the probability
that an excess in the data can ‘ ‘
ge e'z(plalneddf:ay ta" ltj_pward By Convention, you need
ackground fluctuation, “E Qf ” )
without a SM Higgs boson S Sigma” for a Discovery

NS oy = Had 4 Sigma significance in this channel
§=7TeV, L=51 0" alone at the discovery (June 2012)

l5=8TeY,L=530" = In final 2012 analysis (with 4X Data),
i\a\}\'lfg\)‘ /I we had 6 Sigma in this channel alone

a Il"/ 2l 1 Use of MVAs (BDTs) Boosts

Sensitivity by a Factor of 1.8 relative
to traditional “cut and count” method
»* Without MVA we would have had run
80% Longer for the discovery, and
»* Many years longer to reach the same
final sensitivity to rare and/or new
o GeV) processes

Local p-value

e

SM Higgs Expected

— 7 TeV Observed
—— 8 TeV Observed




Function Sampling
and Event Generators

function approximation that can be directly sampled
* For high efficiency numerical Integration or phase space
sampling
= Application to Complex (Higher Order) Event Generation

f(x) (Camel)
— &"® (Primary BDT)
—— gix) (Secondary BDT)

(a) linear (b) log

= Example of 4D Camel Function Integration
= 10X Acceleration with an order of magnitude improved accuracy

over the best previous methods in HEP

J. Bendavid, Caltech




The LHC Program Areas
Great Potential for Machine Learning

= Science at the LHC
= Triggering on
rare signals

= Data processing
and simulation

= Data movement
and + computation

= Search strategy

= Data Science at the LHC: Deep
Learning Approaches to Solutions

= Advanced Tracking Algorithms
Object Identification

Faster Simulation

= Low Energy Computation

* High Luminosity LHC
= Ever Increasing
Event Complexity

= Global Computing and
Network Challenges of
with Exascale Data

* Beyond Computing Needs Alone
= Optimized Computing;
Global Workflow
= Model Independent Searches
= Faster Time to Discovery

= New Opportunities for
Science Discoveries
Not Otherwise Realized




Hits associated to found tracks only.
At least as many pre-filtered or not associated

Jnly hits associated
to tracks shown

Seeding

Particle trajectory bended in a
solenoid magnetic field

Curvature is a proxy to

momentum (M
Particle ionize silicon pixel /14
and strip throughout Lt
several concentric layers

Thousands of sparse hItS’z

Lots of hit pollution from low % On T
momentum, secondary par’ncles |

Kalman Filter

« Explosion in hit combinatorics in both seeding and stepping pattern recognition
 Highly time consuming task in extracting physics content from LHC data




6-200X Greater overall CPU need in the HL LHC Era (ES) |

* In spite of more optimization, Moore’s Law, needs
will surpass the computing budget by 4-12X

CMS Simulaton. {5 = 13 TV, + PU, BX=25ns E Charged particle tracking is one

Full Reco Current-=— Track Reco Current |

Full Reco Run1 Track Reco Run1 | Of the mOSt CPU Consuming taSkS

PU140 |
»

Il = Code Optimizations (to fit in
1 computing budgets) are saturated

| = Large fraction of available CPU is
i required in the HLT

= So can only perform tracking
for pre-filtered subsamples

Time/Event [a.u.]
¥ n o
o =] =]

@
o

5 6

Luminosity [10™ em? 577

%* Need for much faster algorithms
#* Apply machine learning to the challenge
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Energy deposit per Crystal computed from time-samples
= Crystal energies collected in clusters then super-clusters
= Photon, electron, jets identified; then energy calibrated

= Multi-step reconstruction process

= More and more challenging with higher granularity, pileup

= Pattern recognition, identification and regression:
become all-in-one with machine learning




ML and HEP: Simulation of Collisions

= Most analyses have data driven background estimations

= Cross checks and analysis tailoring nevertheless require large
sets (to billions) of simulated events for the main backgrounds

= Simulating events is a costly process
= Particle vectors are generated randomly according to physics processes
computed from theoretical matrix elements and amplitude calculations

= Particles propagate, bend, slow down, interact, and deposit energy
in a complete representation of the CMS experimental apparatus

= Energy in sensitive elements is digitized, emulating the real CMS readout

= Billions of CPU hours are spent in Monte Carlo Simulation

PbWO0, CMS, X;=0.89 cm

= Complex showering pro in Oe Crystal of 76000 in CMS
#* An opportunity for generative models with machine learning

#* Generate the energies and topology of the resulting pattern
seen in the crytals (and its fluctuations) directly from raw data




Machine Learning: Learn to Discover in HEP

* “The science of getting computers to act without being  KeLEERCTaTel1s

explicitly programmed” - Andrew Ng (Stanford/Coursera) fsuunpciir;l:::d earning mon-paramedric (modek{re) input - output

+ part of standard computer science curriculum since the 90s * dssicaion (Trees, BDT,SVM,NN) - what you call MVA

+ regression (Trees, NN, Gaussian Processes)
* inferring knowledge from data £y e

ellgrce Optiniaton * Unsupervised learning: non-parametric data representation

i 8ener3“1in8 to unseen data Signal * clustering (k-means, spectral clustering, Dirichlet processes)

Statistics . processing
Machlne -+ dimensionality reduction (PCA, ISOMAP, LLE, auto-associative NN}

 usually no parametric :
" Learning

model assumptions  density estimation (kernel density, Gaussian mixtures, the Boltzmann machine)

e Information. * Reinforcement learning:
* emphasizing the computational | PRSES Cogiie ";:‘malpn
eory

cha”enges Neuroscience SC1ENCE * learning + dynamic control:learn to behave in an environment to maximize cumulative
reward

Balazs Kegl at CERN 2014: https://indico.cern.ch/event/316800/




Machine Learning: Scene Labeling £
Approach to Calorimeter and Track Reconstructlon b

Farabet et al. ICML 2012, PAMI 2013

= Group and classify what = Associate each Crystal
each pixel belongs to: energy to a cluster with DL

= Real-time video processing = Associate each tracker hit to
with deep learning a charged particle with DL




Application: “Something Like Tracking”

One example among many from NIPS 2014 :
http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf

]

i

] Note that these are real-time  Worry about efficiency,
applications, with CPU constraints “track swap”

David Rousseau, HiggsML Visits CERN May 19 2015



http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf
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Region-Level ID and Annotations with a Multimodal RNN
Karpathy and Fei-fei Li, CVPR 2015

Create Description
of a (Scene) Image

Generate a Decay Process Description
from a Collision representation

Raw hits
Not even
Tracks !

Deep Visual Image Alignments for Generating Image Descriptions
http://www.cv-foundation.org/openaccess/content cvpr 2015/papers/
Karpathy _Deep_ Visual-Semantic_Alignments_ 2015 _CVPR_paper.pdf



http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/

Deep Learning Applications

Pilot Projects in CMS
and Other HEP Experiments

J-R Vilimant,
M. Spiropulu et al.
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Seeding  Classification

Formation

= Pilot project: recurrent neural nets for Kalman filtering

= Further investigation may involve
= Application of scene labeling to seed formation
= Application of object detection to track assembling

= Medium/High risk, very high reward problem
= Exploratory phase on the model definition




Jet Tagging

@AW = Hadronic activity results in a

B bundle of collimated particles

= The more energetic, the more
collimated : W-jet

= With even higher energy, even
mother particles are collimated:
top-jet, Higgs-jet

Energy Topology

= Available discriminators are
performing well
= Not yet taking advantage of
the full substructure of the jets

- Image processing methods are mII dataet 11 caegrie 6°/
. ’ ’ 0
natural candidates to perform accuracy on gluon jet versus any

the classification quark jet. Pre-preliminary




[ QCD Jet
— Top

Madgraphb + Pythia
anti — by, R =1.0

pr = 1100 — 1200 GeV
m = 130 — 210 GeV

Arbitrary Units

Convolved W Vs QCD Jet Discrimination

Feature Layers

150
. — mass

— To
AR
Fisher
Maxout
Convnet
- Randem

Maxout is best

Max-Pooling

1/background eff

Repeat MaXOUt . - - Signal Eﬂiciency-




NOVA: Long Baseline (Fermilab — Minn.)
Muon to Electron Neutrino Oscillations

Hadronic

B : Feature
3D schematic of View from the top Particle 1

: - | Map
NOvA particle detector M T T T3 r TETET P |

Muon
: Feature
| Map
PVC cell filled with Muon Neutrino

liquid scintillator D | S C C

View from the side Particle 2

I Particle 1

Particle 3

CVN Selection Value | v, sig | Tot bkg v, CC | Beam v, | Signal Efficiency QE CC
Contained Events - 88.4 509.0 | 3448 | 132.1 32.1 - 14.8%
s/ Vb opt 0.94 43.4 6.7 2.1 0.4 4.3 49.1% 86.6%
s/ Vs+ bopt 0.72 58.8 18.6 10.3 2.1 6.1 66.4% 76.0%

CVN Selection Value | v, sig | Tot bkg NC Appeared v. | Beam v, | Signal Efficiency | Purity
| Contained Events - 3555 | 1260.8 | 1099.7 | 1357 | 344 | - [ 21.9%
s/ Vb opt 0.99 61.8 0.1 0.1 0.0 0.0 17.4% 99.9%

s/ Vs + b opt 0.45 | 2068 | 76 68 | 0.7 | o1 | 58.2% 96.4% ‘

40% Better Electron Efficiency
for same background; Faster

http://arxiv.ora/pdt/1604,01444, pdt Muon P:Jgutnno




a% Generative Models: Rendered 3D Models
AP to 3D Object Recognition, Correspondence, Invention

SIS

Learning to Generate Chairs, = :
Tables and Cars with CNNs fGenerate& 3Ddo.bjeCts
Arxiv:1411:5928, Dosovitskiy, rom rendered images

Springenberg, Tatarchenko,Brox = Derive a 3D object’s key
attributes and component parts

= Evaluate similarity, perform
Image Arithmetic

= Generate New Views and/or
New Objects from known ones

= HEP Application: Replace
complex multi-step simulation
with Generative Models

= Address Computing
Bottleneck

= Enable science program:

* Increased speed, agility
and/or scope of investigations




‘_,. fg. Neuromorphic Computing
¥ Chip and Systems Hardware

JREEEEr - plastic
4‘ ”

NV = Brain emulating low power systems
{ " } of silicon neural chips
<8 4 1 e = Spiking neurons and spike-driven
' synapses for general computation

.
.
~ -
---------

on pattern recognition problems
~d " Unsupervised learning capabilities
input pater ’ = shown on some chip types

(70 active macropixels)

vailable neurons)

ElEEE | \... sl (1 Ongoing collaboration with
iniLab & INI Zurich

I O Aimed at calorimeter pattern recognition
il using NM chips in CMS Trigger level 1

mm O Potential application: NM accelerator

Real tlme unsuperwsed Iearnlng of visual cards fOI' traCking, patt (15 G

stimuli in neuromorphic visi systems | 3 INvolvement with IBM TrueNorth team
http://www.nature.com/articles/srep14730 O Application: pattern recognition in HEP
J-R Vlimant, Caltech O Possible synergy with LBNL



http://www.nature.com/articles/srep14730

Machine Learning So Far

= Faster algorithms

= Highly relevant for triggers

= Reduce software maintenance

= Faster event simulation

= Facilitate detector design

= Mitigate operational cost

#* Offer New Science Opportunities

Plus: Data Analytics
Beyond the Need

for Computation [a la Watson]| , J-RViimant,

M. Spiropulu et al.
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7 Data Certification Robot

CI Not all of the data taken at the experiments is good for analysis:
(detector channel or readout effects, software defect, calibration

O Histograms made per luminosity block (23s of beam time)
are scrutinized by experts to decide on good/bad data

[ Huge number of histograms, several layers of scrutiny:
Labor Intensive

O The machine learning
approach identifies
relevant features

3 Calculates good data
percentage per lumiblock

3 Trains rolling classifiers

»* By accepting 1% data loss
we could save 40% of D
0.000 0.002 0.004 0.006 0.008 0.010

the certification team’s o< ol
workload J-R Vlimant, Caltech with Yandex

Average labor fraction
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o
o
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Self Organizing Analysis

3 Train a 4D self organizing map (SOM) on synthetic data
composed of one signal and 3 backgrounds
3 Injection performed at varying signal/background ratio
O Interpretation using only backgrounds allows one
to single out the events from signal: deviation
3 Significance of deviation estimated as function of signal injection

s
o 1801 W
.

il

104 Injected o T
14
. Rl 8 12
S(10
a.‘:’ 8
.cE,, 6
iF

0 Ge

107 10°

SignallBackground

J-R Vlimant, Caltech




Key Developments from the HEP Side
Enabling the Vision: Machine Learnlng

= Applying Deep Learning + Self-Organizing
systems methods to optimize LHC workflow

= Unsupervised: extract key variables/functions
= Supervised: to derive optima

= |[terative and model based: to find
effective metrics and stable solutions [*]

= Complemented by game theory methods, o MONARC

modeling and simulation )| Simulation

i . Circa 1998

= Shown to be effective to solve traffic, _ Run on

communications and workflow problems BE®  Local Farm

Ll Ll Ll ] ] Ll on I
= Starting with logged monitoring information il Remote
Farm

= Progressing to real-time agent-based R

pervasive monitoring Self-organizing neural network
for job scheduling in
[*] T. Roughgarden (2005). Selfish routing and the price of anarchy distributed systems



https://en.wikipedia.org/wiki/Tim_Roughgarden

Towards a Next Generation
Network-Integrated System

Facing the Challenges
of Exascale Global Data
with Deep Learning

42



Vision: Next Gen Integrated Systems for Exascale
Science: Synergy ®» a Major Opportunlty

Exploit the Synergy among:

1. Global operations data and workflow
management systems developed by
HEP programs

= Enabled by distributed operations
and security infrastructures

* Riding on high capacity (but mostly
still-passive) networks
= Being geared to more diverse resources

2. Deeply programmable, agile software-defined networks (SDN)
Emerging as multi-domain network “operating systems”

= With Proactive and reactive site-network interactions

3. % Machine Learning, modeling and simulation,
and game theory methods; Extract key variables;
Optimize; move to real time self-optimizing workflows

#* Watershed: A new ecosystem with ECFs as focal points in
the global workflow



Service Diagram: LHC Pilot
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Computing Optimization R&D
Machine Learning Coupled to Modeling and Simulation

Experiment

Expérimént

Task
WW Computing
Grid

Applied
Global Modify Time to
monitoring | assignment Completion

Environment

O Learn complex models using deep learning
with monitoring data and the chosen metric(s)

O Use simulations together with game theory techniques
or a reinforcement learning method to find optima

O Balancing among max throughput, balanced resource use,
predicability of time to completion (predictable workflow) etc.

O Variations: evolve towards the metrics yielding stable
solutions with good throughput

O Steering computing, storage and network elements like robot arms




Game Theory and the Future of Networking

http://blog.eai.eu/game-theory-and-the-future-of-networking/

* Game theory: Mathematical models of

3

#* Application Pull: the Internet calls for

conflict and cooperation among intelligent
rational decision-makers

#* Studies participants’ behavior
in strategic situations.

Motive and the need for Increased Reach
induce selfish entities to cooperate
in pursuit of a common goal

#* Emergence of the
internet has motivated
development of GT
algorithms for finding
equilibrium in games,
markets, auctions, peer-
to-peer systems, security
and information markets

analysis and design of systems that span
multiple entities with diverging information
and interests

Technology Push: math and science mindset
of game theory is similar to that of many
(computer) scientists

Diverse Fields of Use: economics, political
science, psychology, logic, computer science,

biology, poker and now HEP%\;

—

#* GT is now applied to a
wide range of behaviors

%* It has become an
umbrella term for
the science of logical
decision making

* In and among humans
and computers

¥ Coherent Interactions among the experiments’ workflow management
systems, the end sites, the network and the user groups as a System




LHC Run2 and Beyond
We have launched on a River of Discovery Amazon Sunrise



http://cms.web.cern.ch/org/cms-higgs-results

Organized by M. Spiropulu, J-R. Vlimant, et al.

Data Science @

Bridging High-Energy Physics and Machine Learning communities

9 -13 November 2015, CERN

/ﬂﬂ/ﬂ/ﬂ//“

Local Organising Committee
+ Xabier Cid (CERN)

« Gilles Louppe (CERN)

+ Michelangel IoMa ngano (CERN)

+ Maurizio Pierini (CERN)

« Jean-Roq chVIma t (Caltech)

N

Program Committee International Advisory Committee R N\
+ Kyle Cranmer (New York U) +Roger Barlow (Huddersfield U) 4 - o).
+ Cécile Germain (LRI) + Tommaso Dorigo (INFN-Padova) ¥ .«l. f/

¢ «Vladimir Vava Gligorov (CERN) « lan Fisk (Simens Foundation) > : 4 X

i « Gilles Louppe (CERN} = Maria Girone (CERN) . * G %Y K/ X

« Andrew Lowe (Wigner RCP) « Eilam Gross (Weizmann) ¢ P
« Maurizio Pierini (CERN) + Baldzs Kégl (LAL-Orsay) > g 4 v?.l,
+ David Rousseau (LAL-Orsay) «Constantin Loizides (LBNL) .~ % S22 %% %%
+ Maria Spiropulu (Caltech) « Stuart Russell (UC Berkeley) et Il =’ ‘;'? A5 /" "
+ Jean-Roch Vlimant (Caltech) + Victoria Stodden (Ul Urbana-Champaign) i =1 . :; ﬁ-" ’6‘ ' 4
+ Daniel Whiteson (UC Irvine) + Max Welling (Amsterdam U) ~ 1l = 2 ;:: ¥, -'“ I-,‘ '.,f&
sponsored by o= - 5 5; %f‘
LHC Physics Center at CERN: http://Ipcc.web.cern.ch / =% 2d 4
Fermilab National Laboratory: http://fnal.gov oy Y X

Moaore-Sloan Data Science Environment: http://cds.nyu.edu/mooresloan

http://cern. ch/DataSC|enceLHC2015

B Mazoyer LAL Orsey 7015

Hands-on workshops on
contemporary machine
learning techniques

To foster HEP <~ ML
Community Collaboration

Follow On:
DS@HEP 2016 Workshop

July 5-7 at Simons
Foundation, NYC

Focus on new ideas +

solutions in tracking,

calorimetry, anomaly
detection, and

New paradigms in
machine learning;
close to the raw data

+ Contacts with NVIDIA, Orange Labs Silicon Valley,
INI Zurich, IBM True North, Yandex, Minds.ai, etc.




With Thanks to J-R Vlimant, J. Bendavid

and Prof. Maria Spiropulu
2014+2015 CMS Young Researcher Awards to J-

e = A = « 5 . /
The Compact Muon Solenoid Collaboration for HIS Sus ta,lned‘ a,nd‘ d ‘

I
z |
]

| critical contributions to the [l
3 Wi ST & develo nt of software §
. 2014 CMS Yo cher Prize . : fo,r t e Ca[brimete’}’ a«nd' ki
ety e St (racking triggers at HLT; [
data quality monitoring,
detector simulation and
reconstruction software.”

Jean-Roch Viimant

J-R Vlimant: Sidney Coleman
Diploma at the 54 Erice S For “His sustained and
Subnuclear Physics School for [l Wl critical contributions to
his Talk on Machine Learning Josfua Bendayid the deve [opment Of
for HEP June 2016 I8 sphoton and electron
Sidney COLEMAN . | Wi ) energy Reconstruction,
W the discovery of the
b ... Jean- o Veranr R R e ﬂflﬂgs boson in its two
] ) _photon decay mode,
i : © ShoTm ' and the Tiero operation
at LIHC startup

ompact Muon Solenotd Collaboration
€L son

Gerardus 't Hooft and Antonine Zichichi
Directors
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THANK YOU!

Harvey Newman
newman@hep.caltech.edu



mailto:newman@hep.caltech.edu

:® Machine Learning:

Take Away Messages

O Machine Learning solves problems
»* Which are very hard to model

ab initio
%* Working from the ground up

¥ Then extracting relationships
and even deriving models

#* Without Domain Knowledge

=» Coding vision: scene labeling,
face and other object recognition;
understanding properties

O Physicists can solve complex HEP
problems:

O Real-time event filtering
O Object composition + identification
O Needle in the hay-stack analysis

O But within severe limits

J But: We spend a great deal of
effort, time and money

[ Operating our experiments
O Handling worldwide data

O Dealing with hardware and
software complexity,
faults and human error

3 All of this narrows or blocks
our path to science discovery

#* We are looking to Machine
Learning for New Paths with

#* Greater speed + simplicity
#* Lower cost and ultimately

* Greater insight




in computer science and industry to solve complex problems

O Discipline scientists including HEP are beginning to follow; are
already reaping benefits, and are contributing

3 Practical advantages are Compelling

O GPU Computing power per $, and Joules/flop
are increasingly, very favorable

3 Training is complex, but execution can be very fast +cheap
with the right processor (neuromorphic, FPGA, M4-type)

[ We will ride and support the deep learning trends towards
O Affordable computation
O Faster algorithms for trigger, pattern rec. and analysis
O Optimized workflow for globally distributed exascale data
O Enhanced science-industry interface

O Focusing physicists’ efforts on science rather than software
#* To meet the challenges in computing and science

#* Now and through the next Generation




Extra Slides Follow
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A Special Time in Particle Physics
The List of Outstanding Questions Grows

/ Salf]
US LHC Users Association

=2012 nggs DISCOVQI‘y; ggiz bg::};rzln:rmﬁuned? Quarks and eptors.
I Goyp H TR liag

2013 Nobel Prize = if natural: what new physics/symmetry? g :\::si:aar::lemsi);in

AV I\ Do) o - N o= (Y- =Yoo ||| Q doesit regularize the divergent V,V, cross-section B ki 6
. . — at high M(V,V.) ? Or is there a new dynamics ? SR Tz TS

Expansmn of the Universe ] elementaryLorLcompositeHiggs? Q matter and antimatter asymmetry
» 2014 Nobel: Neutrino Q s it alone or are there other Higgs bosons ? Elnbuar;y;;:?j:;;;ged e

Oscillations Large neutrino d orlgmlofcouplmgstofermlons

o Q coupling to dark matter ?
mixing. e13 Q does it violate CP?

Q cosmological EW phase transition

AND New Physics Hints
= Dark Matter in cosmic

positrons and photons ? The two epochs of Universe’s accelerated expansion:;
] Q primordial: is inflation correct ?
= BSM Effects in which (scalar) fields? role of quantum gravity?
the Flavor Sector ? Q today: dark energy (whyis A so small?) or
] ] is GR wrong on large scales?

= Gravitational Waves ! Dark matter:

R O composition: WIMP, sterile neutrinos,
AND My_Stery' Higgs and SUSY Physics at the highest E-scales: axions, other hidden sector particles, .
Nature is More Subtle Q0 how i gravity connected with the other forces ? [l Q1 one type or more ?

oy . . b0 3t b ? - AT
Exciting times just ahead Q doforces unify at high energy Q only gravitational or other interactions :




a9 The Standard Model of Particle Physics: 3§
43 Quark, 3 Lepton Families, 3 of 4 Forces [P

ELEMENTARY
PARTICLES

H Three Generations of Matter

Force Carriers

35 Nobel prizes have been awarded for
the experimental discoveries &
theoretical breakthroughs
[Higgs Boson
Generates Masses]

The SM describes the known forces and
particles, with one important exception:

Gravity

And it does not explain:

= The existence of dark matter

= The pattern of particle masses

= The unification of all forces

= The matter-antimatter asymmetry
= Dark energy

A beautifully simple picture with great predictive power.
L eaving many questions unanswered
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ENTER the LHC and the LHC Experiments %




Magnetic length 12.5m
Free bore diameter 6m
Central B Field 3.8 Tesla
Temperature 4.2°K
Nominal current 19 kA
Radial Pressure 64 Atm.

Stored energy 2.7 GJ

CMS: KE of a Nimitz Class

117,000 Ton Carrier




CMS DETECTOR

Tatal waight 14,000 tonnes

Overall diameter: 150 m STEEL RETURN YOKE

QOverall length (287 m

Magneticfield 38T 12,500 tonnes SILICON TRACKERS

Barrel: 250 Drift

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
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Brass + Plastic scintilator -7.000 channgls

Pirel (100x150 pm) -18m -65M channets
Microstrips (80x180 pm) -200m? -9 60 channels

SUPERCONDUCTING SOLENOID
Niobium titanim coil carrying ~18,000A

MUON CHAMBERS
Endcaps: 468 Cathode Strip, 432 Resistive Piate Chambers

FORWARD CALORIMETER

Steel +

Tube, 480 Resistive Plate Chambers

Modular
Compact Tracker
Precise ECAL.:
inside Coil
Muons in & Out

PRESHOWER
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16m’" ~137,000 channels

Quartz fibers ~2,000 Channels
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LHC Run2 Production Rates: 13 Vs 8 TeV

Ratio 2 to 9k Times: Entering a New Era of Discovery

Minimum bias 1.2-J J'E'ﬁt -IEI'FH cm :_35 ] @ 13 -l_E"I'hIIr
6

W(ln) =1

Z(W) 3 1|7 pp the LHC produces:

z ol g - 200HzW —Iv

t (s-channel) 2.2
t (t-channel) 3 2.5 = 19HzZ-—I

WH IR.o - 8 Hztop parr
H (ggF) y2.3 - 0.5 Hz Higgs

H (VBF) ) 2.4
tt ’ 3.3
twz B ) 3.6
ttH & J 3.9
A(0.5 TeV, ggF+bbA) ') 4.0
stop pair (0.7 TeV) ) 8.4 Top Partners

gluino pair (1.5 TeV) 1 a6 SUSY: Gluinos
Z' SSM (3 TeV) 110 Z Partners
Q* (4 Tev) 156 Excited Quarks
QBH (5 TeV) J 370 Black Holes
_QBH (6 TeV) J 9000
1 10 100 1000 10000

Factor increase of cross-section at 13 TeV compared to 8 TeV

Greater Sensivity to New Physics and Higgs Properties

Across the Board; Especially for High Masses



Prospects for Run2 and Beyond: 2016-37
“There’s Plenty of Room at the Pottem™

An Invitation to Enter a New Field of Physics
(Feynman Lecture at Caltech, December 29, 1959)

There is So Much Room |CMS

L (fb-1) KV Kw Kz Kg Kp K¢ K; KZV Kl.l BR;,.is

00
... .l .! ‘.' .' .! ..l

300 9% 9% 8% 14% 23% 22% 14% 24% 21% 22%
3000 5% 5% 4% 9% 12% 11% 10% 14% 8% 14%

And if We Improve

;. > Reduce Theory Systematics by 50% | Reduce Exp Syst by VLumi

¥ Ky [ K | Kz | Ko | Ky | Ko | Ko | Ky | Ky | BRo

Y 9 Yy | H

1 | U 826 0

Plus Rare Higgs Decays, DiHiggs and BSM Higgs Production,

We have only just begun: Time for Deep Learning and Innovation
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The View in LHC Run1



http://cms.web.cern.ch/org/cms-higgs-results

Mining Documentation
IBM Watson Discovery Advisor

Demonstrated
the ability to
make sense

of a large
% Y | A2 Gk o volume of
E= e A B N & A NEED ASVERS.
emire NI LA DSCOVERY N LA i == papers and
9 LN /. AOVISOR e ACT 0N FISTE : = -pro.\"de
. e v = @ insights



http://www.ibm.com/smarterplanet/us/en/ibmwatson/discovery-advisor.html

Machine Learning: Exploring New Methods
Aim to extend CMS’ (and HEP’s) Discovery Reach

0 : QCD Self- : .
INPUT: QD 1 : WJetsToLNu . . OUTPUT: |mm unknown [
pseudo- SR EER e organizing SM = oo

otsTONUNuU -1 : unknown Map ] B WjetsToLNu
data with Categories|mm zetstonunu
0 ;

Signal ' ‘ Exhibiting

Injected o - | “Unknown’
| Bin —Events

With

Large

Targets: Analysis - Identification/discovery of unknown BSM signals;
Optimization of LHC workflow and distributed system operations

= Synergy with previous Computing Model work on optimization of global
grid and network systems using Self-organizing Neural Nets in MONARC




Building Consistent Agile
Network Operations
At the Edges and in the Core

64



A New Era of Technical Challenges 4
as we Move to Exascale Data and Computing

Beyond network capacity and reliability
alone, the keys to future success are
next generation systems able to:

= Respond agilely to peak and shifting
workloads

= Accommodate a more diverse set of
computing systems
from the Grid to the Cloud to HPC

= Coordinate the use of globally
distributed computing and storage,
and networks that interlink them

* In a manner compatible across
fields sharing common networks

The complexity of the data, and hence
the needs for CPU power, will grow
disproportionately: by a factor of several
hundred during the same period

MonALISA: Monitoring
Agents in a Large Integrated
Services Architecture

A Global Autonomous
Real Time System




Next Gen SDN Systems for Exascale Science

Vision: Distributed environments where
resources can be deployed flexibly to meet
the demands

= SDN is a natural path to this vision: Ssies Agpcalo
= Separating the functions that control the Iﬂm ]p
flow of traffic, from the switching infra- Q080 Ly
structure that forwards the traffic

= Through open deeply programmable
“controllers”.
With many benefits:

O Replacing stovepiped vendor HW/SW solutions
by open platform-independent software services

O Virtualizing services and networks: lowering

APPLICATION LAYER

cost and energy, with greater simplicity ¢ 3
O Adding intelligent dynamics to system operations opennetworking.org
A major direction of Research networks + Industry A system with

O A Sea Change that is still emerging and maturing built in intelligence

Requires excellent

Building on the Caltech/ESnet/Fermilab Pilot Experience e .
monitoring at all levels




OVS End- and Inter-Site Orchestration

Design + Implementation: Multiple Host Groups, Paths, Policies e

O Diverse network paths to support o
- rcnestration
flows among multiple host groups | | Controllers/SENOS
High-Level Services High-Level Services
H 11 1 ASO, Phedex, Shell scripts or Peering ASO, Phedex, Shell scripts or Peering
U Diverse policies governing path iy [T\ S
setup and prioritization of flows 3 [
0 Assigned bandwidth individually
or in groups in response to users, EIITG PN, NB interface
applications [e.g. PhEDEXx, ASO], R -
upstream SDN controllers controller(s P controlle(s

0 Real-time adjustment of allocations

triggered by: (1) new requests, (2) real-
time feedback on progress of transfers,
(3) network state changes or error
conditions, (4) proactive load-balancing
operations, or (5) rate-limiting operations

) i ,_ovs | ovs |9V
imposed by controllers or emerging v

network operating systems Northbound Interaction
(e.g. SENOS) with SDN Controller(s)




SC15: SDN Driven Next Generation Terabit/sec
Integrated Network for Exascale Science

SC15 SDN-WAN Demonstration End-Points SDN-driven flow
~ Caltech, UM, Dell, Starlight, PRP, FIU, UNESP steering, load

’, Amsterdam SN balancing, site
. lii orchestration

starght ‘ : gEﬂf Over Terabit/sec
O.UM h Global Networks
Consistent Operations
i with Agile Feedback:
" Major Science Flow
Classes Up to
High Water Marks

Cen:gg\g.ink N \ = Add&d Goal: PI'eVieW
PetaByte Transfers

ESnet 10/100GE e

N e et to/from Site Edges of

igh aE— ; agugm
cenactins @) Exascale Facilities
scis 1006 Ry =mmmm  SUPercomputing.caltech.edu  A"/UNeF With 400G DTNs

45 Open Daylight SDN Controller Tbps Ring Planned for SC16

100G

l___FIU/AmLight




SC15: Terabit/sec SDN Driven Agile Network <,

gy

1>

Aggregate Results

900 Gbps Total
Peak of 360 Gbps in the WAN s,

900 Gbps 30 Map Rbak Rotate Scale nodaz . Spaed

700 Ghps T "

600 Gbps A
L T %
e : f;" ! // v

z 500 Chps

400 Cbps 1 7OG

300 Ghps \ - o " |
200 Ghps 1 70G S8\ % p ’ : -

Global Topology |

100 Gbps 3 N ‘i‘
, L

|||]|n|

0b
pi1213 11:16 11:1911:22 11:25 11:28 11:31 11:34 11:37 11:40 11:43 11:46 11:49 11:52 1155 11:58 12:01 12:04 12:07 12:10 12:1¢ | soun -
19 Nov 2015

PST time 29 100G NlCS; Two 4 X 100G
100g01.sc15.caltech.edu + 100g02.5¢15.caktech.edu + 400901 + 400902 - 400903 4400904 »C144.1009.5c15.0rg and Two 3 X 100G DTNs;

E140.1248.s¢15.0rg # E141,1248.5¢15.0rg »E142.1248.5¢c15.0rg *fiu-100g * localhost » premiotest

sandy01-gva.ultralight.org # sandy03-gva.ultralight.org » sc15-austin.sc15.0rg * sgi0l # sgi02 srcf-scl5-dl.stanford.edu 9 32 X1 OOG SWItChes

Smooth Single Port Flows up to 170G; 120G over the WAN. With
Caltech’s FDT TCP Application http://monalisa.caltech.edu/FDT

e EL




SDN State of the Art Development Testbed
Caltech, Fermilab, StarLight, Michigan; + CERN, Amsterdam, Korea &

O 11 Openflow switches: Dell, Pica8, Inventec, Brocade

0 Many 40G, N X 40G, 100G Servers: Dell, Supermicro, 2CRSI, Echostreams;
and 40G and 100G Network Interfaces: Mellanox, QLogic

O Caltech Equipment funded through the NSF DYNES, ANSE, CHOPIN
projects, and vendor donations

EE Topology

= L3 Route Calculation

i= All Interfaces (‘( j}

OC.
165.124.3.239
)./@

Starlight

Real-time Auto-
Discovered SDN
Testbed Topology

= Toggle Menu ~ Q Zoom Mode & Save Layout & Load Layout  View v  Switch label v Por
= 12 Route Caleulaton https:/lsdnlab.hep.caltech.ed?{@

£Z All Flows ( / 92163153
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Next Generation “Consistent Operations” #&.
Site-Core Interactions for Efficient, Predictable Workflow

1 Key Components: (1) OVS at edges
to stably limit flows (2) Application
Level Traffic Optimization (ALTO) in
Open Daylight for end-to-end optimal
path creation, coupled to flow
metering and high watermarks
set in the network core

Real-time flow adjustments
triggered as above

Optimization using “Min-Max Fair
Resource Allocation” (MFRA)
algorithms on prioritized flows

Flow metering in the network fed
back to OVS edge instances;
changes applied to ensure smooth
progress of flows end-to-end

High Water Marks to protect the
world’s R&E networks

Consistent Ops Paradigm applied to
file transfers with ALTO, OVS
and MonALISA FDT Schedulers

(0N

»| FDT-Scheduler ||

e @166

With Yale CS

Team: Y. Yang,
Q. Xlang et al

)

(3)6)6)

WAN Controller

ALTO Server
/ 3) \
| - -- _I — §
- 7@

Site Controller ¢~

Client _

:-_ 0vs i -r" T { /
P

Jovsy”
B

Demos: Internet2 Global Summit in May;
SC16 in November




Bringing Pre-Exascale
and Exascale LCFs

Into the Global Dynamic Ecosystem
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Exascale Ecosystems

for Next-Generation Data Intensive Sciences

* The opportunity for HEP (CMS example):
= CPU needs will grow 65 to 200X by HL LHC

» Dedicated CPU that can be afforded will be
an order of magnitude less; even after code
improvements on the present trajectory

= DOE ASCR/HEP Exascale Workshop June 2015:
= Exposed the favorable LCF outlook + issues

= Short term Goal: Making such systems a grid
resource for CPU using data resident
at Fermilab Tier1 and US Tier2s

* Important Long Term benefits

Leadership

* Folding LCFs into a global ecosystem 3 Pilot Programs with Argonne
for data intensive sciences 1. MIRA as a CMS grid resource
= Building a modern coding workforce |2. Precise NLO generators on Mira
= Shaping the future architecture with new more efficient methods
and operational modes of 3. DTN and process design
Exascale Computing Facilities for 100G+ data transfers




Pilot with Argonne: Operational Architecture for LCFs
Work for (LHC and Other) Data Intensive Applications
» Developments targeting the CPU Needs at LHC Run3 and HL LHC

O Developing system architectures in hardware ____ Leadership
+ software that meet the needs ' ]

#* Edge clusters with petabyte caches

%* Input + output pools: ~10 to 100 Pbytes
% A handful of proxies at the edge

% To manage and focus security efforts
#* Extending Science DMZ concepts

% Enabling 100G to Tbps SDNs with
Edge/WAN Coordination

* |dentifying + matching HEP units of work
to specific sub-facilities adapted to the task

#¥* Site-Network End-to-End Orchestration

* Efficient, smooth petabyte flows over
100G then 400G (2018) then ~1 Thps (2021) networks

% Machine Learning to Optimize the Workflow




Networks and LCFs for HEP and Exascale

Science: Our Journey to Discovery

Run 1 brought us a centennial discovery: the Higgs Boson

Run 2 will bring us (at least) greater knowledge, and perhaps
greater discoveries: Physics beyond the Standard Model.

Advanced networks will continue to be a key to the discoveries
in HEP and other fields of data intensive science and engineering

Technology evolution might fulfill the short term needs

A new paradigm of global SDN networks should emerge
during LHC Run2 (in 2015-18) to address the needs, together with

New approaches + a new class of global networked systems
to handle Exabyte-scale data, with a focus on ECFs are needed
[building on LHCONE, DYNES, ANSE, OIiMPS; SDN NGenlA + SENSE]

Wide deployment of such systems by ~2023 will be:
= Essential to meet the challenges at the LHC and HL-LHC

= A game-changer with the potential to shape
both research and daily life: dealing with truly-Big Data

The ongoing Caltech — Fermilab — ESnet partnership, 75
and the comprehensive vision, are the keys to future success




Summary ¥
Advanced networks will continue to be a key to the discoveries
in HEP and other data intensive fields of science and
engineering
Near Term and Decadal Challenges must be addressed:
Greater scale, complexity and scope

New approaches + a new class of software driven networked
systems to handle globally distributed Exabyte-scale data are
being developed

Deeply programmable, agile software-defined networks (SDN)
are a key ingredient of NGenlA

Adapting Exascale Computing Facilities to meet the highest
priority needs of data intensive science, including high energy
physics as a first use case (to be followed by others) will
empower the HEP community to make the anticipated next and
future rounds of discoveries 76
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The LHC MISSIOh Opening a Realm of Highgit 4

= The LHC is a Discovery

—— g9 luminosity @ LHC Machine
— qq luminosity @ LHC = The first accelerator to probe
o :3?::3::3%;:::::2: deep into the Multi-TeV scale
= |ts mission is Beyond the SM
= There are many reasons
to expect new physics

SUSY, Substructures, Graviton
Resonances, Black Holes,
Low Mass Strings,

the Unexpected

1000 M“”“Mﬂmo] We do not know what we will find
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| State of the Higi

5

Aoy

LEP Precise Electroweak

Data (Indirect)
My < 152 GeV (95% CL)

L —0.02750:0.000%
21 002748000010
54 o incl low Q° dats

Direct Searches:
LEP: My > 114.4 GeV
Fermilab Exclusion
162 - 166 GeV (95%CL)

Y, ¢
£ excluded

M,, (GeV)

Closing In: Only a Narrow 13 GeV

Direct Searches

at CMS (by Dec. 2011)

March 2012

155 160 165 170 175 180 185 190 195
mtcp(GeV)

Gap Remained

127 — 600 Excluded




The Higgs at Last: Signatures 4R

Michael Riordan, Guido Tonelli and Sau Lan Wu

The dellcate_’ rare ﬁnge';p"nts Scientific American 307, 66 -73 (2012) Published online: 18 Septemb
of the Higgs Boson doi:10.1038/scientificamerican1012-66

TINDINGS  s—

The Delicate, Rare Fingerprints of the Higgs

tremely unstable particle that qui thunderous din of y ba =vents that result from events that might come from the Higgs decay and throw much h images of actual Higgs signals observed in
Ays via a number of different processes, or “modes.” Unfor- 500 million proton-proton collisi / cond. The ATLAS and of the rest away. The drawings below sh r of the most im- } . (Because the discovery istical in nature,
r modes that experiments use to search for the Hig

nodes are indisting ble from the CMS experiments are designed ional interesting portant d

Bottom Quarks

The Higgs can also decay to a bottom quark and its antiparticle, each of which
decays into a tight “jet” of secondary particles called hadrons (composite
particles made of quarks). These hadrons fly through the detector’s inner
layers and deposit their energy in the outer calorimeters. Unfortunately, many
ordinary collisions also generate jets of hadrons from bottom quarks, which
makes it difficult to separate these Higgs events out from the background.

Z Bosons

The Higas may decay into a pair of Z bosons, each of which can decay into

an electron paired with an oppositely charged antielectron or two muons.
An inner tracker and calorimeter measure the electrons, while muons fly out,
leaving footprintlike tracks as they go. High magnetic fields bend the path

of electrons and muons during their trip, allowing for a high-resolution
measurement of their energy and the original Higgs mass.

Photons

Each detector includes multiple calorimeters, devices for measuring the
enerqy of particles. The innermost calorimeter is particularly alert for
photons. These are absorbed in the calorimeter and create tiny electrical
signals. If a Higgs decays into two photons, the detector can measure
their total energy at extremely high accuracy, which helps to precisely
reconstruct the mass of the newly found particle.

The Higgs can also decay to two W bosons, each of which can decay into an
electron, antielectron or muon, plus a neutrino or antineutrino. Neutrinos are
nearly impossible to detect—they fly out of the detector as if they were never
there, taking with them some of the event's energy. Researchers use this
missing energy to infer their presence, but the missing energy also prevents
them from accurately reconstructing the mass of the original Higgs boson.

EXPECTED
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H = vy at LHC Run 1 (2015)

Enough for Discovery in this channel alone

19.7 o' (8 TeV) + 5.1 fb™' (7 TeV)
ks |
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Arxiv 1407.0558v2 EPJ C74 (2014) 3076 Phys. Rev. D90 (2014) 112015

ATLAS and CMS Each Observe a Signal with Local Significance > 5o

K(m,=124.7Gev) = 1.14 * 0.21 (stat) *0-99 . (syst)**-13 . (theo)
K(m,=125.6 Gev) =1.17 £ 0.23 (stat) *°-10 o (syst)*?-12 ;. (theo)




Higgs Signal Strengths p = o/ogy
Very SM-Like

Best Fit o/ogy, by Decay
Mode %2/NDF = 1.0/5

Combined
it="1.00+0.14

H - vy tagged
1=1.12+0.24
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1=1.00+029
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= We usually say “the
Higgs boson couplings
are proportional to the
mass of the particle”

* More precisely, the
Feynman rules are:

19.7 fb™ (8TeV)+ 51 fb (TTe\/)

* Plot the couplings vs
mass using and

More Data is needed to make precise determinations
Especially for the Fermions: b, t, T
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— 95% CL
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Combined Mass Measurement
fromH—-ZZ - 4¢,H - yy

Calibration with
Z,Y,Jy— ee, up
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ATLAS H-yy = 1260220.51(£04310.27)GeV Stat. only uncert.
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ATLAS H=2Z-4 —— 124512052 (2 0.52£0.04) GeV

CMS H-Z2 =41 ; 120592045(£04210.17) GeV

1y of the leading muon

ATLAS+CMS 7y 125072029(202520.14) GeV
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Improvement on syst. uncertainties| My Values (ATLAS+CMS) jj AT 2040 |
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- final detector simulation H—41:125.15+ 0.37£0.15 Impressive

Impressive £0.2% accuracy: Combined Channels: 0.1 — 0.3% Mass
Statistical uncertainty dominates | My=125.09 £0.21 + 0.11| Scale Accuracy




Effective Amplitude Parametrization
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Where We Go from Here: Precision SR

Measurements of Higgs Spin & CP Propertles
% http://dx.doi.org/10.1007/JHEP01(2013)182, CALT-68 2894 ¢ 9
Use 4 lepton production & 1 s ENE((, I, + 037D+ 322
decay configurations to |} P‘ \@ o | v : :
Probe the tensor structure | " '\ “0s P B i D

,/( ~ gy Fm F,Ul —r,' F Fﬁ” 4. )

(J, CP) of the couplings of the| Cchen | Xie |m
new particle to elwk gauge N o T e N = 7 (g + A
| )

bosons 22, Zy, yy Agije
Using the full Lagrangian Sample the full
For H= 4l and qq = 4] space including
detector effects

5 Angles
3 Masses

Quantitative
In-Depth Study

102

Very Computation -

- ,ﬁ L | ally Intensive 8D
Key Challenge to Tackle Calculations

with Machine Learning Made Tractable
Yi Chen Thesis: CP Odd & | O Reduce computing time for the First Time
Even Yy Couplings canbe | O Release §implifying by Yi Chen
probed to 1% Level Within the assumptions Remarkable yy
First 300-400/fb at the LHC ! | O Bring out more subtle effects| and 7 sensitivity



http://dx.doi.org/10.1007/JHEP01(2013)182

Anomalous CP Couplings of a Spin 0 Higgs
Using H = VIV (V=2Z, W, ) Decays

llustration: f; vs f,,
constraints with ¢s 0, ©

CMS 19.7 5" (8 TeV) + 5.1 fb™ (7 TeV)

Effective Amplitude Parametrization
*a4: SM CP-even coupling
*A1: BSM Scale (GeV) N2 Eie | s e P
*a, (a3): CP even (odd) anomalous Couplings 0 SN 4\ \Grata
*Results in cross section fractions f, phases ¢ ‘ |

Starting with Spin-0 : - .
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Best Fit Results very close to SM expectations

|!] T ||T|l-—|! 0+ l\l I"L[




Search for diphoton resonances

GMS Experiment at theL HC, CERN .
(Data recorded: 2015-Nov-02 21:34:00.662277 GMT
Run /Event/LS: 260627 / 854678036 / 477 | .
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| So Far: No (Clear) Signs of New Massive Particles

EI 500 Publications using data from| But for New Particles and Phenomena:
7- and 8- TeV pp and 1 We Do Not Know what we will find

e e @2l LS O A Vast target for Unsupervised ML-
O Discovery of the Higgs boson, Driven, model-independent searches

a new baryon, =7, .
Scores of other results

O Extension of lower limits on i Ford -
. Loogriontg Lepioquorks "R o e
the mass of new particles s BE |
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http://cms-results.web.cern.ch/cms-results/public-results/publications/

#* SM or not: the 125 GeV Higgs boson
has taken us to the threshold of an era
of new physics, with a host of questions

#* Natural, Split or High Scale SUSY ?:
#* A nearby 3" generation at <~1 TeV ?
% Another nearby scale at ~5-50 TeV ?

%* OR: new singlets, doublets, triplets; new
scalars, vectors, composites, extra dim. ?

#* Vacuum (meta)stability »
Another new scale at ~1010-12 GeV ?

% Neutrino masses (via seesaws or RH V):
A “similar” intermediate scale ?

% The Discovery has Expanded our Vision

®» Run2 : a new horizon to explore and test
our ideas: on EWSB and beyond

A at High Scales largest couplings
7 P ——
oosh M), = 125 GeV ] 3 \
sif - 038
173 v

Apologies for all | could not cover

Giudice
| Strumia

Metastable

Stable
A. strumia talk at PLANCK 2012
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Statistics: Computing Limits
for the Higgs Search

CMS uses the CL_ method to set limits on p = O/OSM
* Frequentist approach including systematic error evaluation

Likelihood function: Observed
/—/’%
L(data|u,0) = Poisson (data |y -s(6) +b(6))
N J
| Expec?gd S+B

Test statistics:
L(data

L(datalf, §) < vary fiL and 6
O<u<spu

Finally, calculate CL_ (toy MC):
P (qu = g [ ns(B) +b(8"))
CLS = obs Aobs
P (qlﬂ = Qgt h ‘b(GO ))

95% C.L. is on p value giving CL =1 - 95%

H, é}.{)(_ fix K, vary e}i

dp =

Number of toys

Systematics

s S
- p(019)

- CMS Preliminary \s=7 TeV L, =0.2-0.9 fb!

Higgs Combination at m = 250 GeV

| f(q“) for signal+bkgd pseudo-data (.=2)

—_ f(q“} for bkgd-only pseudo-data (u=2)
—q, observed (u=2)

CERN-CMS Note-2011-005: Procedure for the LHC
Higgs Boson Search Combination in Summer 2011




Statistics: Computing Significance,-
for the Higgs Search

To quantify observed excess (above background only hypothe5|s)
« Same machinery as on previous slide but to test probability of the

null hypothesis
Approximate p-value (probability of the null hypothesis)

o)

P=3
where qro"‘DS is the observed q, value for

the null hypothesis (U = 0)
Significance (Z) corresponding to p-value g
:_—, 102_

10§

1 04 CMS Preliminary \s=7 TeV L, =0.2-0.9 fb
Higgs Combination at m, = 250 GeV

_ f(qo) for bkgd-only pseudo-data

ber of toys
803

— %2 with ndof=1
—_ qo observed

N

exp(—x2/2) dx

- [T L

Probability expressed in a's of one-sided normal

distribution.
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