Power of LP relaxations for Valued CSPs

Standa Živný

Simons Institute for the Theory of Computing All Fools' Day 2016

What this talk is not about

What this talk is not about

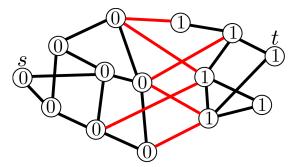
$$\{+,*\} \rightarrow \{\min,+\}$$

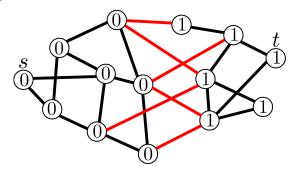
linear programming for optimal solutions

- linear programming for optimal solutions
- constraint satisfaction problems

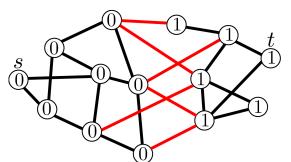
- linear programming for optimal solutions
- constraint satisfaction problems
- unconditional characterisations

- linear programming for optimal solutions
- constraint satisfaction problems
- unconditional characterisations
- complexity consequences



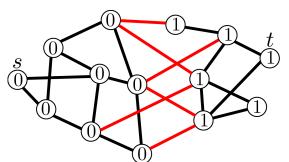


$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\gamma_0(s) + \gamma_1(t) + \sum_{(i,j) \in E(G)} \phi(x_i,x_j) \right)$$



ſ	$\gamma_d:\{0,1\} \to \{0,\infty\}$				
ı	X		$\gamma_d(x)$		
	d		0		
	1 - d		∞		
	$\phi:\{0,1\}^2 o \{0,1\}$				
	X	У	$\phi(x,y)$		
	0	0	0		
ı	0	1	1		
ı	1	0	1		
ı	1	1	0		

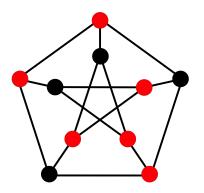
$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\gamma_0(s) + \gamma_1(t) + \sum_{(i,j) \in E(G)} \phi(x_i,x_j) \right)$$

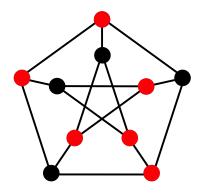


	$\gamma_d:\{0,1\} o \{0,\infty\}$			
	λ	($\gamma_d(x)$	
	d		0	
	1-d		∞	
	$\phi:\{0,1\}^2 o \{0,1\}$			
	X	y	$\phi(x,y)$	
	0	0	0	
	0	1	1	
	1	0	1	
l	1	1	0	

$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\gamma_0(s) + \gamma_1(t) + \sum_{(i,j) \in E(G)} \phi(x_i, x_j) \right)$$

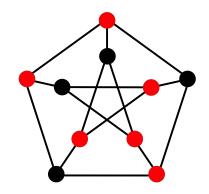
The natural LP relaxation solves it!





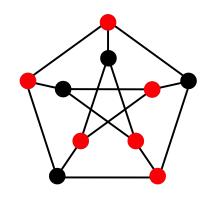
$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\sum_{i \in V(G)} \tau(x_i) + \sum_{(i,j) \in E(G)} \psi(x_i,x_j) \right)$$

3



\bigcap	au	: {0, :	$1\} o \{0,1\}$	
	X		$\tau(x)$	
'	0		0	
	1		1	
_	$\psi:\{0,1\}^2\to\{0,\infty\}$			
	Χ	У	$\psi(x,y)$	
	0	0	∞	
	*	*	0	
\subseteq				

$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\sum_{i \in V(G)} \tau(x_i) + \sum_{(i,j) \in E(G)} \psi(x_i,x_j) \right)$$



	au :	{0, :	$1\} ightarrow \{0,1\}$
	X		$\tau(x)$
	0	0	
	1	1	
z,	$\psi:\{0,1\}^2\to\{0,\infty\}$		
>	(У	$\psi(x,y)$
- 0)	0	∞
k	k	*	0
			Ŭ

$$\min_{x_1 \in \{0,1\},...,x_n \in \{0,1\}} \left(\sum_{i \in V(G)} \tau(x_i) + \sum_{(i,j) \in E(G)} \psi(x_i,x_j) \right)$$

The natural LP relaxation does not solve it!

Motivation

Why LP solves (s, t)-Min-Cut and not Vertex Cover?

Motivation

Why LP solves (s, t)-Min-Cut and not Vertex Cover? (apart from the obvious NP-completeness)

$$\blacktriangleright \ \overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$$

VCSP instance is given by $V = \{x_1, \dots, x_n\}$, domain D, and

$$I(x_1,\ldots,x_n) = \phi_1(\mathbf{v}_1) + \ldots + \phi_q(\mathbf{v}_q)$$

where $\phi_i: D^{r_i} \to \overline{\mathbb{Q}}$ and $\mathbf{v}_i \subseteq V^{r_i}$. The goal is to find an assignment of labels from D to V minimising I.

$$\blacktriangleright \ \overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$$

VCSP instance is given by $V = \{x_1, \dots, x_n\}$, domain D, and

$$I(x_1,\ldots,x_n) = \phi_1(\mathbf{v}_1) + \ldots + \phi_q(\mathbf{v}_q)$$

where $\phi_i: D^{r_i} \to \overline{\mathbb{Q}}$ and $\mathbf{v}_i \subseteq V^{r_i}$. The goal is to find an assignment of labels from D to V minimising I.

Vertex Cover

$$V=\{x_1,\dots,x_n\},\,D=\{0,1\}$$

$$I(x_1,\ldots,x_n) = \sum_{i\in V(G)} \tau(x_i) + \sum_{(i,j)\in E(G)} \psi(x_i,x_j)$$

$$\blacktriangleright \ \overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$$

VCSP instance is given by $V = \{x_1, \dots, x_n\}$, domain D, and

$$I(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \phi_1(\mathbf{v}_1) + \ldots + \phi_q(\mathbf{v}_q)$$

where $\phi_i: D^{r_i} \to \mathbb{Q}$ and $\mathbf{v}_i \subseteq V^{r_i}$. The goal is to find an assignment of labels from D to V minimising I.

CSP	$\{0,\infty\}$
Min-CSP	$\{0, 1\}$
Weighted Min-CSP	$\{0, w_i\}$
Finite-Valued CSP	\mathbb{Q}
(General-)Valued CSP	$\overline{\mathbb{Q}}$

$$\blacktriangleright \ \overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$$

VCSP instance is given by $V = \{x_1, \dots, x_n\}$, domain D, and

$$I(x_1,\ldots,x_n) = \phi_1(\mathbf{v}_1) + \ldots + \phi_q(\mathbf{v}_q)$$

where $\phi_i: D^{r_i} \to \overline{\mathbb{Q}}$ and $\mathbf{v}_i \subseteq V^{r_i}$. The goal is to find an assignment of labels from D to V minimising I.

CSP	$\{0,\infty\}$
Min-CSP	$\{0, 1\}$
Weighted Min-CSP	$\{0, w_i\}$
Finite-Valued CSP	\mathbb{Q}
(General-)Valued CSP	$\overline{\mathbb{Q}}$

Approximation CSP

- maximisation
- $\qquad \qquad \mathsf{mostly} \,\, D = \{0,1\}$
- mostly {0,1}-valued
- "strict": $\{0, \infty\}$
- "generalized": Q
- "mixed": $\{0,1\}$ or $\{0,\infty\}$

 $\blacktriangleright \ \overline{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$

VCSP instance is given by $V = \{x_1, \dots, x_n\}$, domain D, and

$$I(x_1,\ldots,x_n) = \phi_1(\mathbf{v}_1) + \ldots + \phi_q(\mathbf{v}_q)$$

where $\phi_i: D^{r_i} \to \mathbb{Q}$ and $\mathbf{v}_i \subseteq V^{r_i}$. The goal is to find an assignment of labels from D to V minimising I.

Which VCSPs are solved **exactly** by LP relaxations?

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

vars appearing in \mathbf{v}_i

$$I(x_1,\ldots,x_n) = \sum_{i=1}^{q} \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

vars appearing in **v**_i

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

- ▶ $\mu_i(a)$ for every $i \in [n]$ and every $a \in D$
- ▶ $\lambda_i(\sigma)$ for every $i \in [q]$ and every $\sigma : V_i \to D$

vars appearing in
$$\mathbf{v}_i$$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

- ▶ $\mu_i(a)$ for every $i \in [n]$ and every $a \in D$
- ▶ $\lambda_i(\sigma)$ for every $i \in [q]$ and every $\sigma : V_i \to D$

$$\min \sum_{i=1}^{q} \sum_{\sigma \in \text{dom } \phi_i} \lambda_i(\sigma) \cdot \phi_i(\sigma(\mathbf{v}_i))$$

$$\begin{array}{ll} \text{s.t.} & \lambda_i(\sigma), \mu_j(a) \geq 0 & \forall i \in [q], j \in [n], \sigma : V_i \rightarrow D, a \in D \\ & \lambda_i(\sigma) = 0 & \forall i \in [q], \sigma : V_i \rightarrow D, \sigma \not \in \text{dom}\, \phi_i \\ & \sum_{a \in D} \mu_i(a) = 1 & \forall i \in [n] \end{array}$$

vars appearing in **v**_i

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

- $\blacktriangleright \ \mu_i(a)$ for every $i \in [n]$ and every $a \in D$ $\left(\text{dom} \, \phi = \{ \mathbf{x} \in D^r \, | \, \phi(\mathbf{x}) < \infty \} \right)$
- ▶ $\lambda_i(\sigma)$ for every $i \in [q]$ and every $\sigma : V_i \to D$

$$\min \sum_{i=1}^{q} \sum_{\sigma \in \text{dom } \phi_i} \lambda_i(\sigma) \cdot \phi_i(\sigma(\mathbf{v}_i))$$

$$\begin{array}{ll} \text{s.t.} & \lambda_i(\sigma), \mu_j(a) \geq 0 & \forall i \in [q], j \in [n], \sigma : V_i \rightarrow D, a \in D \\ & \lambda_i(\sigma) = 0 & \forall i \in [q], \sigma : V_i \rightarrow D, \sigma \not\in \text{dom } \phi_i \\ & \sum_{a \in D} \mu_i(a) = 1 & \forall i \in [n] \end{array}$$

vars appearing in \mathbf{v}_i

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

- $\blacktriangleright \ \mu_i(a)$ for every $i \in [n]$ and every $a \in D$ $\left(\text{dom} \, \phi = \{ \mathbf{x} \in D^r \mid \phi(\mathbf{x}) < \infty \} \right)$
- ▶ $\lambda_i(\sigma)$ for every $i \in [q]$ and every $\sigma : V_i \to D$

$$\begin{aligned} & \min \quad \sum_{i=1} \sum_{\sigma \in \text{dom} \, \phi_i} \lambda_i(\sigma) \cdot \phi_i(\sigma(\mathbf{v}_i)) \\ & \text{s.t.} \quad \lambda_i(\sigma), \mu_j(a) \geq 0 & \forall i \in [q], j \in [n], \sigma : V_i \to D, a \in D \\ & \lambda_i(\sigma) = 0 & \forall i \in [q], \sigma : V_i \to D, \sigma \not \in \text{dom} \, \phi_i \\ & \sum_{a \in D} \mu_i(a) = 1 & \forall i \in [n] \\ & \sum_{\sigma : \ V_i \to D} \lambda_j(\sigma) = \mu_i(a) & \forall j \in [q], x_i \in V_j, a \in D \end{aligned}$$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \phi_i(\mathbf{v}_i) \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

Sherali-Adams
$$(k, \ell)$$
 $\forall S \subseteq \{x_1, \dots, x_n\} \text{ with } |S| \le \ell \exists i \text{ with } S = V_i$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widetilde{\phi_i(\mathbf{v}_i)} \quad V_i \subseteq \{x_1,\ldots,x_n\}$$

 $\forall S \subseteq \{x_1, \ldots, x_n\} \text{ with } |S| \le \ell \exists i \text{ with } S = V_i$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widetilde{\phi_i(\mathbf{v}_i)} \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

$$\forall S \subseteq \{x_1, \dots, x_n\}$$
 with $|S| \le \ell \exists i$ with $S = V_i$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widetilde{\phi_i(\mathbf{v}_i)} \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

$$\begin{array}{ll} \min & \sum_{i=1}^{r} \sum_{\sigma \in \mathsf{dom}\,\phi_i} \lambda_i(\sigma) \cdot \phi_i(\sigma(\mathsf{v}_i)) \\ \text{s.t.} & \lambda_i(\sigma) \geq 0 & \forall i \in [q], \sigma : V_i \to D \\ & \lambda_i(\sigma) = 0 & \forall i \in [q], \sigma : V_i \to D, \sigma \not\in \mathsf{dom}\,\phi_i \\ & \sum_{\sigma : V_i \to D} \lambda_i(\sigma) = 1 & \forall i \in [q] \end{array}$$

$$\forall S \subseteq \{x_1, \dots, x_n\} \text{ with } |S| \le \ell \exists i \text{ with } S = V_i$$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widehat{\phi_i(\mathbf{v}_i)} \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

$$\begin{aligned} & \min & \sum_{i=1}^{q} \sum_{\sigma \in \text{dom} \, \phi_{i}} \lambda_{i}(\sigma) \cdot \phi_{i}(\sigma(\mathbf{v}_{i})) \\ & \text{s.t.} & \lambda_{i}(\sigma) \geq 0 & \forall i \in [q], \sigma : V_{i} \rightarrow D \\ & \lambda_{i}(\sigma) = 0 & \forall i \in [q], \sigma : V_{i} \rightarrow D, \sigma \not \in \text{dom} \, \phi_{i} \\ & \sum_{\sigma : V_{i} \rightarrow D} \lambda_{i}(\sigma) = 1 & \forall i \in [q] \\ & \sum_{\sigma : V_{i} \rightarrow D} \lambda_{i}(\sigma) = \lambda_{j}(\tau) & \forall i, j \in [q], V_{j} \subseteq V_{i}, \tau : V_{j} \rightarrow D \end{aligned}$$

$$\forall S \subseteq \{x_1, \dots, x_n\} \text{ with } |S| \le \ell \exists i \text{ with } S = V_i$$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widetilde{\phi_i(\mathbf{v}_i)} \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

$$\begin{aligned} & \min \quad \sum_{i=1}^{q} \sum_{\sigma \in \text{dom} \, \phi_{i}} \lambda_{i}(\sigma) \cdot \phi_{i}(\sigma(\mathbf{v}_{i})) \\ & \text{s.t.} \quad \lambda_{i}(\sigma) \geq 0 & \forall i \in [q], \sigma : V_{i} \rightarrow D \\ & \lambda_{i}(\sigma) = 0 & \forall i \in [q], \sigma : V_{i} \rightarrow D, \sigma \not\in \text{dom} \, \phi_{i} \\ & \sum_{\sigma : V_{i} \rightarrow D} \lambda_{i}(\sigma) = 1 & \forall i \in [q] \\ & \sum_{\sigma : V_{i} \rightarrow D} \lambda_{i}(\sigma) = \lambda_{j}(\tau) & \forall i, j \in [q], V_{j} \subseteq V_{i}, \tau : V_{j} \rightarrow D \\ & \sigma|_{V_{i} = \tau} \end{aligned}$$

Sherali-Adams (k, ℓ)

$$\forall S \subseteq \{x_1, \dots, x_n\} \text{ with } |S| \le \ell \exists i \text{ with } S = V_i$$

$$I(x_1,\ldots,x_n) = \sum_{i=1}^q \widehat{\phi_i(\mathbf{v}_i)} \qquad V_i \subseteq \{x_1,\ldots,x_n\}$$

▶ $\lambda_i(\sigma)$ for every $i \in [q]$ and every $\sigma : V_i \to D$

$$\begin{aligned} & \min & \sum_{i=1}^{q} \sum_{\sigma \in \text{dom} \, \phi_i} \lambda_i(\sigma) \cdot \phi_i(\sigma(\mathbf{v}_i)) \\ & \text{s.t.} & \lambda_i(\sigma) \geq 0 & \forall i \in [q], \sigma : V_i \to D \\ & \lambda_i(\sigma) = 0 & \forall i \in [q], \sigma : V_i \to D, \sigma \not \in \text{dom} \, \phi_i \\ & \sum_{\sigma : \, V_i \to D} \lambda_i(\sigma) = 1 & \forall i \in [q] \\ & \sum_{\sigma : \, V_i \to D} \lambda_i(\sigma) = \lambda_j(\tau) & \forall i, j \in [q], V_j \subseteq V_i, \tau : V_j \to D \\ & \gamma|_{V_i = \tau} & \forall i, j \in [q], V_j \subseteq V_i, \tau : V_j \to D \end{aligned}$$

Sherali-Adams (k, ℓ)

Let *I* be a VCSP instance and R_I its $SA(k, \ell)$ relaxation.

$$Opt(I) \geq Opt(R_I)$$

Sherali-Adams (k, ℓ)

Let I be a VCSP instance and R_I its $SA(k, \ell)$ relaxation.

$$Opt(I) \geq Opt(R_I)$$

$$SA(k, \ell)$$
 works for I if $Opt(I) = Opt(R_I)$

Which VCSPs are solved **exactly** by $SA(k, \ell)$?

Which VCSPs are solved **exactly** by $SA(k, \ell)$?

▶ VCSP(Γ) = VCSP instances with all functions from Γ , where (language) Γ is finite set of functions on fixed finite D

Which VCSPs are solved **exactly** by $SA(k, \ell)$?

- ▶ VCSP(Γ) = VCSP instances with all functions from Γ , where (language) Γ is finite set of functions on fixed finite D
- ▶ Γ solved by $SA(k, \ell)$ if $SA(k, \ell)$ works for every $I \in VCSP(\Gamma)$

Main Result.

Let Γ be a (valued constraint) language on a fixed finite D. Then Γ is solved by $\mathsf{SA}(k,\ell)$ iff . . .

Polymorphisms

m feasible solutions \longrightarrow feasible solution

Polymorphisms

An *m*-ary operation $f: D^m \to D$ is a polymorphism of a function $\phi: D^r \to \overline{\mathbb{Q}}$ if $\operatorname{dom} \phi$ is closed under f: if $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \operatorname{dom} \phi$ then $f(\mathbf{x}_1, \ldots, \mathbf{x}_m) \in \operatorname{dom} \phi$

Polymorphisms

An *m*-ary operation $f: \overline{D}^m \to D$ is a polymorphism of a function $\phi: D^r \to \overline{\mathbb{Q}}$ if $\operatorname{dom} \phi$ is closed under f: if $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \operatorname{dom} \phi$ then $f(\mathbf{x}_1, \ldots, \mathbf{x}_m) \in \operatorname{dom} \phi$

- lacktriangle projections (or dictators) are trivial polymorphisms of any ϕ
- lacktriangle any operation is a polymorphism of $\mathbb Q ext{-}{
 m valued}$ ϕ
- $\phi(x,y,z)=(\overline{x}\vee\overline{y}\vee z)$ has binary min as a polymorphism

probability distribution ω on m-ary polymorphisms with expected value of solution \leq avg of m feasible solutions

A probability distribution ω on $\operatorname{Pol}^{(m)}(\phi)$ is a weighted polymorphism of ϕ if for all $\mathbf{x}_1, \dots, \mathbf{x}_m \in \operatorname{dom} \phi$:

$$\mathbb{E}_{f \sim \omega} \Big[\phi(f(\mathbf{x}_1, \dots, \mathbf{x}_m)) \Big] \leq \frac{1}{m} \Big[\phi(\mathbf{x}_1) + \dots + \phi(\mathbf{x}_m) \Big]$$

A probability distribution ω on $\operatorname{Pol}^{(m)}(\phi)$ is a weighted polymorphism of ϕ if for all $\mathbf{x}_1, \dots, \mathbf{x}_m \in \operatorname{dom} \phi$:

$$\mathbb{E}_{f \sim \omega} \Big[\phi(f(\mathbf{x}_1, \dots, \mathbf{x}_m)) \Big] \leq \frac{1}{m} \Big[\phi(\mathbf{x}_1) + \dots + \phi(\mathbf{x}_m) \Big]$$

$$\phi: \{0,1\}^r \to \overline{\mathbb{Q}} \text{ is submodular if for all } \mathbf{x}, \mathbf{y} \in \{0,1\}^r:$$

$$\phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

A probability distribution ω on $\operatorname{Pol}^{(m)}(\phi)$ is a weighted polymorphism of ϕ if for all $\mathbf{x}_1, \dots, \mathbf{x}_m \in \operatorname{dom} \phi$:

$$\mathbb{E}_{f \sim \omega} \Big[\phi(f(\mathbf{x}_1, \dots, \mathbf{x}_m)) \Big] \leq \frac{1}{m} \Big[\phi(\mathbf{x}_1) + \dots + \phi(\mathbf{x}_m) \Big]$$

$$\phi: \{0,1\}^r o \overline{\mathbb{Q}} \text{ is submodular if for all } \mathbf{x}, \mathbf{y} \in \{0,1\}^r:$$

$$\phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\boxed{\omega(\min) = \omega(\max) = \frac{1}{2}}$$

▶ supp(
$$\Gamma$$
) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

 $supp(\Gamma)$ is a clone

▶ supp(Γ) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

 $supp(\Gamma)$ is a clone

▶ supp(Γ) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

Theorem [Thapper & Ž. FOCS'12]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 2 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

 $\operatorname{supp}(\Gamma)$ is a clone

▶ supp(Γ) = { $f \mid \omega(f) > 0$ with $\omega \in \text{wPol}(\Gamma)$ }

Theorem [Thapper & Ž. FOCS'12]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 2 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

$$\forall \pi \in S_k : f(x_1, \ldots, x_m) = f(x_{\pi(1)}, \ldots, x_{\pi(m)})$$

Semilattice Example

- $f: D^2 \to D$ is a semilattice operation if
 - (i) $f(x,x) = x \quad \forall x \in D$
 - (ii) $f(x, y) = f(y, x) \quad \forall x, y \in D$
 - (iii) $f(x, f(y, z)) = f(f(x, y), z) \quad \forall x, y, z \in D$

$$f_m(x_1,\ldots,x_m)=f(x_1,f(x_2,\ldots,f(x_{m-1},x_m)\ldots))$$
 symmetric

▶ $\exists f \in \text{supp}(\Gamma)$ with f semilattice $\Rightarrow \Gamma$ solved by BLP

$$\phi: \{0,1\}^r \to \mathbb{Q}$$
 is submodular if $\forall \mathbf{x}, \mathbf{y} \in \{0,1\}^r$:
$$\phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \le \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\phi: \{0,1\}^r \to \mathbb{Q} \text{ is submodular if } \forall \mathbf{x}, \mathbf{y} \in \{0,1\}^r:$$

$$\phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\phi: D^r \to \mathbb{Q} \text{ is submodular on lattice } (D; \vee, \wedge) \text{ if } \forall \mathbf{x}, \mathbf{y} \in D^r:$$

$$\phi(\mathbf{x} \wedge \mathbf{y}) + \phi(\mathbf{x} \vee \mathbf{y}) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\phi: \{0,1\}^r \to \mathbb{Q} \text{ is submodular if } \forall \mathbf{x}, \mathbf{y} \in \{0,1\}^r:$$

$$\phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\phi: D^r \to \mathbb{Q} \text{ is submodular on lattice } (D; \vee, \wedge) \text{ if } \forall \mathbf{x}, \mathbf{y} \in D^r:$$

$$\phi(\mathbf{x} \wedge \mathbf{y}) + \phi(\mathbf{x} \vee \mathbf{y}) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\phi: D^r \to \mathbb{Q} \text{ is } k\text{-submodular if } \forall \mathbf{x}, \mathbf{y} \in D^r:$$

$$\phi(\mathbf{x} \wedge_0 \mathbf{y}) + \phi(\mathbf{x} \vee_0 \mathbf{y}) \leq \phi(\mathbf{x}) + \phi(\mathbf{y})$$

$$\begin{split} \phi: \{0,1\}^r &\to \mathbb{Q} \text{ is submodular if } \forall \mathbf{x}, \mathbf{y} \in \{0,1\}^r : \\ & \phi(\min(\mathbf{x},\mathbf{y})) + \phi(\max(\mathbf{x},\mathbf{y})) \ \leq \ \phi(\mathbf{x}) + \phi(\mathbf{y}) \\ \phi: D^r &\to \mathbb{Q} \text{ is submodular on lattice } (D; \vee, \wedge) \text{ if } \forall \mathbf{x}, \mathbf{y} \in D^r : \\ & \phi(\mathbf{x} \wedge \mathbf{y}) + \phi(\mathbf{x} \vee \mathbf{y}) \ \leq \ \phi(\mathbf{x}) + \phi(\mathbf{y}) \\ \phi: D^r &\to \mathbb{Q} \text{ is } k\text{-submodular if } \forall \mathbf{x}, \mathbf{y} \in D^r : \\ & \phi(\mathbf{x} \wedge_0 \mathbf{y}) + \phi(\mathbf{x} \vee_0 \mathbf{y}) \ \leq \ \phi(\mathbf{x}) + \phi(\mathbf{y}) \\ \phi: D^r &\to \mathbb{Q} \text{ is tree-submodular on } (D; f, g) \text{ if } \forall \mathbf{x}, \mathbf{y} \in D^r : \\ & \phi(f(\mathbf{x}, \mathbf{y})) + \phi(g(\mathbf{x}, \mathbf{y})) \ \leq \ \phi(\mathbf{x}) + \phi(\mathbf{y}) \end{split}$$

Theorem [Thapper & Ž. FOCS'12]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 2 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

Theorem [Thapper & Ž. FOCS'12]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 2 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.
- implies tractability of generalisations of submodularity
- ► FPT algorithms [Wahlström SODA'14]

BLP

Does BLP solve all VCSP?

BLP

Does BLP solve all VCSP?

No.

BLP

Does BLP solve all VCSP?

No. Does it for some subclass of VCSP?

Theorem [Kolmogorov, Thapper, Ž. SICOMP'15]

Let Γ be a \mathbb{Q} -valued constraint language. TFAE:

- 1. \exists binary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

Theorem [Kolmogorov, Thapper, Ž. SICOMP'15]

Let Γ be a \mathbb{Q} -valued constraint language. TFAE:

- 1. \exists binary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

Theorem [Thapper & Z. JACM'16]

Let Γ be a \mathbb{Q} -valued constraint language on any finite domain. Then either Γ admits a binary symmetric wPol, or Γ is NP-hard.

Theorem [Kolmogorov, Thapper, Ž. SICOMP'15]

Let Γ be a \mathbb{Q} -valued constraint language. TFAE:

- 1. \exists binary $f \in \text{supp}(\Gamma)$ with f symmetric.
- 2. Γ is solved by BLP.

Theorem [Thapper & Ž. JACM'16]

Let Γ be a \mathbb{Q} -valued constraint language on any finite domain. Then either Γ admits a binary symmetric wPol, or Γ is NP-hard.

 Γ can express binary ϕ with argmin $\phi = \{(a,b),(b,a)\}$

Theorem [Thapper & **Ž**. JACM'16]

Let Γ be a \mathbb{Q} -valued constraint language on any finite domain. Then either Γ admits a binary symmetric wPol, or Γ is NP-hard.

- ▶ $\{0,1\}$ -valued functions on |D|=2
- $\{0,1\}$ -valued functions on |D|=3
- ▶ $\{0,1\}$ -valued functions on |D|=4
- ▶ {0,1}-valued conservative functions
- functions on |D| = 2
- functions on |D| = 3
- conservative Q-valued functions
- min 0-extension problems

[Jonsson et al. SICOMP'06]

[Jonsson et al. CP'11]

[Deineko et al. JACM'08]

[Cohen et al. AIJ'06]

[Huber et al. SICOMP'14]

[Creignou JCSS'95]

[Kolmogorov & Ž. JACM'13]

[Hirai SODA'13]

Power of Sherali-Adams

▶ supp(
$$\Gamma$$
) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

Power of Sherali-Adams

▶ supp(Γ) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

Theorem [Thapper & Ž. ICALP'15, '16+]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 3 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f weak near-unanimity.
- 2. Γ is solved by $SA(k, \ell)$.
- 3. Γ is solved by SA(2,3).

Power of Sherali-Adams

▶ supp(Γ) = { $f \mid \omega(f) > 0$ with $\omega \in \mathsf{wPol}(\Gamma)$ }

Theorem [Thapper & Ž. ICALP'15, '16+]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 3 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f weak near-unanimity.
- 2. Γ is solved by $SA(k, \ell)$.
- 3. Γ is solved by SA(2,3).

$$f(y,x,\ldots,x)=f(x,y,x,\ldots,x)=\ldots=f(x,\ldots,x,y)$$

Examples of Previously Open Cases

▶ $\exists f \in \text{supp}(\Gamma)$ with f majority $\Rightarrow \Gamma$ solved by SA(2,3)

```
proof: f_m(x_1,\ldots,x_m)=f(x_1,x_2,x_3)
before: \omega\in \mathsf{wPol}(\Gamma) where \omega(\mathit{Maj}_1)=\omega(\mathit{Maj}_2)=\omega(\mathit{Mn})=\frac{1}{3}
```

▶ $\exists f \in \text{supp}(\Gamma) \text{ with } f \text{ tournament} \Rightarrow \Gamma \text{ solved by SA}(2,3)$

```
f tournament: f(x,y) \in \{x,y\} and f(x,y) = f(y,x)
proof: f 2-semilattice & WNU, generate f_m as for semilattice
before: \omega \in \text{wPol}(\Gamma) where \omega(f) = \omega(g) = \frac{1}{2}
```

Power of Sherali-Adams

Theorem [Thapper & Ž. ICALP'15, '16+]

Let Γ be a valued constraint language. TFAE:

- 1. $\forall m \geq 3 \exists m$ -ary $f \in \text{supp}(\Gamma)$ with f weak near-unanimity.
- 2. Γ is solved by $SA(k, \ell)$.
- 3. Γ is solved by SA(2,3).

SA(2,3)

Does SA(2,3) solve all VCSP?

SA(2,3)

Does SA(2,3) solve all VCSP?

No.

SA(2,3)

Does SA(2,3) solve all VCSP?

No. Does it for some subclass of VCSP?

VCSPs with an Injective Unary

Theorem [Thapper & Ž. '16+]

Let Γ be a language that can express a unary injective $\nu: D \to \mathbb{Q}$. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

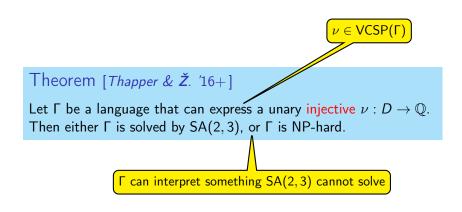
VCSPs with an Injective Unary

 $\nu \in \mathsf{VCSP}(\Gamma)$

Theorem [Thapper & Ž. '16+]

Let Γ be a language that can express a unary injective $\nu: D \to \mathbb{Q}$. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

VCSPs with an Injective Unary



Corollary 1: Conservative VCSPs

ightharpoonup Γ conservative if Γ contains all $\{0,1\}$ -valued functions

Corollary 1: Conservative VCSPs

ightharpoonup Γ conservative if Γ contains all $\{0,1\}$ -valued functions

Theorem [Thapper & Ž. '16+]

Let Γ be a conservative language. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

Corollary 1: Conservative VCSPs

Γ conservative if Γ contains all {0,1}-valued functions

```
Theorem [Thapper & Ž. '16+]
```

Let Γ be a conservative language. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

dichotomy known

- [Kolmogorov & **Ž**. JACM'13]
- simplifies both tractable and intractable parts
- new tractability criterion: majority in supp(Γ)

▶ $\Gamma = \Delta \cup \{\nu\}$ Min-Sol if Δ relations on D and $\nu : D \to \mathbb{Q}$ injective

▶ $\Gamma = \Delta \cup \{\nu\}$ Min-Sol if Δ relations on D and $\nu : D \to \mathbb{Q}$ injective

Theorem [Thapper & Ž. '16+]

Let Γ be a Min-Sol language on a finite domain D. Then either Γ is solved by SA(2, 3), or Γ is NP-hard.

▶ $\Gamma = \Delta \cup \{\nu\}$ Min-Sol if Δ relations on D and $\nu : D \to \mathbb{Q}$ injective

Theorem [Thapper & Ž. '16+]

Let Γ be a Min-Sol language on a finite domain D. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

- ▶ Min-Sol (Min-Ones) on |D| = 2
- ▶ Min-Sol on |D| = 3
- Min-Sol on small graphs
- maximal and homogeneous Min-Sol

[Khanna et al. SICOMP'01]

[Uppman ICALP'13]

[Jonsson et al. MFCS'07]

[Jonsson et al. SICOMP'08]

▶ $\Gamma = \Delta \cup \{\nu\}$ Min-Sol if Δ relations on D and $\nu : D \to \mathbb{Q}$ injective

Theorem [Thapper & Ž. '16+]

Let Γ be a Min-Sol language on a finite domain D. Then either Γ is solved by SA(2,3), or Γ is NP-hard.

- ▶ Min-Sol (Min-Ones) on |D| = 2
- ▶ Min-Sol on |D| = 3
- ► Min-Sol on small graphs
- maximal and homogeneous Min-Sol

[Khanna et al. SICOMP'01]

[Uppman ICALP'13]

[Jonsson et al. MFCS'07]

[Jonsson et al. SICOMP'08]

any Γ equivalent to $\Gamma' = \Delta' \cup \{\nu'\}$, where ν' is not necessarily injective

General Theme

- unconditional characterisations of power of LP relaxations
- universality of relaxations for classes of problems

General Theme

- unconditional characterisations of power of LP relaxations
- universality of relaxations for classes of problems
- invariants preserved (by complexity and) by LP solvability