Hilbert's Nullstellensatz Certificates of Infeasibility for Combinatorial Problems

Susan Margulies

Mathematics Department,
US Naval Academy, Annapolis, Maryland

The Classification Program of Counting Complexity
March 31, 2016

Combinatorial problem (i.e. Partition, graph-k-colorability, matching...)

Combinatorial problem (i.e. Partition, graph-k-colorability, matching...)

Systems of polynomial equations

Combinatorial problem (i.e. Partition, graph-k-colorability, matching...)

Systems of polynomial equations

Feasible

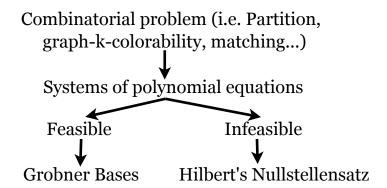
Infeasible

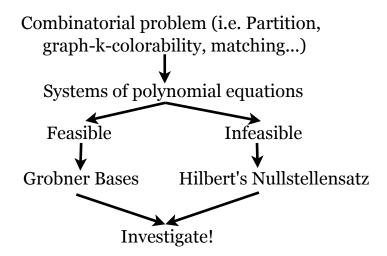
Combinatorial problem (i.e. Partition, graph-k-colorability, matching...)

Systems of polynomial equations

Feasible Infeasible

Grobner Bases



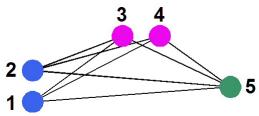


Definition of Independent Set Problem

• **Independent Set:** Given a graph *G* and an integer *k*, does there exist a subset of the vertices of size *k* such that no two vertices in the subset are adjacent?

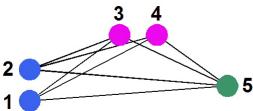
Definition of Independent Set Problem

- **Independent Set:** Given a graph *G* and an integer *k*, does there exist a subset of the vertices of size *k* such that no two vertices in the subset are adjacent?
- **Definition:** The *stability* or *independence* number of a graph is the size of the largest independent set in the graph, and is denoted by $\alpha(G)$.
- Turán Graph T(5,3):



Definition of Independent Set Problem

- **Independent Set:** Given a graph *G* and an integer *k*, does there exist a subset of the vertices of size *k* such that no two vertices in the subset are adjacent?
- **Definition:** The *stability* or *independence* number of a graph is the size of the largest independent set in the graph, and is denoted by $\alpha(G)$.
- Turán Graph T(5,3): $\alpha(T(5,3)) = 2$.



Independent Set as a System of Polynomial Equations (L. Lovász)

Given a graph G and an integer k:

- one **variable** per **vertex**: x_1, \ldots, x_n
- For every vertex i = 1, ..., n, let $x_i^2 x_i = 0$.
- For every edge $(i,j) \in E(G)$, let $x_i x_i = 0$.
- Finally, let

$$\left(-k+\sum_{i=1}^n x_i\right)=0.$$

Independent Set as a System of Polynomial Equations (L. Lovász)

Given a graph G and an integer k:

- one **variable** per **vertex**: x_1, \ldots, x_n
- For every vertex i = 1, ..., n, let $x_i^2 x_i = 0$.
- For every edge $(i,j) \in E(G)$, let $x_i x_i = 0$.
- Finally, let

$$\left(-k+\sum_{i=1}^n x_i\right)=0.$$

• **Theorem:** Let G be a graph, k an integer, encoded as the above (n + m + 1) system of equations. Then this system has a solution if and only if G has an independent set of size k.

Turán Graph T(5,3): \Longrightarrow System of Polynomial Equations

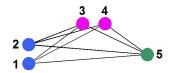


Figure: Does T(5,3) have an independent set of size 3?

$$x_1x_3 = 0$$
, $x_1x_4 = 0$, $x_1x_5 = 0$, $x_2x_3 = 0$, $x_1^2 - x_1 = 0$, $x_2^2 - x_2 = 0$
 $x_2x_4 = 0$, $x_2x_5 = 0$, $x_3x_5 = 0$, $x_4x_5 = 0$, $x_3^2 - x_3 = 0$, $x_4^2 - x_4 = 0$
 $x_1 + x_3 + x_5 + x_2 + x_4 - 3 = 0$, $x_5^2 - x_5 = 0$

• **Remark:** Since T(5,3) has **no** independent set of size 3, this system of polynomial equations is *infeasible*.

$$1 = \sum_{i=1}^s eta_{\mathbf{i}} \mathbf{f_i}$$
 .

$$1 = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 = \sum_{i=1}^s eta_{\mathbf{i}} \mathbf{f_i}$$
 .

$$1 = \sum_{i=1}^s eta_{\mathbf{i}} \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^s eta_i \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^s eta_i \mathbf{f_i}$$
 .

$$1 = \sum_{i=1}^{s} \beta_i \mathbf{f_i}$$
 .

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i}$$
 . $1 \neq 0$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 \neq 0$$

$$x_1^2 - 1 = 0$$
, $x_1 + x_2 = 0$, $x_2 + x_3 = 0$, $x_1 + x_3 = 0$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 \neq 0$$

$$x_1^2 - 1 = 0 , \quad x_1 + x_2 = 0 , \quad x_2 + x_3 = 0 , \quad x_1 + x_3 = 0$$

$$\underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4}$$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i}$$
. $1 \neq 0$

$$\begin{split} x_1^2 - 1 &= 0 \ , \quad x_1 + x_2 = 0 \ , \quad x_2 + x_3 = 0 \ , \quad x_1 + x_3 = 0 \\ \underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4} \\ \underbrace{\left(\frac{1}{2} + \frac{1}{2} - 1\right)}_{\beta_1} x_1^2 + 1 + \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)}_{\beta_2} x_1 x_2 + \underbrace{\left(-\frac{1}{2} + \frac{1}{2}\right)}_{\beta_3} x_1 x_3 \end{split}$$

$$\mathbf{1} = \sum_{i=1}^{s} \beta_{i} \mathbf{f}_{i} .$$

$$1 \neq 0$$

$$\begin{split} x_1^2 - 1 &= 0 \ , \quad x_1 + x_2 = 0 \ , \quad x_2 + x_3 = 0 \ , \quad x_1 + x_3 = 0 \\ \underbrace{(-1)}_{\beta_1} \underbrace{(x_1^2 - 1)}_{f_1} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_2} \underbrace{(x_1 + x_2)}_{f_2} + \underbrace{\left(-\frac{1}{2}x_1\right)}_{\beta_3} \underbrace{(x_2 + x_3)}_{f_3} + \underbrace{\left(\frac{1}{2}x_1\right)}_{\beta_4} \underbrace{(x_1 + x_3)}_{f_4} \\ \underbrace{\left(\frac{1}{2} + \frac{1}{2} - 1\right)}_{\beta_1} x_1^2 + 1 + \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)}_{\beta_2} x_1 x_2 + \underbrace{\left(-\frac{1}{2} + \frac{1}{2}\right)}_{\beta_2} x_1 x_3 = 1 \end{split}$$

• Theorem (1893): Let \mathbb{K} be an algebraically closed field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Given a system of equations such that $\mathbf{f_1} = \mathbf{f_2} = \cdots = \mathbf{f_s} = \mathbf{0}$, then this system has **no** solution if and only if there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_{i} f_{i} .$$

This polynomial identity is a *Nullstellensatz certificate*.

• Theorem (1893): Let \mathbb{K} be an algebraically closed field and f_1, \ldots, f_s be polynomials in $\mathbb{K}[x_1, \ldots, x_n]$. Given a system of equations such that $\mathbf{f_1} = \mathbf{f_2} = \cdots = \mathbf{f_s} = \mathbf{0}$, then this system has **no** solution if and only if there exist polynomials $\beta_1, \ldots, \beta_s \in \mathbb{K}[x_1, \ldots, x_n]$ such that

$$1 = \sum_{i=1}^{s} \beta_{i} f_{i} .$$

This polynomial identity is a *Nullstellensatz certificate*.

• **Definition:** Let $d = \max \{ \deg(\beta_1), \deg(\beta_2), \ldots, \deg(\beta_s) \}$. Then d is the degree of the Nullstellensatz certificate.

A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Construct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}}(x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}}(x_{1} + x_{2}) + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}}(x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}}(x_{2} + x_{3})$$

A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Onstruct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}}(x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}}(x_{1} + x_{2}) + \underbrace{\left(c_{3}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}}(x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}}(x_{2} + x_{3})$$

Expand the hypothetical Nullstellensatz certificate

$$c_0x_1^3 + c_1x_1^2x_2 + c_2x_1^2x_3 + (c_3 + c_4 + c_8)x_1^2 + (c_5 + c_{13})x_2^2 + (c_{10} + c_{14})x_3^2 + (c_4 + c_5 + c_9 + c_{12})x_1x_2 + (c_6 + c_8 + c_{10} + c_{12})x_1x_3 + (c_6 + c_9 + c_{13} + c_{14})x_2x_3 + (c_7 + c_{11} - c_0)x_1 + (c_7 + c_{15} - c_1)x_2 + (c_{11} + c_{15} - c_2)x_3 - c_3$$

A system of polynomial equations

$$x_1^2 - 1 = 0,$$
 $x_1 + x_3 = 0,$ $x_1 + x_2 = 0,$ $x_2 + x_3 = 0$

Construct a hypothetical Nullstellensatz certificate of degree 1

$$1 = \underbrace{\left(c_{0}x_{1} + c_{1}x_{2} + c_{2}x_{3} + c_{3}\right)}_{\beta_{1}}(x_{1}^{2} - 1) + \underbrace{\left(c_{4}x_{1} + c_{5}x_{2} + c_{6}x_{3} + c_{7}\right)}_{\beta_{2}}(x_{1} + x_{2}) + \underbrace{\left(c_{8}x_{1} + c_{9}x_{2} + c_{10}x_{3} + c_{11}\right)}_{\beta_{3}}(x_{1} + x_{3}) + \underbrace{\left(c_{12}x_{1} + c_{13}x_{2} + c_{14}x_{3} + c_{15}\right)}_{\beta_{4}}(x_{2} + x_{3})$$

Expand the hypothetical Nullstellensatz certificate

$$c_0x_1^3 + c_1x_1^2x_2 + c_2x_1^2x_3 + (c_3 + c_4 + c_8)x_1^2 + (c_5 + c_{13})x_2^2 + (c_{10} + c_{14})x_3^2 + (c_4 + c_5 + c_9 + c_{12})x_1x_2 + (c_6 + c_8 + c_{10} + c_{12})x_1x_3 + (c_6 + c_9 + c_{13} + c_{14})x_2x_3 + (c_7 + c_{11} - c_0)x_1 + (c_7 + c_{15} - c_1)x_2 + (c_{11} + c_{15} - c_2)x_3 - c_3$$

3 Extract a *linear* system of equations from expanded certificate

$$c_0 = 0, \ldots, c_3 + c_4 + c_8 = 0, c_{11} + c_{15} - c_2 = 0, -c_3 = 1$$

Solve the linear system, and assemble the certificate

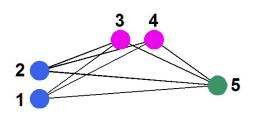
$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

Solve the linear system, and assemble the certificate

$$1 = -(x_1^2 - 1) + \frac{1}{2}x_1(x_1 + x_2) - \frac{1}{2}x_1(x_2 + x_3) + \frac{1}{2}x_1(x_1 + x_3)$$

5 Otherwise, increment the degree and repeat.

Turán Graph T(5,3): Reduced Certificate Example



$$\begin{split} 1 &= \left(\frac{x_1x_2 + x_3x_4}{12} - \frac{x_1 + x_3 + x_5 + x_2 + x_4}{12} - \frac{1}{4}\right) \left(x_1 + x_3 + x_5 + x_2 + x_4 - 4\right) + \\ & \left(\frac{x_4}{12} + \frac{x_2}{12} + \frac{1}{6}\right) x_1x_3 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_4 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_5 + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_2x_3 + \\ & \frac{x_2x_4}{6} + \frac{x_2x_5}{6} + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_3x_5 + \frac{x_4x_5}{6} + \left(\frac{x_2}{12} + \frac{1}{12}\right) \left(x_1^2 - x_1\right) + \\ & \left(\frac{x_1}{12} + \frac{1}{12}\right) \left(x_2^2 - x_2\right) + \left(\frac{x_4}{12} + \frac{1}{12}\right) \left(x_3^2 - x_3\right) + \left(\frac{x_3}{12} + \frac{1}{12}\right) \left(x_4^2 - x_4\right) + \frac{x_5^2 - x_5}{12} \end{split}$$

Nullstellensatz certificates of Independent Set have Large Degree and are Dense

• Theorem (J. De Loera, J. Lee, S.M., S. Onn, 2007): For a graph G, a minimum-degree Nullstellensatz certificate for the non-existence of a independent set of size greater than $\alpha(G)$ has degree equal to $\alpha(G)$ and contains at least one term for every independent set in G.

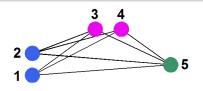
Nullstellensatz certificates of Independent Set have Large Degree and are Dense

• Theorem (J. De Loera, J. Lee, S.M., S. Onn, 2007): For a graph G, a minimum-degree Nullstellensatz certificate for the non-existence of a independent set of size greater than $\alpha(G)$ has degree equal to $\alpha(G)$ and contains at least one term for every independent set in G.

Nullstellensatz certificates of Independent Set have Large Degree and are Dense

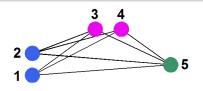
• Theorem (J. De Loera, J. Lee, S.M., S. Onn, 2007): For a graph G, a minimum-degree Nullstellensatz certificate for the non-existence of a independent set of size greater than $\alpha(G)$ has degree equal to $\alpha(G)$ and contains at least one term for every independent set in G.

Turán Graph T(5,3): Reduced Certificate Example



$$\begin{split} 1 &= \left(\frac{x_1 x_2 + x_3 x_4}{12} - \frac{x_1 + x_3 + x_5 + x_2 + x_4}{12} - \frac{1}{4}\right) \left(x_1 + x_3 + x_5 + x_2 + x_4 - 4\right) + \\ &\quad \left(\frac{x_4}{12} + \frac{x_2}{12} + \frac{1}{6}\right) x_1 x_3 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1 x_4 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1 x_5 + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_2 x_3 + \\ &\quad \frac{x_2 x_4}{6} + \frac{x_2 x_5}{6} + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_3 x_5 + \frac{x_4 x_5}{6} + \left(\frac{x_2}{12} + \frac{1}{12}\right) \left(x_1^2 - x_1\right) + \\ &\quad \left(\frac{x_1}{12} + \frac{1}{12}\right) \left(x_2^2 - x_2\right) + \left(\frac{x_4}{12} + \frac{1}{12}\right) \left(x_3^2 - x_3\right) + \left(\frac{x_3}{12} + \frac{1}{12}\right) \left(x_4^2 - x_4\right) + \frac{x_5^2 - x_5}{12} \end{split}$$

Turán Graph T(5,3): Reduced Certificate Example



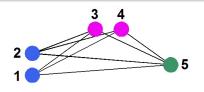
$$1 = \left(\frac{x_1 x_2 + x_3 x_4}{12} - \frac{x_1 + x_3 + x_5 + x_2 + x_4}{12} - \frac{1}{4}\right) (x_1 + x_3 + x_5 + x_2 + x_4 - 4) +$$

$$\left(\frac{x_4}{12} + \frac{x_2}{12} + \frac{1}{6}\right) x_1 x_3 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1 x_4 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1 x_5 + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_2 x_3 +$$

$$\frac{x_2 x_4}{6} + \frac{x_2 x_5}{6} + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_3 x_5 + \frac{x_4 x_5}{6} + \left(\frac{x_2}{12} + \frac{1}{12}\right) (x_1^2 - x_1) +$$

$$\left(\frac{x_1}{12} + \frac{1}{12}\right) (x_2^2 - x_2) + \left(\frac{x_4}{12} + \frac{1}{12}\right) (x_3^2 - x_3) + \left(\frac{x_3}{12} + \frac{1}{12}\right) (x_4^2 - x_4) + \frac{x_5^2 - x_5}{12}$$

Turán Graph T(5,3): Reduced Certificate Example



$$\begin{split} 1 &= \left(\frac{x_1x_2 + x_3x_4}{12} - \frac{x_1 + x_3 + x_5 + x_2 + x_4}{12} - \frac{1}{4}\right) (x_1 + x_3 + x_5 + x_2 + x_4 - 4) + \\ & \left(\frac{x_4}{12} + \frac{x_2}{12} + \frac{1}{6}\right) x_1x_3 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_4 + \left(\frac{x_2}{12} + \frac{1}{6}\right) x_1x_5 + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_2x_3 + \\ & \frac{x_2x_4}{6} + \frac{x_2x_5}{6} + \left(\frac{x_4}{12} + \frac{1}{6}\right) x_3x_5 + \frac{x_4x_5}{6} + \left(\frac{x_2}{12} + \frac{1}{12}\right) (x_1^2 - x_1) + \\ & \left(\frac{x_1}{12} + \frac{1}{12}\right) (x_2^2 - x_2) + \left(\frac{x_4}{12} + \frac{1}{12}\right) (x_3^2 - x_3) + \left(\frac{x_3}{12} + \frac{1}{12}\right) (x_4^2 - x_4) + \frac{x_5^2 - x_5}{12} \end{split}$$

Question:

Do the actual *numbers* within the Nullstellensatz certificates likewise have a combinatorial interpretation?

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w.$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w .$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W\backslash S}\}$. Then

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w .$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

$$\underbrace{1+3+5+7}_{S}$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w .$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

$$\underbrace{1+3+5+7}_{S} \qquad \underbrace{7+9}_{W\backslash S}$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w .$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

$$16 = \underbrace{1+3+5+7}_{S} = \underbrace{7+9}_{W \setminus S} = 16 .$$

• **Partition:** Given set of integers $W = \{w_1, \dots, w_n\}$, can W be partitioned into two sets, S and $W \setminus S$ such that

$$\sum_{w \in S} w = \sum_{w \in W \setminus S} w .$$

• Example: Let $W = \{\underbrace{1,3,5,7}_{S},\underbrace{7,9}_{W \setminus S}\}$. Then

$$16 = \underbrace{1+3+5+7}_{S} = \underbrace{7+9}_{W \setminus S} = 16 .$$

• The Partition problem is NP-complete.

Given a set of integers $W = \{w_1, \dots, w_n\}$:

• one variable per integer: x_1, \ldots, x_n

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$,

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$,
- and,

$$\sum_{i=1}^n w_i x_i = 0 .$$

Given a set of integers $W = \{w_1, \ldots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$,
- and,

$$\sum_{i=1}^n w_i x_i = 0.$$

• **Proposition:** Given a set of integers $W = \{w_1, \dots, w_n\}$, the above system of n+1 polynomial equations has a solution if and only if there exists a partition of W into two sets, $S \subseteq W$ and $W \setminus S$, such that $\sum_{w \in S} w = \sum_{w \in W \setminus S} w$.

Given a set of integers $W = \{w_1, \dots, w_n\}$:

- one variable per integer: x_1, \ldots, x_n
- For i = 1, ..., n, let $x_i^2 1 = 0$,
- and,

$$\sum_{i=1}^n w_i x_i = 0.$$

• **Proposition:** Given a set of integers $W = \{w_1, \dots, w_n\}$, the above system of n+1 polynomial equations has a solution if and only if there exists a partition of W into two sets, $S \subseteq W$ and $W \setminus S$, such that $\sum_{w \in S} w = \sum_{w \in W \setminus S} w$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable?

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable?

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2-1=0$$
 , $x_2^2-1=0$, $x_3^3-1=0$, $x_4^2-1=0$, $x_1+3x_2+5x_3+2x_4=0$.

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 + \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) \;. \end{split}$$

Minimum-degree Partition Nullstellensatz Certificates

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|=\binom{n}{k}\Big)$

Minimum-degree Partition Nullstellensatz Certificates

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \ldots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd} \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big)$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n \setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Minimum-degree Partition Nullstellensatz Certificates

Let S_k^n denote the set of k-subsets of $\{1,\ldots,n\}$ $\Big($ i.e., $|S_k^n|={n\choose k}\Big)$

Theorem (S.M., S. Onn, 2012)

Given a set of non-partitionable integers $W = \{w_1, \ldots, w_n\}$ encoded as a system of polynomial equations as above, there exists a minimum-degree Nullstellensatz certificate for the non-existence of a partition of W as follows:

$$1 = \sum_{i=1}^n \Big(\sum_{\substack{k \text{ even} \\ k \leq n-1}} \sum_{s \in S_k^{n \setminus i}} c_{i,s} x^s \Big) (x_i^2 - 1) + \Big(\sum_{\substack{k \text{ odd} \\ k \leq n}} \sum_{s \in S_k^n} b_s x^s \Big) \Big(\sum_{i=1}^n w_i x_i \Big) \Big|$$

Moreover, every Nullstellensatz certificate associated with the above system of polynomial equations contains exactly one monomial for each of the even parity subsets of $S_k^{n\setminus i}$, and exactly one monomial for each of the odd parity subsets of S_k^n .

Note: certificate is both high degree and dense.

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2-1=0$$
 , $x_2^2-1=0$, $x_3^3-1=0$, $x_4^2-1=0$, $x_1+3x_2+5x_3+2x_4=0$.

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 + \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) \;. \end{split}$$

Question: Let $W = \{1, 3, 5, 2\}$. Is W partitionable? Answer: No!

$$x_1^2 - 1 = 0$$
, $x_2^2 - 1 = 0$, $x_3^3 - 1 = 0$, $x_4^2 - 1 = 0$, $x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (\mathbf{x}_1 + \mathbf{3} \mathbf{x}_2 + \mathbf{5} \mathbf{x}_3 + \mathbf{2} \mathbf{x}_4) \ . \end{split}$$

Let
$$W = \{w_1, w_2, w_3\}$$
.

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

Let
$$W = \{w_1, w_2, w_3\}.$$

Γ	- W3	w_2	w_1	0 -
l	W_2	W_3	0	w_1
l	w_1	0	W3	W_2
١	0	w_1	W_2	W3

И	V 3
и	/ 3
И	V 3
И	V 3

Let
$$W = \{w_1, w_2, w_3\}.$$

Γ	w ₃	w_2	w_1	0
	w_2	W_3	0	w_1
	w_1	0	W3	W_2
l	0	w_1	W_2	W3

w_1	W ₂	W3
		W3
		W_3
		W_3

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

	w_1	W_2	<i>W</i> 3
w_1		W_2	<i>W</i> 3
			W_3
			W_3

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\left[\begin{array}{ccccc} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{array}\right]$$

		w_1	W_2	W ₃
w_1			W_2	W3
	W_2	w_1		W_3
				W ₃

Let
$$W = \{w_1, w_2, w_3\}$$
.

[w	₃ W ₂	w_1	0
W2	2 W ₃	0	w_1
W ₁	L 0	W3	w_2
[0	w_1	W_2	W3

		w_1	W ₂	W ₃
w_1			W_2	<i>W</i> 3
	W_2	w_1		W_3
w_1	W_2			W_3

Let
$$W = \{w_1, w_2, w_3\}$$
.

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ -w_1 & + w_2 + w_3 \\ -w_1 - w_2 & + w_1 & + w_3 \\ -w_1 - w_2 & + w_3 \end{bmatrix}$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ - w_1 & + w_2 + w_3 \\ - w_1 - w_2 & + w_1 & + w_3 \\ - w_1 - w_2 & + w_3 \end{bmatrix}$$

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} - \begin{bmatrix} - & + \\ w_1 + w_2 + w_3 \\ - w_1 & + w_2 + w_3 \\ - w_1 - w_2 & + w_1 & + w_3 \\ - w_1 - w_2 & + w_3 \end{bmatrix}$$

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

Let
$$W = \{w_1, w_2, w_3\}.$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix}$$

$$\begin{bmatrix} w_3 & w_2 & w_1 & 0 \\ w_2 & w_3 & 0 & w_1 \\ w_1 & 0 & w_3 & w_2 \\ 0 & w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} - & + \\ & w_1 + w_2 + w_3 \\ - w_1 & + w_2 + w_3 \\ - w_1 - w_2 & + w_1 & + w_3 \\ - w_1 - w_2 & + w_3 \end{bmatrix}$$

The **determinant** of the above **partition matrix** is the

$$(w_1 + w_2 + w_3)(-w_1 + w_2 + w_3)(w_1 - w_2 + w_3)(-w_1 - w_2 + w_3)$$

partition polynomial

Another Example of the Partition Matrix

Let $W = \{w_1, \dots, w_4\}$. The partition matrix P is

$$P = \begin{bmatrix} w_4 & w_3 & w_2 & w_1 & 0 & 0 & 0 & 0 \\ w_3 & w_4 & 0 & 0 & w_2 & w_1 & 0 & 0 \\ w_2 & 0 & w_4 & 0 & w_3 & 0 & w_1 & 0 \\ w_1 & 0 & 0 & w_4 & 0 & w_3 & w_2 & 0 \\ 0 & w_2 & w_3 & 0 & w_4 & 0 & 0 & w_1 \\ 0 & w_1 & 0 & w_3 & 0 & w_4 & 0 & w_2 \\ 0 & 0 & w_1 & w_2 & 0 & 0 & w_4 & w_3 \\ 0 & 0 & 0 & 0 & w_1 & w_2 & w_3 & w_4 \end{bmatrix},$$

Another Example of the Partition Matrix

Let $W = \{w_1, \dots, w_4\}$. The partition matrix P is

$$det(P) = (w_1 + w_2 + w_3 + w_4)(-w_1 + w_2 + w_3 + w_4)(w_1 - w_2 + w_3 + w_4)$$
$$(w_1 + w_2 - w_3 + w_4)(-w_1 + w_2 - w_3 + w_4)(-w_1 - w_2 + w_3 + w_4)$$
$$(w_1 - w_2 - w_3 + w_4)(-w_1 - w_2 - w_3 + w_4).$$

"partition polynomial"

Determinant and Partition Polynomial

Theorem (S.M., S. Onn, 2012)

The determinant of the partition matrix is the partition polynomial.

Hilbert's Nullstellensatz *Numeric* Coefficients and the Partition Polynomial

Given a square non-singular matrix A, Cramer's rule states that Ax = b can be solved according to the formula

$$x_i = \frac{\det(A|_b^i)}{\det(A)} ,$$

where $A|_b^i$ is the matrix A with the i-th column replaced with the right-hand side vector b.

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (x_1^2 - 1) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (x_2^2 - 1) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (x_3^2 - 1) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (x_4^2 - 1) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (x_1 + 3x_2 + 5x_3 + 2x_4) \;. \end{split}$$

$$\begin{split} 1 &= \bigg(-\frac{155}{693} + \frac{842}{3465} x_2 x_3 - \frac{188}{693} x_2 x_4 + \frac{908}{3465} x_3 x_4 \bigg) (x_1^2 - 1) \\ &+ \bigg(-\frac{1}{231} + \frac{842}{1155} x_1 x_3 - \frac{188}{231} x_1 x_4 + \frac{292}{1155} x_3 x_4 \bigg) (x_2^2 - 1) \\ &+ \bigg(-\frac{467}{693} + \frac{842}{693} x_1 x_2 + \frac{908}{693} x_1 x_4 + \frac{292}{693} x_2 x_4 \bigg) (x_3^2 - 1) \\ &+ \bigg(-\frac{68}{693} - \frac{376}{693} x_1 x_2 + \frac{1816}{3465} x_1 x_3 + \frac{584}{3465} x_2 x_3 \bigg) (x_4^2 - 1) \\ &+ \bigg(\frac{155}{693} x_1 + \frac{1}{693} x_2 + \frac{467}{3465} x_3 + \frac{34}{693} x_4 - \frac{842}{3465} x_1 x_2 x_3 \\ &+ \frac{188}{693} x_1 x_2 x_4 - \frac{908}{3465} x_1 x_3 x_4 - \frac{292}{3465} x_2 x_3 x_4 \bigg) (x_1 + 3x_2 + 5x_3 + 2x_4) \;. \end{split}$$

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 \right. \\ &+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) \ . \\ &- 51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2) \\ &- (-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2) \ . \end{split}$$

$$\begin{split} 1 &= \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1}) \\ &+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1}) \\ &+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1}) \\ &+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1}) \\ &+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3 \right. \\ &+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3x}_2 + \mathbf{5x}_3 + \mathbf{2x}_4) \ . \\ &-51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2) \\ &\quad (-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2) \ . \end{split}$$

Via Cramer's rule, we see that the unknown b_4 is equal to

$$b_4 = \frac{-2550}{-51975}$$

$$1 = \left(-\frac{155}{693} + \frac{842}{3465}x_2x_3 - \frac{188}{693}x_2x_4 + \frac{908}{3465}x_3x_4\right)(\mathbf{x}_1^2 - \mathbf{1})$$

$$+ \left(-\frac{1}{231} + \frac{842}{1155}x_1x_3 - \frac{188}{231}x_1x_4 + \frac{292}{1155}x_3x_4\right)(\mathbf{x}_2^2 - \mathbf{1})$$

$$+ \left(-\frac{467}{693} + \frac{842}{693}x_1x_2 + \frac{908}{693}x_1x_4 + \frac{292}{693}x_2x_4\right)(\mathbf{x}_3^2 - \mathbf{1})$$

$$+ \left(-\frac{68}{693} - \frac{376}{693}x_1x_2 + \frac{1816}{3465}x_1x_3 + \frac{584}{3465}x_2x_3\right)(\mathbf{x}_4^2 - \mathbf{1})$$

$$+ \left(\frac{155}{693}x_1 + \frac{1}{693}x_2 + \frac{467}{3465}x_3 + \frac{34}{693}x_4 - \frac{842}{3465}x_1x_2x_3\right)$$

$$+ \frac{188}{693}x_1x_2x_4 - \frac{908}{3465}x_1x_3x_4 - \frac{292}{3465}x_2x_3x_4\right)(\mathbf{x}_1 + \mathbf{3}\mathbf{x}_2 + \mathbf{5}\mathbf{x}_3 + \mathbf{2}\mathbf{x}_4) .$$

$$-51975 = (1 + 3 + 5 + 2)(-1 + 3 + 5 + 2)(1 - 3 + 5 + 2)(1 + 3 - 5 + 2)$$

$$(-1 - 3 + 5 + 2)(-1 + 3 - 5 + 2)(1 - 3 - 5 + 2)(-1 - 3 - 5 + 2).$$

Via Cramer's rule, we see that the unknown b_4 is equal to

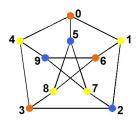
$$b_4 = \frac{-2550}{-51975} = \frac{34}{693} \ .$$

Definition of Graph Coloring

• **Graph coloring:** Given a graph *G*, and an integer *k*, can the vertices be colored with *k* colors in such a way that no two adjacent vertices are the same color?

Definition of Graph Coloring

- **Graph coloring:** Given a graph *G*, and an integer *k*, can the vertices be colored with *k* colors in such a way that no two adjacent vertices are the same color?
- Petersen Graph: 3-colorable



• Let \mathbb{K} be a field such that $char(\mathbb{K})$ is relatively prime to k.

• Let \mathbb{K} be a field such that char(\mathbb{K}) is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)

- Let \mathbb{K} be a field such that char(\mathbb{K}) is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n

- Let \mathbb{K} be a field such that char(\mathbb{K}) is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$x_i^k-1=0$$

- Let \mathbb{K} be a field such that char(\mathbb{K}) is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

- Let \mathbb{K} be a field such that $\operatorname{char}(\mathbb{K})$ is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

$$x_i^{k-1} + x_i^{k-2}x_j + \dots + x_ix_j^{k-2} + x_j^{k-1} = 0$$

- Let \mathbb{K} be a field such that $\operatorname{char}(\mathbb{K})$ is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

$$\frac{x_i^k - x_j^k}{x_i - x_j} = x_i^{k-1} + x_i^{k-2} x_j + \dots + x_i x_j^{k-2} + x_j^{k-1} = 0$$

- Let \mathbb{K} be a field such that $\operatorname{char}(\mathbb{K})$ is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

$$\mathbf{e_{ij}} := \frac{x_i^k - x_j^k}{x_i - x_j} = x_i^{k-1} + x_i^{k-2} x_j + \dots + x_i x_j^{k-2} + x_j^{k-1} = 0$$

- Let \mathbb{K} be a field such that $\operatorname{char}(\mathbb{K})$ is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

• edge polynomials: For every edge $(i,j) \in E(G)$,

$$\mathbf{e_{ij}} := \frac{x_i^k - x_j^k}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \dots + x_i x_j^{k-2} + x_j^{k-1} = 0$$

• **Theorem:** Let G be a graph encoded as the above (n+m) system of equations over \mathbb{K} . Then this system has a solution over $\overline{\mathbb{K}}$ if and only if G is k-colorable.

- Let \mathbb{K} be a field such that $\operatorname{char}(\mathbb{K})$ is relatively prime to k. (3-colorability over \mathbb{F}_2 , 4-colorability over \mathbb{F}_3 , etc.)
- one variable per vertex: x_1, \ldots, x_n
- **vertex polynomials:** For every vertex i = 1, ..., n,

$$\mathbf{v_i} := x_i^k - 1 = 0$$

$$\mathbf{e_{ij}} := \frac{x_i^k - x_j^k}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \dots + x_i x_j^{k-2} + x_j^{k-1} = 0$$

- Theorem: Let G be a graph encoded as the above (n+m) system of equations over \mathbb{K} . Then this system has a solution over $\overline{\mathbb{K}}$ if and only if G is k-colorable.
- Graph-3-colorability is NP-complete.

Petersen Graph ⇒ System of Polynomial Equations

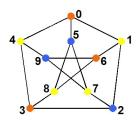
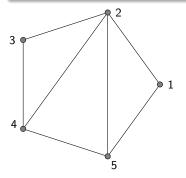
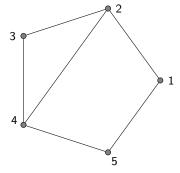


Figure: Is the Petersen graph 3-colorable?

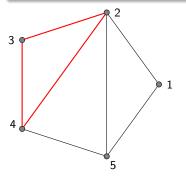
$$\begin{aligned} x_0^3 - 1 &= 0, x_1^3 - 1 &= 0, & x_0^2 + x_0 x_1 + x_1^2 &= 0, x_0^2 + x_0 x_4 + x_4^2 &= 0 \\ x_2^3 - 1 &= 0, x_3^3 - 1 &= 0, & x_0^2 + x_0 x_5 + x_5^2 &= 0, x_1^2 + x_1 x_2 + x_2^2 &= 0 \\ x_4^3 - 1 &= 0, x_5^3 - 1 &= 0, & x_1^2 + x_1 x_6 + x_6^2 &= 0, x_2^2 + x_2 x_3 + x_3^2 &= 0 \\ x_6^3 - 1 &= 0, x_7^3 - 1 &= 0, & & \cdots \\ x_8^3 - 1 &= 0, x_9^3 - 1 &= 0, & & x_6^2 + x_6 x_8 + x_8^2 &= 0, x_7^2 + x_7 x_9 + x_9^2 &= 0 \end{aligned}$$

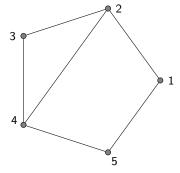
Definition



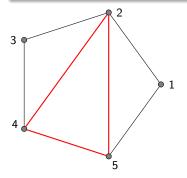


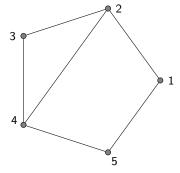
Definition



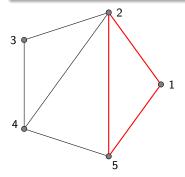


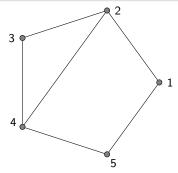
Definition



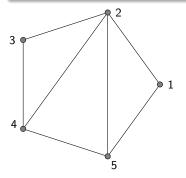


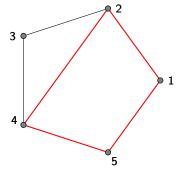
Definition



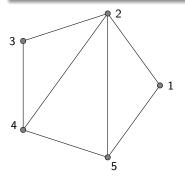


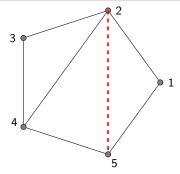
Definition





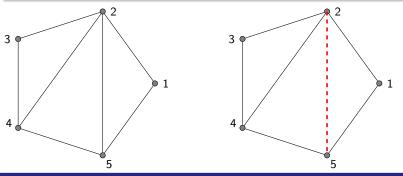
Definition





Definition

A graph G is *chordal* if every cycle of length *greater* than three has a chord, i.e., every induced cycle has length at most 3.

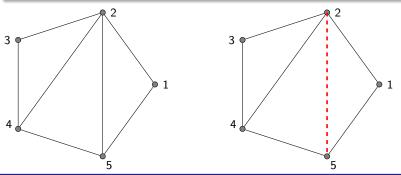


Theorem (2015, J.A. De Loera, M., M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson

Let G be a chordal graph on n vertices. Then there exists a polynomial-time computable Gröbner basis for the k-coloring ideal.

Definition

A graph G is *chordal* if every cycle of length *greater* than three has a chord, i.e., every induced cycle has length at most 3.



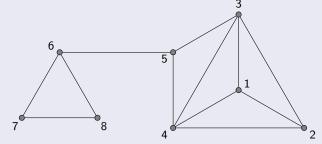
Theorem (2015, J.A. De Loera, M., M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson (MRC: Snowbird, Utah))

Let G be a chordal graph on n vertices. Then there exists a polynomial-time computable Gröbner basis for the k-coloring ideal.

Let
$$S_r(x_1,\ldots,x_n) := \sum_{1 \leq j_1 \leq \cdots \leq j_r \leq n} x_{j_1} \cdots x_{j_r}$$
.

Let
$$S_r(x_1,...,x_n) := \sum_{1 \le j_1 \le ... \le j_r \le n} x_{j_1} \cdot ... x_{j_r}$$
.

Lemma



Let
$$S_r(x_1,\ldots,x_n):=\sum_{1\leq j_1\leq\cdots\leq j_r\leq n}x_{j_1}\cdots x_{j_r}.$$

Lemma

Every chordal graph (and corresponding Gröbner basis) can be iteratively constructed:

 1

Gröbner basis =
$$\{v_1\}$$

Let
$$S_r(x_1,...,x_n) := \sum_{1 \le j_1 \le ... \le j_r \le n} x_{j_1} \cdots x_{j_r}$$
.

Lemma

Gröbner basis =
$$\{v_1, S_3(x_1, x_2)\}$$

Let
$$S_r(x_1,...,x_n) := \sum_{1 \le j_1 \le ... \le j_r \le n} x_{j_1} \cdot ... x_{j_r}$$
.

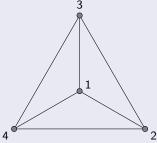
Lemma

Gröbner basis =
$$\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3)\}$$

Let
$$S_r(x_1,\ldots,x_n):=\sum_{1\leq j_1\leq\cdots\leq j_r\leq n}x_{j_1}\cdots x_{j_r}.$$

Lemma

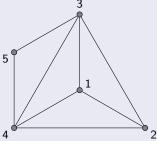
Every chordal graph (and corresponding Gröbner basis) can be iteratively constructed:



Gröbner basis = $\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4)\}$

Let
$$S_r(x_1,\ldots,x_n):=\sum_{1\leq j_1\leq\cdots\leq j_r\leq n}x_{j_1}\cdots x_{j_r}.$$

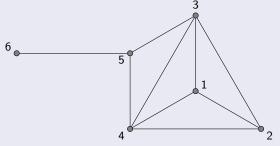
Lemma



Gröbner basis =
$$\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5)\}$$

Let
$$S_r(x_1,...,x_n) := \sum_{1 \le j_1 \le ... \le j_r \le n} x_{j_1} \cdots x_{j_r}$$
.

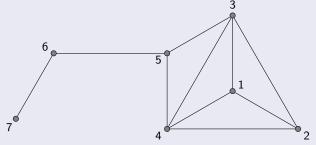
Lemma



Gröbner basis =
$$\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6)\}$$

Let
$$S_r(x_1,\ldots,x_n):=\sum_{1\leq j_1\leq\cdots\leq j_r\leq n}x_{j_1}\cdots x_{j_r}.$$

Lemma



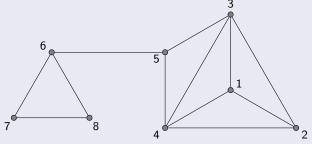
Gröbner basis =
$$\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6), S_3(x_6, x_7)\}$$

Gröbner Bases and Chordal Graphs: A Visual Proof

Let
$$S_r(x_1,...,x_n) := \sum_{1 \le j_1 \le ... \le j_r \le n} x_{j_1} \cdot ... \cdot x_{j_r}$$
.

Lemma

Every chordal graph (and corresponding Gröbner basis) can be iteratively constructed:



Gröbner basis =
$$\{v_1, S_3(x_1, x_2), S_2(x_1, x_2, x_3), S_1(x_1, x_2, x_3, x_4), S_2(x_3, x_4, x_5), S_3(x_5, x_6), S_3(x_6, x_7), S_2(x_6, x_7, x_8)\}$$

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1,4,7,10,\ldots$

Degree One Certificates:

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

Degree One Certificates:

 Directed Edge Cover interpretation (De Loera, Hillar, Malkin, Omar, "Recognizing Graph Theoretic Properties with Polynomial Ideals", 2010)

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

Degree One Certificates:

- Directed Edge Cover interpretation (De Loera, Hillar, Malkin, Omar, "Recognizing Graph Theoretic Properties with Polynomial Ideals", 2010)
- 2-path cover interpretation, (Li, Lowenstein, Omar, "Low degree Nullstellensatz certificates for 3-colorability", 2015)

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

Degree One Certificates:

- Directed Edge Cover interpretation (De Loera, Hillar, Malkin, Omar, "Recognizing Graph Theoretic Properties with Polynomial Ideals", 2010)
- 2-path cover interpretation, (Li, Lowenstein, Omar, "Low degree Nullstellensatz certificates for 3-colorability", 2015)
- Degree Four Certificates:

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

- Degree One Certificates:
 - Directed Edge Cover interpretation (De Loera, Hillar, Malkin, Omar, "Recognizing Graph Theoretic Properties with Polynomial Ideals", 2010)
 - 2-path cover interpretation, (Li, Lowenstein, Omar, "Low degree Nullstellensatz certificates for 3-colorability", 2015)
- Degree Four Certificates: Open Question!!

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$

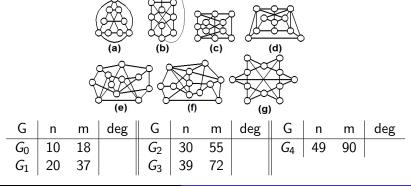
Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$



Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$



Theorem (S.M., 2008)

 G_{\cap}

 G_1

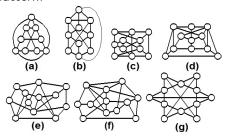
10

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$



Theorem (S.M., 2008)

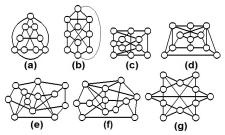
The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$



			deg								
G_0	10	18	1	G_2	30	55	4	G ₄	49	90	_
G_1	20	37	4	G_3	39	72	4				'

Theorem (S.M., 2008)

The minimum-degree certificate for non-3-colorability grows as $1, 4, 7, 10, \ldots$



							deg				
G_0	10	18	1	G_2	30	55	4	G ₄	49	90	≥ 7
G_1	20	37	4	G_3	39	72	4				

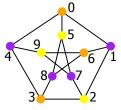
Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

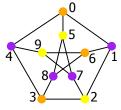
• Petersen Graph: 3-colorable



Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

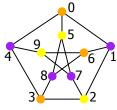
• Petersen Graph: 3-colorable, not-2-colorable



Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable

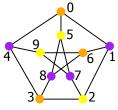


Fact

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



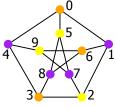
Fact

•
$$(x_i^2-1)=0$$
 , $\forall i\in V(G)$ and $(x_i+x_j)=0$, $\forall (i,j)\in E(G)$ ($\mathbb C$)

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



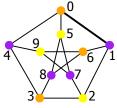
Fact

•
$$(x_i^2-1)=0$$
 , $\forall i\in V(G)$ and $(x_i+x_j)=0$, $\forall (i,j)\in E(G)$ ($\mathbb C$) $-(x_0^2-1)$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



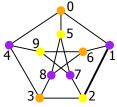
Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



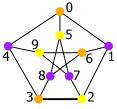
Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



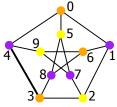
Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
 $-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



Fact

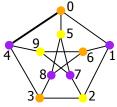
•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$$

$$-\frac{1}{2}x_0(x_3 + x_4)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})

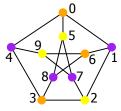
$$-(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3)$$

$$-\frac{1}{2}x_0(x_3 + x_4) + \frac{1}{2}x_0(x_4 + x_0)$$

Question

Given a combinatorial problem in P, does there **exist** an encoding such that the Nullstellensatz certificates have polynomial size?

• Petersen Graph: 3-colorable, not-2-colorable



Fact

•
$$(x_i^2 - 1) = 0$$
, $\forall i \in V(G)$ and $(x_i + x_j) = 0$, $\forall (i, j) \in E(G)$ (\mathbb{C})

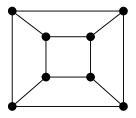
$$1 = -(x_0^2 - 1) + \frac{1}{2}x_0(x_0 + x_1) - \frac{1}{2}x_0(x_1 + x_2) + \frac{1}{2}x_0(x_2 + x_3) - \frac{1}{2}x_0(x_3 + x_4) + \frac{1}{2}x_0(x_4 + x_0)$$

Perfect Matching: Definition and Example

• **Perfect Matching:** A graph *G* has a perfect matching if there **exists** a set of **matched** edges such that every vertex is incident on a **matched** edge.

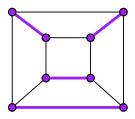
Perfect Matching: Definition and Example

- **Perfect Matching:** A graph *G* has a perfect matching if there **exists** a set of **matched** edges such that every vertex is incident on a **matched** edge.
- **Example:** Does this graph have a perfect matching?



Perfect Matching: Definition and Example

- **Perfect Matching:** A graph *G* has a perfect matching if there **exists** a set of **matched** edges such that every vertex is incident on a **matched** edge.
- Example: Does this graph have a perfect matching? Yes!



$$\sum_{j \in N(i)} x_{ij} + 1 = 0 \qquad \forall i \in V(G)$$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 , \quad x_{ij} x_{ik} = 0 \quad \forall i \in V(G) , \forall j,k \in N(i)$$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0$$
, $x_{ij}x_{ik} = 0$ $\forall i \in V(G), \forall j, k \in N(i)$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0$$
, $x_{ij}x_{ik} = 0$ $\forall i \in V(G), \forall j, k \in N(i)$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 , \quad x_{ij} x_{ik} = 0 \quad \forall i \in V(G) , \forall j, k \in N(i)$$

$$1 = \left(-\frac{2}{5}x_{12} - \frac{2}{5}x_{13} - \frac{2}{5}x_{14} - \frac{2}{5}x_{23} - \frac{2}{5}x_{24} - \frac{2}{5}x_{34} - \frac{1}{5}\right) \left(-1 + x_{01} + x_{02} + x_{03}\right)$$

$$+ \left(-\frac{4}{5}x_{02} - \frac{4}{5}x_{03} + 2x_{23} - \frac{1}{5}\right) \left(-1 + x_{01} + x_{12} + x_{13} + x_{14}\right)$$

$$+ \left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{03} + 2x_{13} - \frac{1}{5}\right)\left(-1 + x_{02} + x_{12} + x_{23} + x_{24}\right)$$

$$+ \left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{02} + 2x_{12} - \frac{1}{5}\right)\left(-1 + x_{03} + x_{13} + x_{23} + x_{34}\right)$$

$$+ \left(\frac{6}{5}x_{01} + \frac{6}{5}x_{02} + \frac{6}{5}x_{03} - 2x_{12} - 2x_{13} - 2x_{23} - \frac{1}{5}\right)\left(-1 + x_{14} + x_{24} + x_{34}\right)$$

$$+ \frac{8}{5}x_{01}x_{02} + \frac{8}{5}x_{01}x_{03} + \frac{6}{5}x_{01}x_{12} + \frac{6}{5}x_{01}x_{13} - \frac{4}{5}x_{01}x_{14} + \frac{8}{5}x_{02}x_{03} + \frac{6}{5}x_{02}x_{12}$$

$$+ \frac{6}{5}x_{03}x_{13} + \frac{6}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{34} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} -$$

$$+ 2x_{23}x_{24} + 2x_{23}x_{34} + 2x_{12}x_{24};$$

$$\begin{split} \sum_{j \in N(i)} x_{ij} + 1 &= 0 , \quad x_{ij} x_{ik} = 0 \quad \forall i \in V(G) , \forall j, k \in N(i) \\ 1 &= (-\frac{2}{5} x_{12} - \frac{2}{5} x_{13} - \frac{2}{5} x_{14} - \frac{2}{5} x_{23} - \frac{2}{5} x_{24} - \frac{2}{5} x_{34} - \frac{1}{5})(-1 + x_{01} + x_{02} + x_{03}) \\ &+ (-\frac{4}{5} x_{02} - \frac{4}{5} x_{03} + 2x_{23} - \frac{1}{5})(-1 + x_{01} + x_{12} + x_{13} + x_{14}) \\ &+ (-\frac{4}{5} x_{01} - \frac{4}{5} x_{03} + 2x_{13} - \frac{1}{5})(-1 + x_{02} + x_{12} + x_{23} + x_{24}) \end{split}$$

$$+\left(-\frac{4}{5}x_{01} - \frac{4}{5}x_{02} + 2x_{12} - \frac{1}{5}\right)\left(-1 + x_{03} + x_{13} + x_{23} + x_{34}\right)$$

$$+\left(\frac{6}{5}x_{01} + \frac{6}{5}x_{02} + \frac{6}{5}x_{03} - 2x_{12} - 2x_{13} - 2x_{23} - \frac{1}{5}\right)\left(-1 + x_{14} + x_{24} + x_{34}\right)$$

$$+\frac{8}{5}x_{01}x_{02} + \frac{8}{5}x_{01}x_{03} + \frac{6}{5}x_{01}x_{12} + \frac{6}{5}x_{01}x_{13} - \frac{4}{5}x_{01}x_{14} + \frac{8}{5}x_{02}x_{03} + \frac{6}{5}x_{02}x_{12}$$

$$+\frac{6}{5}x_{03}x_{13} + \frac{6}{5}x_{03}x_{23} - \frac{4}{5}x_{03}x_{34} - 4x_{12}x_{13} + 2x_{12}x_{14} - 4x_{12}x_{23} + 2x_{13}x_{14} - 4x_{12}x_{23}x_{24} + 2x_{23}x_{34} + 2x_{12}x_{24};$$

$$\sum_{j \in N(i)} x_{ij} + 1 = 0 \ , \quad x_{ij}x_{ik} = 0 \quad \forall i \in V(G) \ , \forall j,k \in N(i)$$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1) + (x_{02} + x_{12} + x_{23} + x_{24} + 1) + (x_{03} + x_{13} + x_{23} + x_{34} + 1) + (x_{24} + x_{34} + 1) \mod 2$$

• **Proposition:** A graph G has a perfect matching if and only if the following system of polynomial equations over \mathbb{F}_2 has a solution.

$$\sum_{j \in N(i)} x_{ij} + 1 = 0$$
, $x_{ij}x_{ik} = 0$ $\forall i \in V(G), \forall j, k \in N(i)$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1)$$

$$+ (x_{02} + x_{12} + x_{23} + x_{24} + 1)$$

$$+ (x_{03} + x_{13} + x_{23} + x_{34} + 1)$$

$$+ (x_{24} + x_{34} + 1) \mod 2$$

• **Theorem:** If a graph *G* has an odd number of vertices, there exists a degree zero Nullstellensatz certificate.

$$\sum_{j \in N(i)} x_{ij} + 1 = 0$$
, $x_{ij}x_{ik} = 0$ $\forall i \in V(G), \forall j, k \in N(i)$

$$1 = (x_{01} + x_{02} + x_{03} + 1) + (x_{01} + x_{12} + x_{13} + 1) + (x_{02} + x_{12} + x_{23} + x_{24} + 1) + (x_{03} + x_{13} + x_{23} + x_{34} + 1) + (x_{24} + x_{34} + 1) \mod 2$$

- **Theorem:** If a graph *G* has an odd number of vertices, there exists a degree zero Nullstellensatz certificate.
- Question: What about graphs with an even number of vertices?

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for every subset U of V[G], the subgraph induced by $V \setminus U$ has at most |U| connected components with an **odd** number of vertices.

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for every subset U of V[G], the subgraph induced by $V \setminus U$ has at most |U| connected components with an **odd** number of vertices.

• Construct an infinite family of graphs with |V[G]| even based on Tutte's theorem.

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for every subset U of V[G], the subgraph induced by $V \setminus U$ has at most |U| connected components with an **odd** number of vertices.

- Construct an infinite family of graphs with |V[G]| even based on Tutte's theorem.
- Run experiments and record the degree.

Theorem (Tutte, 1947)

A graph, G = (V, E), has a perfect matching if and only if for every subset U of V[G], the subgraph induced by $V \setminus U$ has at most |U| connected components with an **odd** number of vertices.

- Construct an infinite family of graphs with |V[G]| even based on Tutte's theorem.
- Run experiments and record the degree.

name	V	<i>E</i>	deg
1,1	4	3	1
2,1	6	9	1
3,1	8	18	2
4,1	10	30	2
5,1	12	45	3
6,1	14	63	3
7,1	16	84	≥ 4

References

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- S. Margulies, S. Onn, D.V. Pasechnik, On the Complexity of Hilbert Refutations for Partition, Journal of Symbolic Computation, 66, 70–83, February 2015.
- J.A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases, Interntl. Symposium on Symbolic and Algebraic Computation (ISSAC 2015).

References

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- S. Margulies, S. Onn, D.V. Pasechnik, On the Complexity of Hilbert Refutations for Partition, Journal of Symbolic Computation, 66, 70–83, February 2015.
- J.A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases, Interntl. Symposium on Symbolic and Algebraic Computation (ISSAC 2015).

http://www.usna.edu/Users/math/margulies

References

- J. A. De Loera, J. Lee, S. Margulies, S. Onn. Expressing Combinatorial Optimization Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz, Combinatorics, Probability and Computing, 18(4), pp. 551-582, 2009.
- S. Margulies, S. Onn, D.V. Pasechnik, On the Complexity of Hilbert Refutations for Partition, Journal of Symbolic Computation, 66, 70–83, February 2015.
- J.A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases, Interntl. Symposium on Symbolic and Algebraic Computation (ISSAC 2015).

http://www.usna.edu/Users/math/margulies

Thank you for your attention!

Questions and **comments** are most welcome!