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The natural LP relaxation does not solve it!
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Motivation

Why LP solves (s, t)-Min-Cut and not Vertex Cover?
(apart from the obvious NP-completeness)
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Valued Constraint Satisfaction Problem (VCSP)
> Q=QU{oc}
VICSP instance is given by V = {xi, ..., x,}, domain D, and
I(X1,. .y %) = O1(v1) + ... + ¢g(vg)

where ¢; : D" — Q and v; C V"i. The goal is to find an
assignment of labels from D to V minimising /.

~

CSP {0, OO} >Apprcb.m'ma.tlon CSP

. maximisation
Min-CSP {0,1} - ey B — T,
Weighted Min-CSP {07 Wi} > mostly {0, 1}-valued
Finite-Valued CSP Q > “strict”: {0, 00}
(General-)Valued CSP Q : ::ggne;:jill'izig”:l;@ —




Valued Constraint Satisfaction Problem (VCSP)
» Q=QU{x}
VCSP instance is given by V = {xi,...,x,}, domain D, and
I(x1,. ., xa) = ¢1(v1) + ...+ dq(vg)

where ¢; : D" — Q and v; C V"i. The goal is to find an
assignment of labels from D to V minimising /.

Which VCSPs are solved exactly by LP relaxations?
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Sherali-Adams (k, ¢)

Let / be a VCSP instance and R; its SA(k, ¢) relaxation.
Opt(/) = Opt(Ry)

SA(k, ¢) works for | if Opt(/) = Opt(R))
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Power of SA(k, ¢) for VCSP(I')

Which VCSPs are solved exactly by SA(k, ¢)?

» VCSP(I') = VCSP instances with all functions from T,
where (language) I is finite set of functions on fixed finite D

» [ solved by SA(k, () if SA(k, ¢) works for every | € VCSP(I)
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Power of SA(k, ¢) for VCSP(I')

Main Result

Let [ be a (valued constraint) language on a fixed finite D.
Then T is solved by SA(k,¢) iff ...
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Polymorphisms

An m-ary operation f : D™ — D is a polymorphism

of a function ¢ : D" — Q if dom ¢ is closed under f:

if X1,...,Xn € dom¢ then f(xq,...,Xy,) € dom¢

» projections (or dictators) are trivial polymorphisms of any ¢
» any operation is a polymorphism of Q-valued ¢

» ¢(x,y,z) = (X V¥V z) has binary min as a polymorphism
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Weighted Polymorphisms

probability distribution w on m-ary polymorphisms with
expected value of solution < avg of m feasible solutions
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Weighted Polymorphisms

A probability distribution w on Pol(™ (qb) is a We|ghted
polymorphism of ¢ if for all x4, ...,x, € dom¢:

fr~w

E [6 0 oxn))] < —[o) + - -+ o)

¢ :{0,1}" — Q is submodular if for all x,y € {0,1}":
¢(min(x,y)) + d(max(x,y)) < o(x) + o(y)

[w(min) = w(max) = %J
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Power of BLP

supp() is a clone

» supp(l") = {f | w(f) > 0 with w € wPol(IN)}

Theorem [Thapper & Z. FOCS'12]

Let I be a valued constraint language. TFAE:
1. Ym > 23m-ary f € supp(l') with f symmetric.
2. T is solved by BLP.

[vw € Skt F(Xts -y Xm) = F (1) - - ,xw(m))]
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Semilattice Example

» f:D? = D is a semilattice operation if
(i) f(x,x)=x V¥xeD
(i) f(x,y)="Ff(y,x) ¥x,yeD
(i) f(x,f(y,z)) ="~f(f(x,y),z) Vx,y,ze€ D

fmn(X1,y oy Xm) = F(xa, F(x2, ..o, F(Xm—1, Xm) - - .)) Ssymmetric

» Jf € supp(lN) with f semilattice = T solved by BLP

18



Submodularity and Friends
¢ :{0,1}" — Q is submodular if Vx,y € {0,1}":

¢(min(x,y)) + ¢(max(x,y)) < ¢(x) + &(y)
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Submodularity and Friends
¢ : {0,117 — Q is submodular if ¥x,y € {0,1}":
¢(min(x,y)) + ¢(max(x,y)) < ¢(x) + ¢(y)
¢: D" — Q is submodular on lattice (D; V, A) if ¥x,y € D':
P(xAy)+d(xVy) < o(x)+ é(y)
¢ D" — Qs k-submodular if ¥x,y € D'
P(x Noy) +d(xVoy) < é(x)+ o(y)
¢ : D" — Q is tree-submodular on (D; f,g) if Vx,y € D":

o(f(x,y)) + o(g(x,y)) < o(x) + &(y)

min, A, Ao, T are semilattice operations

19
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Power of BLP

Theorem [Thapper & Z. FOCS12]

Let I' be a valued constraint language. TFAE:
1. Ym > 23m-ary f € supp(l') with f symmetric.
2. T is solved by BLP.

» implies tractability of generalisations of submodularity
» FPT algorithms [Wahlstrém SODA'14]
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Does BLP solve all VCSP?
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No. Does it for some subclass of VCSP?
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Finite-Valued CSP

Theorem [Kolmogorov, Thapper, Z. SICOMP'15]

Let I' be a Q-valued constraint language. TFAE:
1. 3 binary f € supp(l') with f symmetric.
2. T is solved by BLP.

22



Finite-Valued CSP

Theorem [Kolmogorov, Thapper, Z. SICOMP'15]

Let I' be a Q-valued constraint language. TFAE:
1. 3 binary f € supp(l') with f symmetric.
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Theorem [Thapper & Z. JACM'16]

Let I be a Q-valued constraint language on any finite domain.

Then either I admits a binary symmetric wPol, or I is NP-hard.
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Finite-Valued CSP

Theorem [Kolmogorov, Thapper, Z. SICOMP'15]

Let I be a Q-valued constraint language. TFAE:
1. 3 binary f € supp(l') with f symmetric.
2. T is solved by BLP.

Theorem [Thapper & Z. JACM'16]

Let I be a Q-valued constraint language on any finite domain.

Then either I admits a binary symmetric wPol, or I is NP-hard.

A

[F can express binary ¢ with argmin ¢ = {(a, b), (b, a)}]
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Finite-Valued CSP

Theorem [Thapper & Z. JACM'16]

Let I' be a Q-valued constraint language on any finite domain.
Then either I admits a binary symmetric wPol, or I is NP-hard.

vV vV vV V. V. VvV VY

{0,1}-valued functions on |D| = 2
{0,1}-valued functions on |D| =3
{0,1}-valued functions on |D| = 4
{0,1}-valued conservative functions
functions on |D| =2

functions on |D| =3

conservative Q-valued functions
min O-extension problems

[Creignou JCSS'95]

[Jonsson et al. SICOMP06]
[Jonsson et al. CP'11]
[Deineko et al. JACM'08]
[Cohen et al. AlJ06]

[Huber et al. SICOMP14]
[Kolmogorov & Z. JACM'13]
[Hirai SODA"13]
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Power of Sherali-Adams

» supp(l) = {f | w(f) > 0 with w € wPol(IN)}
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» supp(l) = {f | w(f) > 0 with w € wPol(IN)}

Theorem [Thapper & Z. ICALP'15, 16+ ]

Let I be a valued constraint language. TFAE:
1. Vm > 33m-ary f € supp(l') with f weak near-unanimity.
2. T is solved by SA(k, ?).
3. T is solved by SA(2,3).
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Power of Sherali-Adams

» supp(l) = {f | w(f) > 0 with w € wPol(IN)}

Theorem [Thapper & Z. ICALP'15, 16+ ]

Let I be a valued constraint language. TFAE:
1. Vm > 33m-ary f € supp(l') with f weak near-unanimity.
2. T is solved by SA(k, ?).
3. T is solved by SA(2,3).

[f(y,x,...,x) =f(x,y,X,...,x)=...= f(x,...,x,y)]

24



Examples of Previously Open Cases

» Jf € supp(lN) with f majority = I solved by SA(2, 3)
proof: fm(x1,...,xm) = f(x1,x2,x3)

before: w € wPol(I") where w(Maj1) = w(Maj2) = w(Mn) = %

» Jf € supp(lN) with f tournament = T solved by SA(2, 3)
f tournament: f(x,y) € {x,y} and f(x,y) = f(y, x)
proof: f 2-semilattice & WNU, generate f,, as for semilattice

before: w € wPol(I") where w(f) = w(g) = %
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Power of Sherali-Adams

Theorem [Thapper & Z. ICALP'15, 16+ ]

Let I be a valued constraint language. TFAE:

1. Ym > 33m-ary f € supp(l') with f weak near-unanimity.

2. T is solved by SA(k, /).
3. T is solved by SA(2,3).
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SA(2,3)

Does SA(2, 3) solve all VCSP?
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VCSPs with an Injective Unary

Theorem [Thapper & Z. '16+]

Let I' be a language that can express a unary injective v : D — Q.
Then either I is solved by SA(2,3), or I is NP-hard.
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VCSPs with an Injective Unary

Theorem [Thapper & Z. '16+]

Let I be a language that can express a unary injective v : D — Q.
Then either T is solved by SA(2,3), or I is NP-hard.

[F can interpret something SA(2, 3) cannot solve]
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Corollary 1: Conservative VCSPs

» [ conservative if I contains all {0, 1}-valued functions
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Corollary 1: Conservative VCSPs

» I conservative if [ contains all {0, 1}-valued functions

Theorem [Thapper & Z. '16+]

Let I' be a conservative language. Then either I is solved by
SA(2,3), or I is NP-hard.
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Corollary 1: Conservative VCSPs

» I conservative if [ contains all {0, 1}-valued functions

Theorem [Thapper & Z. '16+]

Let I' be a conservative language. Then either I is solved by
SA(2,3), or I is NP-hard.

» dichotomy known [Kolmogorov & Z. JACM'13]
» simplifies both tractable and intractable parts
» new tractability criterion: majority in supp(I')

29



Corollary 2: Minimum-Solution

» [ = AU{r} Min-Sol if A relations on D and v : D — Q injective
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Corollary 2: Minimum-Solution

» [ = AU{r} Min-Sol if A relations on D and v : D — Q injective

Theorem [Thapper & Z. '16+]

Let I be a Min-Sol language on a finite domain D. Then either I is
solved by SA(2,3), or I is NP-hard.
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Corollary 2: Minimum-Solution

» [ = AU{r} Min-Sol if A relations on D and v : D — Q injective

Theorem [Thapper & Z. '16+]

Let I be a Min-Sol language on a finite domain D. Then either I is
solved by SA(2,3), or I is NP-hard.

» Min-Sol (Min-Ones) on |D| = 2 [Khanna et al. SICOMP'01]
» Min-Sol on ‘D| =3 [Uppman ICALP'13]
» Min-Sol on small graphs [Jonsson et al. MFCS'07]
» maximal and homogeneous Min-Sol [Jonsson et al. SICOMP'08]
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Corollary 2: Minimum-Solution

» [ = AU{r} Min-Sol if A relations on D and v : D — Q injective

Theorem [Thapper & Z. '16+]

Let I be a Min-Sol language on a finite domain D. Then either I is
solved by SA(2,3), or I is NP-hard.

» Min-Sol (Min-Ones) on |D| = 2 [Khanna et al. SICOMP'01]
» Min-Sol on ‘D| =3 [Uppman ICALP'13]
» Min-Sol on small graphs [Jonsson et al. MFCS'07]
» maximal and homogeneous Min-Sol [Jonsson et al. SICOMP'08]

[any I equivalent to " = A’ U {v/}, where v/ is not necessarily injective]
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General Theme

» unconditional characterisations of power of LP relaxations

» universality of relaxations for classes of problems
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General Theme

» unconditional characterisations of power of LP relaxations

» universality of relaxations for classes of problems

» invariants preserved (by complexity and) by LP solvability
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