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Definition of Independent Set Problem

o Independent Set: Given a graph G and an integer k, does
there exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?
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Definition of Independent Set Problem

o Independent Set: Given a graph G and an integer k, does
there exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?

@ Definition: The stability or independence number of a graph
is the size of the largest independent set in the graph, and is
denoted by a(G).

e Turan Graph T(5,3):
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Definition of Independent Set Problem

o Independent Set: Given a graph G and an integer k, does
there exist a subset of the vertices of size k such that no two
vertices in the subset are adjacent?

@ Definition: The stability or independence number of a graph
is the size of the largest independent set in the graph, and is
denoted by a(G).

e Turén Graph T(5,3): o(T(5,3)) = 2.
4
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Independent Set as a System of Polynomial Equations (L. Lovasz)

Given a graph G and an integer k:

@ one variable per vertex: xi,...,x,

@ For every vertex i =1,...,n, Ietxiz—x,-:0 .
o For every edge (i,j) € E(G), let xjx; =0 .

e Finally, let

(—k—i—iz:n;x;) =0.
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Independent Set as a System of Polynomial Equations (L. Lovasz)

Given a graph G and an integer k:
@ one variable per vertex: xi,...,x,
@ For every vertex i =1,...,n, Ietxiz—x,-:0 .
o For every edge (i,j) € E(G), let xjx; =0 .
e Finally, let

(—k—i—iz:n;x;) =0.

@ Theorem: Let G be a graph, k an integer, encoded as the
above (n+ m + 1) system of equations. Then this system has
a solution if and only if G has an independent set of size k.
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Turdn Graph T(5,3): = System of Polynomial Equations

2
1

Figure: Does T(5,3) have an independent set of size 37

x1x3=0, xyx4 =0, x1x5 =0, xox3 =0, X12—X1 =0, X22—X2:0

xox4 =0, xox5 =0, x3x5 =0, x4x5 =0, xg—x:»,:O, xf—X4:0
2

x1+x3+x5+x2+x4—3=0, x5 —x5 =0

e Remark: Since T(5,3) has no independent set of size 3, this
system of polynomial equations is infeasible.
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f = --- = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,-..,0s € K[x1,...,x,] such that

1= zs: Gifi . O
i=1
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

1= iﬁiﬁ : B
i—1
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

lzzszﬁifi- =
i=1
140
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

lzzszﬁifi- =
i=1
140

x12—1:0, x1+x=0, xx+x3=0, xx+x3=0
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

IZZﬁ,f, O
i=1
1#£0
x12—1:0, x1+x=0, xx+x3=0, xx+x3=0

) 1 1 1
(D) 0a =1+ 5% ) at+x)+| —5x ) (e+x)+ | 5x ) (xa+ xs)
N N—— 2 —— 2 —_—— 2 ——
B fi ~— f N——— fy —— f
B2 B3 Ba
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

IZZﬁ,f, O
i=1
1#£0
x12—1:0, x1+x=0, xx+x3=0, xx+x3=0

(D6 (o) s ms (5t nls (3n) e

B1 fi S—— fp N—— s N—— fa
B2 B3 Ba

1 171 X414+ 1.1 x1x2 + flJrl X1X:
272 ! 2 )" 2 )8
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x, ..., x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

IZZﬁ,f, O
i=1
1#£0
x12—1:0, x1+x=0, xx+x3=0, xx+x3=0

(D6 (o) s ms (5t nls (3n) e

B1 fi S—— fp N—— s N—— fa
B2 B3 Ba

1 171 X414+ 1.1 x1x2 + flJrl x1x3 =1
272 ! 2 )" 2 2)R T
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Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x,...,x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

1= iﬁifi : o
i—1

—_——

This polynomial identity is a Nullstellensatz certificate.

Susan Margulies, US Naval Academy Hilbert's Nullstellensatz and Combinatorial Infeasibility



Hilbert's Nullstellensatz

@ Theorem (1893): Let K be an algebraically closed field and
fi,...,fs be polynomials in K[x,...,x,]. Given a system of
equations such that f; = f, = ... = fg = 0, then this system
has no solution if and only if there exist polynomials
B1,...,0s € K[x1,...,x,] such that

S
1=> 8. O
i=1
~———
This polynomial identity is a Nullstellensatz certificate.

o Definition: Let d = max { deg(1), deg(32), ..., deg(5s) }.
Then d is the degree of the Nullstellensatz certificate.
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How do we find Nullstellensatz certificates?

@ A system of polynomial equations

X1271:0, x1+x3 =0, x1+x2 =0, x2+x3=0
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How do we find Nullstellensatz certificates?

@ A system of polynomial equations

X1271:0, x1+x3 =0, x1+x2 =0, x2+x3=0

@ Construct a hypothetical Nullstellensatz certificate of degree 1

1= (cox1 + cax2 + c2x3 + ¢3) (><12 — 1)+ (ax1+ csx2 + cex3 + 1) (x1 + x2)
B1 B2

+ (csx1 + cox2 + croxs + c11) (x1 + x3) + (cr2x1 + c13x2 + claxz + c15) (0 + x3)

B3 Ba
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How do we find Nullstellensatz certificates?

@ A system of polynomial equations

X1271:0, x1+x3 =0, x1+x2 =0, x2+x3=0

@ Construct a hypothetical Nullstellensatz certificate of degree 1

1= (cox1 + cixe + caxs + ¢3) (xi — 1) + (cax1 + csxe + cox3 + ¢7) (x1 + x2)

B1 B2
+ (csx1 + cox2 + croxs + c11) (x1 + x3) + (cr2x1 + c13x2 + claxz + c15) (0 + x3)

B3 Ba
@ Expand the hypothetical Nullstellensatz certificate
Coxi + Cixpxe + Coxixs + (s+ca+ Cs)xl2 + (e + C13.)X22 + (co + C14)X32—|—
(cs 4 s + co+ cr2)xixo + (€6 + 8 + cr0 + c12)x1x3 + (6 + o + €13 + C1a)xox3+

(r+car—c)xi+(cr+cs—ca)xe+(c1+cs — o) —c
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How do we find Nullstellensatz certificates?

@ A system of polynomial equations

X1271:0, x1+x3 =0, x1+x2 =0, x2+x3=0

@ Construct a hypothetical Nullstellensatz certificate of degree 1

1= (cox1 + cixe + caxs + ¢3) (xi — 1) + (cax1 + csxe + cox3 + ¢7) (x1 + x2)

B1 B2
+ (csx1 + cox2 + croxs + c11) (x1 + x3) + (cr2x1 + c13x2 + claxz + c15) (0 + x3)

B3 Ba
@ Expand the hypothetical Nullstellensatz certificate

Coxi + cixpxe + coxixs + (s + ca + c8)xi + (Cs + €13)% + (Cro + Cra)x3+
(cs 4 s + co+ cr2)xixo + (€6 + 8 + cr0 + c12)x1x3 + (6 + o + €13 + C1a)xox3+
(r+car—c)xi+(cr+cs—ca)xe+(c1+cs — o) —c

© Extract a /inear system of equations from expanded certificate

c =0, ey c+c+cg=0, ci1+cs—c=0, - =1
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How do we find Nullstellensatz certificates?

@ Solve the linear system, and assemble the certificate

1 1 1
1=—(q-1)+ §X1(X1 +x2) — §X1(X2 +x3) + §X1(X1 + x3)
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How do we find Nullstellensatz certificates?

@ Solve the linear system, and assemble the certificate
5 1 1 1
I1=—(q—1)+ §X1(X1 +x2) — §X1(X2 +x3) + §X1(X1 + x3)

© Otherwise, increment the degree and repeat.
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Turdn Graph T(5,3): Reduced Certificate Example

X1X2 + X3X X1 + X3 + x5 + 1
1:<121234_ 1 3 1(; xz+X4_Z)(X1+X3+X5+X2+X474)+

xe pe (LN (e (LN (e LY (e 1Y
2 T1Te) T \2Te) T \1276) T \1276)°
X2 Xy X2 X5 X4 ]. X4 X5 X2 1 2

6 +T+<T+6)X3X5+ 6 +(E+ﬁ><“m+

a LY oe a 1Yoz R VRSV, k.
(12+12)(X2 X2)+<1 J“lz)(X3 X3)+<12+12>(X4 “)+
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Nullstellensatz certificates of Independent Set have Large

Degree and are Dense

e Theorem (J. De Loera, J. Lee, S.M., S. Onn, 2007): For
a graph G, a minimum-degree Nullstellensatz certificate for
the non-existence of a independent set of size greater than
a(G) has degree equal to a(G) and contains at least one
term for every independent set in G.
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Nullstellensatz certificates of Independent Set have Large

Degree and are Dense

e Theorem (J. De Loera, J. Lee, S.M., S. Onn, 2007): For
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Turdn Graph T(5,3): Reduced Certificate Example

3 4
2
5
1
X1X2 + X3X. + 1
1:( 1 212 3Xa X1 X3+TZ+X2+X472)(X1+X3+X5+X2+X474)+

202 D) o (2 2 st (24 = )+ (242 ot

12712 76) T \1276) T \1276) T\ 1276)°
X2 X4 X2 X5 X4 1 X4 X5 1 2

6 + 6 +<1 +6>X3X5+T+(12+ﬁ>(x1 X1)+

xo 1N o xa 1N\ o x3 1 2 X — Xs
(12+12)(X2 X2)+(12+12)(x3 X3)+(12+12>(X4 T
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Turdn Graph T(5,3): Reduced Certificate Example
3 4

X1X2 +x3xa  X1+x3+xs+x2+x2 1
1:( 1 - 1 71>(x1+x—5+><5’><2+><4—4)+

X2 I et (22 )t (24 2 (2 L) ot
2 12te) ot (1276) T 1276 )" 12 te)"
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Turdn Graph T(5,3): Reduced Certificate Example
3 4

X1X2 + X3X. x1 + x3 + x5 + x2 + x. 1
1:(121234*1 & 1; 2 471>(x1+x—5+><5’><2+><4—4)+

X2 I et (22 )t (24 2 (2 L) ot
2 12te) ot (1276) T 1276 )" 12 te)"

Do the actual numbers within the Nullstellensatz certificates
likewise have a combinatorial interpretation?
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S

e Example: Let W ={1,3,5,7, 7,9}. Then
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S

e Example: Let W ={1,3,5,7, 7,9}. Then
S

1+3+5+7
—_—
S
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S

e Example: Let W ={1,3,5,7, 7,9}. Then
——_——
S WA\S

1+3+5+7 7+9
— ~—~—
s W\S
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S

e Example: Let W ={1,3,5,7, 7,9}. Then
——_——
S WA\S

166=1+3+5+7=7+4+9 =16.
—_—— ~——
S W\S
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Partition Problem: Definition and Example

e Partition: Given set of integers W = {ws,..., w,}, can W
be partitioned into two sets, S and W \ S such that

Swe ¥ W

weS weW\S

e Example: Let W ={1,3,5,7, 7,9}. Then
——_——
S WA\S

166=1+3+5+7=7+4+9 =16.
—_—— ~——
S W\S

@ The Partition problem is NP-complete.
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Partition as a System of Polynomial Equations

Given a set of integers W = {wy, ..., wp}:
@ one variable per integer: xi,...,x,
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Partition as a System of Polynomial Equations

Given a set of integers W = {wy, ..., wp}:
@ one variable per integer: xi,...,x,
e Fori=1,...,n, Ietx,-2—1:0,
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Partition as a System of Polynomial Equations

Given a set of integers W = {wy, ..., wp}:
@ one variable per integer: xi,...,x,
e Fori=1,...,n, Ietx,-2—1:0,
@ and,

n
E Wi X = 0.
i=1
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Partition as a System of Polynomial Equations

Given a set of integers W = {wy, ..., wp}:
@ one variable per integer: xi,...,x,
e Fori=1,...,n, Ietx,-2—1:0,
@ and,

n
E Wi X = 0.
i=1

e Proposition: Given a set of integers W = {wy,..., w,}, the
above system of n+ 1 polynomial equations has a solution if
and only if there exists a partition of W into two sets, S C W

and W\ S, such that -, cow =3, cprsw -
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Partition as a System of Polynomial Equations

Given a set of integers W = {wy, ..., wp}:
@ one variable per integer: xi,...,x,
e Fori=1,...,n, Ietx,-2—1:0,
@ and,

n
E Wi X = 0.
i=1

e Proposition: Given a set of integers W = {wy,..., w,}, the
above system of n+ 1 polynomial equations has a solution if
and only if there exists a partition of W into two sets, S C W

and W\ S, such that -, cow =3, cprsw -

Question: Let W = {1,3,5,2}. Is W partitionable?

x2-1=0, x¥3-1=0, x$-1=0, xX-1=0,
x1+3x +5x3+2x4 =0 .
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1,3,5,2}. Is W partitionable?

3F-1=0, x3-1=0, x3-1=0, x3-1=0,

x1+3x+5x3+2x4 =0 .
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1,3,5,2}. Is W partitionable? Answer: No!

3F-1=0, x3-1=0, x3-1=0, x3-1=0,

x1+3x0+5x3+2x4 =0 .
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1,3,5,2}. Is W partitionable? Answer: No!

3F-1=0, x3-1=0, x3-1=0, x3-1=0,
x1+3x +5x3+2x4 =0

1= < — @ + £X2X3 — @XQXz; + 908 X3X4> (X% — 1)
693 = 3465 693 3465
188 292
* (_ ﬁ T 1155 1155 Tlrvet 1155X3X4)( 2= 1)
908 292 ,
+ ( X1X2 + 693X1X4+693X2X4>(X31)
+(__ s 16 584X2X3>( 2 1)
693 693 3465 3465
155 467 34 842
+ (693 2 326570 T 6037 T 3465 12
908 292
+ 693 X1X2X4 3465 ——X1X3X4 — 3465 X2X3X4) (Xl + 3xy + 5x3 + 2X4) .
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Minimum-degree Partition Nullstellensatz Certificates

Let S/ denote the set of k-subsets of {1,...,n} ( e, S]] = (Z))
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Minimum-degree Partition Nullstellensatz Certificates

Let S/ denote the set of k-subsets of {1,...,n} ( e, S]] = (Z))

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers W = {ws, ..., w,}
encoded as a system of polynomial equations as above, there exists
a minimum-degree Nullstellensatz certificate for the non-existence
of a partition of W as follows:

Z(Z Zc,sx)x—l (ZZbX)(ZW;X,’).

Ky €Sy ek =
Moreover, every Nullstellensatz certificate associated with the
above system of polynomial equations contains exactly one
monomial for each of the even parity subsets of 5[:\', and exactly
one monomial for each of the odd parity subsets of S;.
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Minimum-degree Partition Nullstellensatz Certificates

Let S/ denote the set of k-subsets of {1,...,n} ( e, S]] = (Z))

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers W = {ws, ..., w,}
encoded as a system of polynomial equations as above, there exists
a minimum-degree Nullstellensatz certificate for the non-existence
of a partition of W as follows:

Z(Z Zc,sx)x—l (ZZbX)(ZW;X,’).

Ky €Sy ek =
Moreover, every Nullstellensatz certificate associated with the
above system of polynomial equations contains exactly one
monomial for each of the even parity subsets of 5[:\', and exactly
one monomial for each of the odd parity subsets of S;.

Note: certificate is both high degree and dense.
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1,3,5,2}. Is W partitionable? Answer: No!

3F-1=0, x3-1=0, x3-1=0, x3-1=0,
x1+3x +5x3+2x4 =0

1= < — @ + £X2X3 — @XQXz; + 908 X3X4> (X% — 1)
693 = 3465 693 3465
188 292
* (_ ﬁ T 1155 1155 Tlrvet 1155X3X4)( 2= 1)
908 292 ,
+ ( X1X2 + 693X1X4+693X2X4>(X31)
+(__ s 16 584X2X3>( 2 1)
693 693 3465 3465
155 467 34 842
+ (693 2 326570 T 6037 T 3465 12
908 292
+ 693 X1X2X4 3465 ——X1X3X4 — 3465 X2X3X4) (Xl + 3xy + 5x3 + 2X4) .
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Minimum-degree Nullstellensatz Certificates Example

Question: Let W = {1,3,5,2}. Is W partitionable? Answer: No!

3F-1=0, x3-1=0, x3-1=0, x3-1=0,
x1+3x +5x3+2x4 =0

1= < — @ + £X2X3 — @XQXz; + 908 X3X4> (X% — 1)
693 = 3465 693 3465
188 292
* (_ ﬁ T 1155 1155 Tlrvet 1155X3X4)( 2= 1)
908 292 ,
+ ( X1X2 + 693X1X4+693X2X4>(X31)
. (__ s 16 584X2X3>( 2 1)
693 693 3465 3465
155 467 34 842
+ (693 2 32657 T 6937 T 346510
908 292
+ 693 X1X2X4 3465 ——X1X3X4 — 3465 X2X3X4) (Xl + 3xy + 5x3 + 2X4) .
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

w3 Wy Wi 0

wr wy 0 wy

w1 0 w3 Wp
0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

w3
w3 Wy Wi 0 w3
wr wy 0 wy W
w1 0 w3 Wp w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

wi w2 w3
w3 Wy Wi 0

7%
wr wy 0 wy Wz
w1 0 w3 Wp w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

wi w2 w3
w3 Wy Wi 0

w1 wy W3
wr wy 0 wy W
w1 0 w3 Wp w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

wi w2 w3
w3 Wy Wi 0

w1 wy W3

wr wy 0 wy
w2 wi w3
w1 0 w3 Wp w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

wi w2 w3
w3 Wy Wi 0

w1 %) w3
wr wy 0 wy W Wy W
w1 0 w3 Wp

w1 W w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

— +
w1 + wo + w
w3 Wy Wi 0 2 3
wr wy 0 w - twetws
2 3 ! —wy | +wWp + w3
w1 0 w3 Wp
— Wi — w2 + w3

0 w wor ws
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

— +
w1 + wo + w
w3 Wy Wi 0 2 3
wr wy 0 w - twetws
2 3 ! —wy | +wWp + w3
w1 0 w3 Wp
— Wi — w2 + w3

0 w wor ws

(w1 +we + w3)(—wi + w + ws) (w1 — wa + w3)(—w1 — wa + w3)
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

— +
w1 + wo + w
w3 Wy Wi 0 2 3
wr w3 0 w - twetws
2 3 ! —wy | +wWp + w3
w1 0 w3 Wp
— Wi — w2 + w3

0 w wor ws

(w1 + we + w3)(—wi + wp + ws) (w1 — wa + w3)(—w1 — wa + w3)

-~

partition polynomial
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The Partition Matrix: Extract a Square Linear System

Let W = {Wl, W, W3}.

— +
w1 + wo + w
w3 Wy Wi 0 2 3
wr w3 0 w - twetws
2 3 ! —wy | +wWp + w3
w1 0 w3 Wp
— Wi — w2 + w3

0 w wor ws

The determinant of the above partition matrix is the

(w1 + we + w3)(—wi + wp + ws) (w1 — wa + w3)(—w1 — wa + w3)

-~

partition polynomial

Susan Margulies, US Naval Academy Hilbert's Nullstellensatz and Combinatorial Infeasibility



Another Example of the Partition Matrix

Let W = {wi,...,ws}. The partition matrix P is

fws w3 wo wy 0 0 O
w3 Wy 0 0 W WwWqp 0
0 Wa 0 w3 0 w1
0 0 Wy 0 w3  Wp
wo w3 0 wpg 0 0 wy |7
w1 0 w3 0 Wa 0 1%
0 wy wo» 0 0 wsg ws
0 0 0 w w wy wy

cococoo3X 3
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Another Example of the Partition Matrix

Let W = {wi,...,ws}. The partition matrix P is

fws w3 wo wy 0 0 O
w3 Wy 0 0 W WwWqp 0
0 Wa 0 w3 0 w1
0 0 Wy 0 w3  Wp
wo w3 0 wgy 0 0 wy
w1 0 w3 0 Wa 0 1%
0 wy wo» 0 0 wsg ws
0 0 0 w w wy wy

cocoocoo3X 3

det(P) = (wy + wo + w3 + wy)(—wy + wo + w3 + wy)(ws — wo + ws + wy)
(Wl + woh — w3 + W4)(—W1 + wo — w3 + W4)(—W1 — wWh + w3 + W4)

(W1 — Wo — W3 + W4)(—W1 — Wr — W3 + W4) .
“partition polynomial”
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Determinant and Partition Polynomial

Theorem (S.M., S. Onn, 2012)

The determinant of the partition matrix is the partition polynomial.
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Hilbert's Nullstellensatz Numeric Coefficients and the

Partition Polynomial

Given a square non-singular matrix A, Cramer’s rule states that
Ax = b can be solved according to the formula

 det(Al})

X7 T det(A)

where Al is the matrix A with the i-th column replaced with the
right-hand side vector b.
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Recall the non-partitionable W = {1, 3,5,2}:

— 71575+842 —@xergogxx (Xzfl)
- 693 ' 3465 2% T 693°P“ T 3465707 |1
1 842 188 202 )
+ (‘ ﬁ + 1155X1X3 PR TR 1155X3X“) (2 —1)
908 92
+ < XX + —— 693 x1Xs + 693X2X4)(x§ -1)
1816 584 2
+ <_ 693 @ BT A 3465X2X3)(X4 -1
L5 1 467 34 B2 o
69371 T 69372 " 3465°° " 693°“ 3465 ¢

908 292
+ 693X1X2X4 3065 ———— X1X3X4 — 3965 X2X3X4) (x1 + 3x2 + 5x3 + 2x4) .
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Recall the non-partitionable W = {1, 3,5,2}:

— ,1575+842 7@X)<+908XX (Xzfl)
- 693 ' 3465 2% T 693°P“ T 3465707 |1
1 842 188 202 ,
+ (- ﬁ + 1155x1)<3 ﬁn 4 + 1155X3X4) (x2 — 1)
908 92
+ < X1X2 + ——= 693 X1X4 + 693X2X4)(X§ -1)
1816 584 2
+<_&ﬁ_6£12+3%5“**M%&“)“fl)
+ §X+7 +467 +£ *842XXX
693°1 T 693°2 " 3465°° " 603°* ~ 3465 2%

908 292
+ 693X1X2X4 3065 ———— X1X3X4 — 3965 X2X3X4) (x1 + 3x2 + 5x3 + 2x4) .
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Recall the non-partitionable W = {1, 3,5,2}:

— ,1575+842 7@X)<+908XX (Xzfl)
- 693 ' 3465 2% T 693°P“ T 3465707 |1
1 842 188 202 ,
+ (- ﬁ + 1155x1)<3 ﬁn 4 + 1155X3X4) (x2 — 1)
908 92
+ < X1X2 + ——= 693 X1X4 + 693X2X4)(X§ -1)
1816 584 2
+<_&ﬁ_6£12+3%5“**M%&“)“fl)
+ §X+7 +467 +£ *842XXX
693°1 T 693°2 " 3465°° " 603°* ~ 3465 2%

908 292
+ 693X1X2X4 3065 ———— X1X3X4 — 3965 X2X3X4) (x1 + 3x2 + 5x3 + 2x4) .

51975 = (1 +3+5+2)(-14+34+5+2)(1 -3+5+2)(1+3-5+2)
(-1 -3+45+2)(-1+3-54+2)(1-3-5+2)(-1-3-5+2).
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Recall the non-partitionable W = {1, 3,5,2}:

= (* 155 + 842 X2X3 — @XQ)Q + 908 X3X4) (X% —-1)
693 = 3465 693 3465

+ (— 1 + 842 X1X3 — @M X + 292 X3X4) (Xg —-1)
231 1155 231 1155

+ < x1x2 + 28§ x1Xs + 6g§X2X4)(X§ -1)

+ (— — = ——X1X2 + —— 1816 X1X3 + o84 X2X3)(Xi*1)
693 693 3465 3465

+ <@X1+f X2 + 467 3+£ X4 — 842 e X1X2X3

693 693 3465 693 3465

+ X1 XX 908xxx 292xxx (x1 + 3x2 + 5x3 + 2x4)
693124 3265 3% T 325 223X | (1 2 3 a) .

~51975 = (1 +3+5+2)(-1+3+5+2)(1 -3+5+2)(1+3-5+2)
(—1—3+5+2)(—1+3—5+2)(1—3—5+2)(—1—3—5+2).
Via Cramer’s rule, we see that the unknown by is equal to
—2550

by = — 22—
4~ 51975
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Recall the non-partitionable W = {1, 3,5,2}:

— ,1575+842 7@X)<+908XX (Xzfl)
- 693 ' 3465 2% T 693°P“ T 3465707 |1
1 842 188 202 ,
+ (- ﬁ + 1155x1)<3 ﬁn 4 + 1155X3X4) (x2 — 1)
908 92
+ < X1X2 + ——= 693 X1X4 + 693X2X4)(X§ -1)
1816 584 2
+<_&ﬁ_6£12+3%5“**M%&“)“fl)
+ §X+7 +467 +£ *842XXX
693°1 T 693°2 " 3465°° " 603°* ~ 3465 2%

908 292
+ 693X1X2X4 3065 ———— X1X3X4 — 3965 X2X3X4) (x1 + 3x2 + 5x3 + 2x4) .

~51975 = (1 +3+5+2)(-1+3+5+2)(1 -3+5+2)(1+3-5+2)
(—1—3+5+2)(—1+3—5+2)(1—3—5+2)(—1—3—5+2).
Via Cramer’s rule, we see that the unknown by is equal to
—2550 34

by = —22—
7~ 51975 693
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Definition of Graph Coloring

@ Graph coloring: Given a graph G, and an integer k, can the
vertices be colored with k colors in such a way that no two
adjacent vertices are the same color?
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Definition of Graph Coloring

@ Graph coloring: Given a graph G, and an integer k, can the
vertices be colored with k colors in such a way that no two
adjacent vertices are the same color?

o Petersen Graph: 3-colorable
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,
@ vertex polynomials: For every vertex i = 1,...,n,
xK-1=0
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,

@ vertex polynomials: For every vertex i = 1,...,n,

vi=xf-1=0
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,
@ vertex polynomials: For every vertex i = 1,...,n,

vi=xf-1=0
e edge polynomials: For every edge (/,j) € E(G),

Xl.ki1 —+ X’-k72XJ' + 4 X,'Xjkiz + Xjkil =0
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,
@ vertex polynomials: For every vertex i = 1,...,n,

vi=xf-1=0

e edge polynomials: For every edge (/,j) € E(G),

Xk—xk
T sk w2 pxxE2  x = 0
Xi — Xj J 'j

! J
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,
@ vertex polynomials: For every vertex i = 1,...,n,

vi=xf-1=0

e edge polynomials: For every edge (/,j) € E(G),

k k
X! — x!
I _ _ _ —
€jj :——7J——Xik l—l—xl-k 2Xj+--~—|—x,-xjk 2+Xjk -0
Xj — Xj
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,

@ vertex polynomials: For every vertex i = 1,...,n,
vi=xf-1=0

e edge polynomials: For every edge (/,j) € E(G),

k k
X< — X;
I _ _ _ —
€jj ‘= -1 ——X,-k 1+X,-k 2Xj+--~+x,~xjk 2+Xjk -0
Xj — Xj

e Theorem: Let G be a graph encoded as the above (n+ m)
system of equations over K. Then this system has a solution
over K if and only if G is k-colorable.
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Graph-k-Coloring as a System of Polynomial Equations (D.

Bayer and De Loera et al.)

o Let K be a field such that char(K) is relatively prime to k.
(3-colorability over Fy, 4-colorability over F3, etc.)

@ one variable per vertex: xi,...,x,

@ vertex polynomials: For every vertex i = 1,...,n,
vi=xf-1=0

e edge polynomials: For every edge (/,j) € E(G),

xt - Xjk k=1, k-2 k-2 | k-1
&= — =X + XX XX T+ X T =0
i X
e Theorem: Let G be a graph encoded as the above (n+ m)
system of equations over IK. Then this system has a solution

over K if and only if G is k-colorable.
@ Graph-3-colorability is NP-complete.
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Petersen Graph = System of Polynomial Equations

Figure: Is the Petersen graph 3-colorable?

X—-1=0,¢-1=0, Xg 4 xox1 + X3 = 0,5¢ +xoxa +xZ =0
3 —-1=0,3-1=0, Xg + xox5 + X2 = 0,x7 + x1x0 + x5 =0
xf—le,xS—le, x12+x1x6+x62:O,x22+X2X3+x32:0
)(63_1:07)(?_1:07 ............

g —1=0,x—1=0, xg + x6x8 + x5 = 0,%2 + x7x0 + x5 =0
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2

Susan Margulies, US Naval Academy Hilbert's Nullstellensatz and Combinatorial Infeasibility



Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2

Theorem (2015, J.A. De Loera, M., M. Pernpeintner, E. Riedl, D.
Rolnick, G. Spencer, D. Stasi, J. Swenson

)

Let G be a chordal graph on n vertices. Then there exists a
polynomial-time computable Grobner basis for the k-coloring ideal.
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Chordal Graphs and Grobner Bases

Definition

A graph G is chordal if every cycle of length greater than three has
a chord, i.e., every induced cycle has length at most 3.

2 2

Theorem (2015, J.A. De Loera, M., M. Pernpeintner, E. Riedl, D.
Rolnick, G. Spencer, D. Stasi, J. Swenson (MRC: Snowbird, Utah))

Let G be a chordal graph on n vertices. Then there exists a
polynomial-time computable Grobner basis for the k-coloring ideal.
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be
iteratively constructed:

Grobner basis = {v}

Susan Margulies, US Naval Academy Hilbert's Nullstellensatz and Combinatorial Infeasibility



Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be
iteratively constructed:

Grobner basis = {vi, S3(x1,x2)}
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

Grobner basis = {v1, S3(x1, x2), Sa(x1, x2, x3) }
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

4 2

Grobner basis = {Vl, 53(X1, XQ), 52(X1, X2, X3), 51(X1, X2, X3, X4)}
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

4 2

Grobner basis = {Vl, 53(X1, XQ), 52(X1, X2, X3), 51(X1, X2, X3, X4),

So(x3, Xa,x5) }
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

4° 2

Grobner basis = {Vl, 53(X1, XQ), 52(X1, X2, X3), 51(X1, X2, X3, X4),

So(x3, xa,x5), S3(x5, X6) }
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

7
4° 2

Grobner basis = {Vl, 53(X1, XQ), 52(X1, X2, X3), 51(X1, X2, X3, X4),

So(x3, xa, x5), S3(xs, X6), S3(X6, X7) }
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Grobner Bases and Chordal Graphs: A Visual Proof

Let Sp(Xty -3 Xn) 1= D 1cjicn<iicn Xi " Xir-

Lemma

Every chordal graph (and corresponding Grébner basis) can be

iteratively constructed:
3

7
8 41 5

Grobner basis = {v1, S3(x1, x2), Sa(x1, X2, x3), S1(x1, X2, X3, Xa),

So(x3, xa, x5), S3(xs, X6), S3(X6, X7), S2(x6, X7, X8)
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

o Degree One Certificates:
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

o Degree One Certificates:
o Directed Edge Cover interpretation (De Loera, Hillar, Malkin,
Omar, “Recognizing Graph Theoretic Properties with
Polynomial Ideals”, 2010)
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)
The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

o Degree One Certificates:

o Directed Edge Cover interpretation (De Loera, Hillar, Malkin,
Omar, “Recognizing Graph Theoretic Properties with
Polynomial Ideals”, 2010)

e 2-path cover interpretation, (Li, Lowenstein, Omar, “Low
degree Nullstellensatz certificates for 3-colorability”, 2015)
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)
The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

o Degree One Certificates:

o Directed Edge Cover interpretation (De Loera, Hillar, Malkin,
Omar, “Recognizing Graph Theoretic Properties with
Polynomial Ideals”, 2010)

e 2-path cover interpretation, (Li, Lowenstein, Omar, “Low
degree Nullstellensatz certificates for 3-colorability”, 2015)

o Degree Four Certificates:
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)
The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

o Degree One Certificates:

o Directed Edge Cover interpretation (De Loera, Hillar, Malkin,
Omar, “Recognizing Graph Theoretic Properties with
Polynomial Ideals”, 2010)

e 2-path cover interpretation, (Li, Lowenstein, Omar, “Low
degree Nullstellensatz certificates for 3-colorability”, 2015)

@ Degree Four Certificates: Open Question!!
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,. ...

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.

&

(c) (d)

wE
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.

&

(c)

@%%

(9)

G ‘ n ‘ deg H G| n m ‘ deg H m ‘ deg
Go | 10 18 G2 30 55 Gs 90 |
Gy | 20 37 G3 |39 72
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.

&

(c)

@%%

G ‘ n deg H G| n m ‘ deg H m ‘ deg
Go | 10 18 1 G2 30 55 Gs 90 |
Gy | 20 37 G3 |39 72
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.

(e) [0) )
G| n m‘degHG‘n m degHG‘n m‘deg
Go[10 18| 1 [ G [30 55| 4 || Gs|49 90 |
G |20 37| 4 G3 |39 72| 4
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Nullstellensatz Certificates of Non-3-colorability

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as
1,4,7,10,....

@ Conjecture: The Mishihara-Nizuno infinite family of graphs
follows this pattern.

(e) [0) )
G| n m‘degHG‘n m degHG‘n m‘deg
Go|[10 18| 1 [ G [30 55| 4 [[Gs[49 90| >7
G |20 37| 4 G3 |39 72| 4
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G) and (x +x) =0 ,(i,j) € E(G) (C)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

5
9
4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.
3W—"2
o (x> -1)=0,Vie V(G) and (x; + x;) = 0,Y(i,j) € E(G) (C)
~ (4 -1)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1
- (Xg —1)+ EXO(XO + x1)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1 1
— (xg -1+ EX()(XO +x1) — EXO(XI + x2)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

3Y—2
o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1 1 1
— (g -1+ §X0(X0 +x1) — EXO(XI +x2) + EXO(X2 + x3)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1 1 1
— (g -1+ §X0(X0 +x1) — EXO(XI +x2) + EXO(XZ + x3)

1
- §X0(X3 + xa)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1 1 1
— (g -1+ §X0(X0 +x1) — EXO(XI +x2) + EXO(XZ + x3)

1 1
— §X0(X3 + X4) + §X0(X4 + Xo)
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Nullstellensatz Certificates for Problems in P

Given a combinatorial problem in P, does there exist an encoding
such that the Nullstellensatz certificates have polynomial size?

@ Petersen Graph: 3-colorable, not-2-colorable

4 6 /1 A graph G is not-2-colorable
8 7 <= G contains an odd cycle.

o (x2—1)=0,¥ie V(G)and (x +x) =0 ,Y(i,j) € E(G) (C)

1 1 1
1= —(xg—1)+ EXO(XO +x1) — EXO(XI +x2) + EXO(XQ + x3)

1 1
— §X0(X3 + X4) + §X0(X4 + Xo)
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Perfect Matching: Definition and Example

o Perfect Matching: A graph G has a perfect matching if
there exists a set of matched edges such that every vertex is
incident on a matched edge.
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Perfect Matching: Definition and Example

o Perfect Matching: A graph G has a perfect matching if
there exists a set of matched edges such that every vertex is
incident on a matched edge.

o Example: Does this graph have a perfect matching?
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Perfect Matching: Definition and Example

o Perfect Matching: A graph G has a perfect matching if
there exists a set of matched edges such that every vertex is
incident on a matched edge.

o Example: Does this graph have a perfect matching? Yes!
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.

Y xj+1=0 Vie V(G)
JEN(I)
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.

d xj+1=0, xpxk=0 VieV(G),Vj ke N(i)
JEN(I)
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.
d xj+1=0, xpxk=0 VieV(G),Vj ke N(i)
JEN(I)
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.
d xj+1=0, xpxk=0 VieV(G),Vj ke N(i)
JEN(I)
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over C has a solution.

d xj+1=0, xpxk=0 VieV(G),Vj ke N(i)

JeN(i)
1—(—gx —gx —EX —gx —gx —gx —1)(—1+X + X2 + X03)
= (X2 — gXis — X — X3 — X — pxs — ¢ 01 + Xo2 + X03
4 4 1
+ (*g 02 — 03 + 2x3 — g)(*l + x01 + x12 + x13 + x14)
4 4 1
+ (—ng — 503 +2x13 — g)(—l + x02 + x12 + X23 + x24)
4 4 1
0 4 + (—ng Xt 2x12 — E)(_l + X03 + X13 + X203 + X34)
1 6 6 6 1
+ (ng + §X02 + gXo3 — 2x12 — 2x13 — 2X03 — g)(—l + x14 + x04 + X34)

+§xx +§xx —|—§ X +§xx —i X: +§XX +§xx
§ X01X02 T pX01X03 T £ X01X12 T £ X01X13 — £ X01X14 T £ X02X03 T £ X02X12

6 6 4
+ gXo3X13 + gXo3X23 — §X03X34 — 4x12x13 + 2X12X14 — 4X12X23 + 2X13X14 —

+ 2x03x04 + 2X23X34 + 2X12X24;
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over [F> has a solution.

Y xi+1=0, xpxk=0 VieV(G),Vj ke N(i)

JeN(i)
1—(—gx —gx —EX —gx —gx —gx —1)(—1+X + X2 + X03)
= (X2 — gXis — X — X3 — X — pxs — ¢ 01 + Xo2 + X03
4 4 1
+ (*g 02 — 03 + 2x3 — g)(*l + x01 + x12 + x13 + x14)
4 4 1
+ (—ng — 503 +2x13 — g)(—l + x02 + x12 + X23 + x24)
4 4 1
0 4 + (—ng Xt 2x12 — E)(_l + X03 + X13 + X203 + X34)
1 6 6 6 1
+ (ng + §X02 + gXo3 — 2x12 — 2x13 — 2X03 — g)(—l + x14 + x04 + X34)

+§xx +§xx —|—§ X +§xx —i X: +§XX +§xx
§ X01X02 T pX01X03 T £ X01X12 T £ X01X13 — £ X01X14 T £ X02X03 T £ X02X12

6 6 4
+ gXo3X13 + gXo3X23 — §X03X34 — 4x12x13 + 2X12X14 — 4X12X23 + 2X13X14 —

+ 2x03x04 + 2X23X34 + 2X12X24;
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over [ has a solution.

d xj+1=0, xjxe=0 Vi€ V(G),Vj ke N(i)
JeN()

1= (x01 + x02 + %03 + 1) + (x01 + x12 + x13 + 1)
0 4 + (x02 + x12 + X23 + x04 + 1)
1 + (X03 + x13 + X03 + X34 + 1)
2 + (X24 + x34 + 1) mod 2
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over [ has a solution.

d xj+1=0, xjxe=0 Vi€ V(G),Vj ke N(i)
JeN()

1= (x01 + x02 + %03 + 1) + (x01 + x12 + x13 + 1)
0 4 + (x02 + x12 + X23 + x04 + 1)
1 + (X03 + x13 + X03 + X34 + 1)
2 + (X24 + x34 + 1) mod 2

@ Theorem: If a graph G has an odd number of vertices, there exists a
degree zero Nullstellensatz certificate.
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Perfect Matching as a System of Polynomial Equations

@ Proposition: A graph G has a perfect matching if and only if the
following system of polynomial equations over [ has a solution.

d xj+1=0, xjxe=0 Vi€ V(G),Vj ke N(i)
JeN()

1= (x01 + x02 + %03 + 1) + (x01 + x12 + x13 + 1)
0 4 + (x02 + x12 + X23 + x04 + 1)
1 + (X03 + x13 + X03 + X34 + 1)
2 + (X24 + x34 + 1) mod 2

@ Theorem: If a graph G has an odd number of vertices, there exists a
degree zero Nullstellensatz certificate.
@ Question: What about graphs with an even number of vertices?
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The Degree Grows!

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for
every subset U of V[G], the subgraph induced by V' \ U has at
most |U| connected components with an odd number of vertices.
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The Degree Grows!

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for
every subset U of V[G], the subgraph induced by V' \ U has at
most |U| connected components with an odd number of vertices.

e Construct an infinite family of graphs with |V[G]| even based
on Tutte's theorem.
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The Degree Grows!

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for
every subset U of V[G], the subgraph induced by V' \ U has at
most |U| connected components with an odd number of vertices.

e Construct an infinite family of graphs with |V[G]| even based
on Tutte's theorem.

@ Run experiments and record the degree.
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The Degree Grows!

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for
every subset U of V[G], the subgraph induced by V' \ U has at
most |U| connected components with an odd number of vertices.

e Construct an infinite family of graphs with |V[G]| even based
on Tutte's theorem.
@ Run experiments and record the degree.

name || |V| | |E| | deg
1,1 4 3 1
2,1 6 9 1
31 8 | 18 2
41 10 | 30 2
51 12 | 45 3
6,1 14 | 63 3
71 16 | 84 || > 4
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Thank you for your attention!
Questions and comments are most welcome!
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