The complexity of computing averages

Piyush Srivastava

California Institute of Technology

Based on joint work with Leonard J. Schulman and Alistair Sinclair

Independent sets

MAX-IND-SET NP-hard $#$ IND-SET $#$ P-hard [Karp, 1972; Valiant, 1979a]

Question

What is the complexity of computing the average size of an independent set?

Matchings

Max-Matching P #Matching #P-hard [Edmonds, 1965; Valiant, 1979a]

Question

What is the complexity of computing the average size of a matching?

Ising model [Ising, 1925]

Partition function
$$
Z(\beta,\lambda):=\sum_{\text{cuts } {\mathbb C}} w({\mathbb C})
$$

•
$$
Z(\beta, \lambda)
$$
 is #P-hard for fixed (β, λ)

Ferromagnetic vs. Antiferromagnetic Ising 0 $\log \beta$ Ferro- Antiferro- β < 1 and β > 1 are qualitatively very different

Ising model [Ising, 1925]

Partition function
$$
Z(\beta,\lambda):=\sum_{\text{cuts } {\mathbb C}} w({\mathbb C})
$$

•
$$
Z(\beta, \lambda)
$$
 is #P-hard for fixed (β, λ)

Questions (for both ferro- and antiferromagnetic Ising)

Mean magnetization

$$
\mathop{\mathbb{E}}_{C\sim w}\left[\#(+)\right]
$$

Mean energy ("Avg. cut size")

$$
\mathop{\mathbb{E}}_{C \sim w} \left[|C| \right]
$$

What is the complexity of computing the above?

Why averages?

Approximation

Very extensively studied: a major application of sampling

Why averages?

Approximation

• Very extensively studied: a major application of sampling

Exact computation

• Ising model: Computing magnetization is trivial for $\lambda = 1$ (spins are symmetric, so magnetization = $1/2$). Other $λ$? Mean energy? Other models

Why averages?

Approximation

• Very extensively studied: a major application of sampling

Exact computation

• Ising model: Computing magnetization is trivial for $\lambda = 1$ (spins are symmetric, so magnetization = $1/2$). Other $λ$? Mean energy? Other models

Technical reasons

Interesting questions about zeros of partition functions

Results

All these averages are #P-hard to compute, even on bdd. degree graphs

[Schulman, Sinclair, S., IEEE FOCS 2015]

Avg. size of independent sets

Holds also for the "Hard core lattice gas"

Ising mean magnetization

For both Ferro- and Antiferro- Ising

Avg. size of matchings

Holds also for the "Monomer-dimer model"

Ising mean energy

For both Ferro- and Antiferro- Ising

Results

All these averages are #P-hard to compute, even on bdd. degree graphs

[Schulman, Sinclair, S., IEEE FOCS 2015]

Avg. size of independent sets

Holds also for the "Hard core lattice gas"

Ising mean magnetization

For both Ferro- and Antiferro- Ising

Avg. size of matchings

Holds also for the "Monomer-dimer model"

Ising mean energy

For both Ferro- and Antiferro- Ising

Earlier results **Earlier** results **Earlier** Fession Comm. Math. Phys. 2014]

#P hardness for Ferromagnetic Ising magnetization and for Monomer-dimer with edge weights

...using new extensions to Lee-Yang type theorems

Proving #P-hardness: Partition functions

Recall that

$$
Z(\beta,\lambda) = \sum_{\sigma \in \{+, -\}^V} \beta^{\#(+,-)} \lambda^{\#(+)}
$$

$\left| \right|$ Interpolation $\left| \right|$ [Valiant, 1979b; ... Vadhan, 2001; ... Dyer and Greenhill, 2000; ...] View $Z(\beta,\lambda)=\sum_{k=1}^{|V|}\alpha_k\lambda^k$ as a polynomial in λ • Coefficients α_k encode the solution to a #P-hard problem (e.g. #Max-Cut)

- Find the coefficients α_k using polynomial interpolation
- Shows that computing $Z(\beta,\lambda)$ is hard—at least when λ is part of the input

Proving #P-hardness: Partition functions

Recall that

$$
Z(\beta,\lambda)=\sum_{\sigma\in\{+,-\}^V}\beta^{\#(+,-)}\lambda^{\#(+)}
$$

$\left| \right|$ Interpolation $\left| \right|$ [Valiant, 1979b; ... Vadhan, 2001; ... Dyer and Greenhill, 2000; ...] View $Z(\beta,\lambda)=\sum_{k=1}^{|V|}\alpha_k\lambda^k$ as a polynomial in λ

- Coefficients α_k encode the solution to a #P-hard problem (e.g. #Max-Cut)
- Find the coefficients α_k using polynomial interpolation
- Shows that computing $Z(\beta,\lambda)$ is hard—at least when λ is part of the input
- Complexity of partition functions is very well understood via dichotomy theorems [e.g. Bulatov and Grohe, 2005; ... Cai, Chen, and Lu, 2010...]

Proving #P-hardness: Magnetization

Magnetization $\mu(\beta,\lambda)$ can be written as

$$
\mu(\beta,\lambda) := \frac{\sum_{\sigma} \#(+)w(\sigma)}{\sum_{\sigma} w(\sigma)} = \frac{\lambda Z'}{Z}, \quad \because w(\sigma) = \lambda^{\#(+)} \beta^{C(\sigma)},
$$

where $Z' = \frac{\partial}{\partial \lambda} Z(\beta, \lambda)$

Interpolation

- View $\mu(\beta, \lambda)$ as a rational function in λ
- Coefficients of Z, Z' encode the solution to a #P-hard problem
- Find the coefficients of Z (and Z') using rational interpolation

Proving #P-hardness: Magnetization

Magnetization $\mu(\beta,\lambda)$ can be written as

$$
\mu(\beta,\lambda) := \frac{\sum_{\sigma} \#(+)w(\sigma)}{\sum_{\sigma} w(\sigma)} = \frac{\lambda Z'}{Z}, \quad \because w(\sigma) = \lambda^{\#(+)} \beta^{C(\sigma)},
$$

where $Z' = \frac{\partial}{\partial \lambda} Z(\beta, \lambda)$

Interpolation

- \checkmark View $\mu(\beta,\lambda)$ as a rational function in λ
- \checkmark Coefficients of Z, Z' encode the solution to a #P-hard problem
- ? Find the coefficients of Z (and Z') using rational interpolation

But. . .

Cannot interpolate $\frac{p(x)}{q(x)}$ when $p(x)$ and $q(x)$ share common factors!

Rest of the talk: Ensuring rational interpolation succeeds

Approach 1: Show there are no common factors

New results for zeros of partition functions

Rest of the talk: Ensuring rational interpolation succeeds

Approach 1: Show there are no common factors

New results for zeros of partition functions

Approach 2: Interpolate with common factors

Integrate the mean

Rest of the talk: Ensuring rational interpolation succeeds

Approach 1: Show there are no common factors

New results for zeros of partition functions

Rational interpolation and #P-hardness

Rational Interpolation **Exercise 2018** [Macon and Dupree, 1962]

Suppose
$$
R(x) = \frac{p(x)}{q(x)}
$$
 where $\deg(p(x)) = \deg(q(x)) = n$.
If

 $gcd(p(x), q(x)) = 1$

then $p(x)$ and $q(x)$ can be determined efficiently from $2n + 2$ evaluations of R

Rational interpolation and #P-hardness

Rational Interpolation **Example 2018** [Macon and Dupree, 1962]

Suppose
$$
R(x) = \frac{p(x)}{q(x)}
$$
 where $\deg(p(x)) = \deg(q(x)) = n$.
If

 $gcd(p(x), q(x)) = 1$

then $p(x)$ and $q(x)$ can be determined efficiently from $2n + 2$ evaluations of R

We had

$$
\mu(\beta,\lambda) = \lambda \frac{Z'}{Z}
$$

Requirement: No common zeros for Z and Z^{\prime}

#P-hardness will follow if $gcd(Z'(\beta,\lambda),Z(\beta,\lambda)) = 1$,

 $\Longleftrightarrow Z(\beta,\lambda)$ and $Z^\prime(\beta,\lambda)$ have no common complex zeros

Rational interpolation and #P-hardness (contd. . .)

Disconnected graphs can have common zeros:

► e.g., $Z_{G \cup G} = Z_{G'}^2$ so that $Z_{G \cup G}$ and $Z_{G \cup G}'$ have lots of common zeros

Complex zeros and Ferromagnetic Ising

 \sqrt{L} \sim \sqrt{L} \sim

When $0 < \beta \leq 1$, the zeros of $Z(\beta, z)$ satisfy $|z| = 1$.

Gauss-Lucas lemma: $Z'(\beta, z) = 0 \implies |z| \leq 1$

 \blacktriangleright ... but this is not sufficient for showing that Z and Z' have no common zeros

• Original motivation for the theorem was studying phase transitions in the Ising model

Lee-Yang theorem: Zeros of Z

An extension of the Lee-Yang theorem

Theorem **Experiment Community** Contract Community Co

For a connected graph with $0 < \beta < 1$, the zeros of $Z'(\beta, z) = \frac{\partial}{\partial z} Z(J, z)$ satisfy $|z| < 1$. In particular, $gcd(Z(\beta, z), Z'(\beta, z)) = 1$.

An extension of the Lee-Yang theorem

Theorem **Experiment Community** Contract Community Co

For a connected graph with $0 < \beta < 1$, the zeros of $Z'(\beta, z) = \frac{\partial}{\partial z} Z(J, z)$ satisfy $|z| < 1$. In particular, $gcd(Z(\beta, z), Z'(\beta, z)) = 1$.

Lee-Yang theorem: Zeros of Z

An extension of the Lee-Yang theorem

Theorem **Experiment Community** Control of the Community Community Community Community Community Community Community

For a connected graph with $0 < \beta < 1$, the zeros of $Z'(\beta, z) = \frac{\partial}{\partial z} Z(J, z)$ satisfy $|z| < 1$. In particular, $gcd(Z(\beta, z), Z'(\beta, z)) = 1$.

Proving Lee-Yang theorems

Multivariate Lee-Yang theorems

. Consider the scenario where the vertex activities can vary across vertices:

$$
w(\sigma) = \beta^{\#(+,-)} \prod_{v:\sigma(v)=+} z_v
$$

Multivariate Lee-Yang theorems

Consider the scenario where the vertex activities can vary across vertices:

$$
w(\sigma) = \beta^{\#(+,-)} \prod_{v:\sigma(v)=+} z_v
$$

Magnetization operator

$$
\mathcal{D}:=\sum_{v}z_v\frac{\partial}{\partial z_v}
$$

so that

$$
\mathcal{D}Z(\beta, z_1, z_2, \dots z_n)|_{z_1=z_2=\dots=z_n=x}=z\frac{\partial}{\partial z}Z(\beta, z)|_{z=x}
$$

• The magnetization itself is given by

$$
\mu(\beta, z_1, z_2, \dots z_n) = \frac{\mathcal{D}Z(\beta, z_1, z_2, \dots z_n)}{Z(\beta, z_1, z_2, \dots z_n)}
$$

Agrees with the univariate case: $\mu(\beta,\lambda) = \frac{\lambda Z'}{Z}$

Multivariate Lee-Yang theorems (contd. . .)

 $\frac{1}{2}$ Theorem $\frac{1}{2}$ and Yang, 1952; Asano, 1970]

Suppose $0 < \beta \leq 1$, and $|z_i| > 1$ for $1 \leq i \leq n$. Then,

 $Z(\beta, z_1, z_2, \ldots, z_n) \neq 0.$

• The univariate Lee-Yang theorem follows by setting $z_i = z$ for all i

Multivariate Lee-Yang theorems (contd. . .)

 $\frac{1}{2}$ Theorem $\frac{1}{2}$ and Yang, 1952; Asano, 1970]

Suppose $0 < \beta \leq 1$, and $|z_i| > 1$ for $1 \leq i \leq n$. Then,

$$
Z(\beta, z_1, z_2, \ldots, z_n) \neq 0.
$$

• The univariate Lee-Yang theorem follows by setting $z_i = z$ for all i

Our theorem

On a connected graph, the conditions $0 < \beta < 1$ and $|z_i| \geq 1$ for all $1 \leq i \leq n$ imply that

 $\mathcal{D}Z(\beta, z_1, z_2, \ldots, z_n) \neq 0.$

 \bullet Our univariate theorem follows from the above by setting $z_i = z$ for all i

Proof Sketch

Theorem

On a connected graph, the conditions $0 < \beta < 1$ and $|z_i| \geq 1$ for all $1 \leq i \leq n$ imply that

$$
\mathcal{D}Z(\beta,z_1,z_2,\ldots,z_n)\neq 0.
$$

- Say that $Z(\beta, z_1, z_2, \ldots, z_n)$ has property G if it satisfies the conclusion of the above theorem
- The proof proceeds by induction:
	- Each step maintains the connectedness of the graph, and the property $\mathcal G$ for its partition function
	- Asano's proof of the Lee-Yang theorem as a warm-up

Asano's Proof of the Lee-Yang theorem

Property ^A

$$
Z_G
$$
 has property \mathcal{A} (denoted $Z \in \mathcal{A}$) if
\n
$$
0 < \beta \le 1
$$
 and $|z_i| > 1$ for all i
\n
$$
\implies Z_G(\beta, z_1, z_2, \dots, z_n) \ne 0
$$

• If G and H are disjoint graphs with $Z_G, Z_H \in \mathcal{A}$, then

 $Z_{G \cup H} = Z_G Z_H \in \mathcal{A}$

Asano's Proof of the Lee-Yang theorem

Property ^A

$$
Z_G
$$
 has property \mathcal{A} (denoted $Z \in \mathcal{A}$) if
\n
$$
0 < \beta \le 1
$$
 and $|z_i| > 1$ for all i
\n
$$
\implies Z_G(\beta, z_1, z_2, \dots, z_n) \ne 0
$$

• If G and H are disjoint graphs with Z_G , $Z_H \in \mathcal{A}$, then

$$
Z_{G \dot{\cup} H} = Z_G Z_H \in \mathcal{A}
$$

Single edge:

Proof

$$
z_1 z_2 + \beta (z_1 + z_2) + 1 = 0 \implies |z_2| = \left| \frac{1 + \beta z_1}{\beta + z_1} \right|
$$

For $0 < \beta \leq 1$, this is a Möbius transform mapping the exterior of the unit disk to its interior. Thus, if $|z_1| > 1$ then $|z_2| \leq 1$

Asano's proof of the Lee-Yang theorem (contd.)

• Merging vertices:

 $Az_1z_2 + Bz_1 + Cz_2 + D \in \mathcal{A} \implies Az + D \in \mathcal{A}$

Proof

Let $z_3, z_4, \ldots z_n$ be fixed so that $|z_i| > 1$ for $i \geq 3$.

 $Az_1z_2 + Bz_1 + Cz_2 + D \in \mathcal{A} \implies Az_1z_2 + Bz_1 + Cz_2 + D \neq 0$, for $|z_1|, |z_2| > 1$ $\implies Az^2 + Bz + Cz + D \neq 0$ for $|z| > 1$ \Rightarrow \boldsymbol{D} A \vert \leq 1 (Product of zeros)

Thus, $Az + D = 0 \implies |z| = |D| / |A| \leq 1$

Repeated use of above operations implies that $G \in \mathcal{A}$ for all graphs G Example:

Single edges and disjoint products

Proof of our theorem: In Asano's footsteps

Property $\mathcal G$

$$
Z_G \text{ has property } G \text{ (denoted } Z \in G) \text{ if } 0 < \beta < 1 \text{ and } |z_i| \ge 1 \text{ for all } i \implies \mathcal{D}Z_G(\beta, z_1, z_2, \dots, z_n) \ne 0
$$

(Recall that $\mathcal{D} = \sum_{v \in V} z_v \frac{\partial}{\partial z_v}$)

Proof of our theorem: In Asano's footsteps

Property ^G

$$
Z_G
$$
 has property G (denoted $Z \in G$) if $0 < \beta < 1$ and $|z_i| \ge 1$ for all $i \implies \mathcal{D}Z_G(\beta, z_1, z_2, \dots, z_n) \ne 0$
(Recall that $\mathcal{D} = \sum_{v \in V} z_v \frac{\partial}{\partial z_v}$)

Single edge:

$$
z_1 z_2 + \beta(z_1 + z_2) + 1 \in \mathcal{G}
$$

\n
$$
\triangleright \mathcal{D}Z = 2z_1 z_2 + \beta(z_1 + z_2) = 0 \text{ implies that } \frac{1}{|z_1|} + \frac{1}{|z_2|} \ge \frac{2}{\beta} \text{: contradiction}
$$

• But things become too complicated when we try to merge graphs

Proof of our theorem: The two inductive steps

o Contracting vertices:

 $Az_1z_2 + Cz_1 + Dz_2 + B \in \mathcal{G} \implies Az^2 + B \in \mathcal{G}$

Proof of our theorem: The two inductive steps

Contracting vertices:

- $Az_1z_2 + Cz_1 + Dz_2 + B \in \mathcal{G} \implies Az^2 + B \in \mathcal{G}$
- Adding a single new edge and a new vertex:

Proof of our theorem: The two inductive steps

• Contracting vertices:

- $Az_1z_2 + Cz_1 + Dz_2 + B \in \mathcal{G} \implies Az^2 + B \in \mathcal{G}$
- Adding a single new edge and a new vertex:

- Unlike Asano's proof, each of the above steps requires a somewhat technical argument relying on a correlation inequality due to Newman [1974]
- Another technical problem is the change in degree of the activities

Finishing the proof

Our proof works via an induction on the number of edges, using the above operations to construct the graph

 \triangleright See paper for details

... or arXiv: 1407.5991 [S., Szegedy] for a shorter, more analytic proof of a weaker (but sufficient) version

Finishing the proof

o Our proof works via an induction on the number of edges, using the above operations to construct the graph

 \triangleright See paper for details

 \dots or $arXiv:1407.5991$ [S., Szegedy] for a shorter, more analytic proof of a weaker (but sufficient) version

The main theorem then immediately implies the hardness result

Theorem

For any $0 < \beta < 1$ and $\lambda \neq 1$ computing the magnetization of the Ising model is #P-hard. This is true even for bounded degree graphs (with degree > 4)

Theorem

For a connected graph with $0 < \beta < 1$, (and $Z'(\beta, z) = \frac{\partial}{\partial z} Z(\beta, z)$)

 \bullet $Z(\beta, z) = 0 \Longrightarrow |z| = 1.$ [Lee and Yang, 1952]

Theorem

For a connected graph with $0 < \beta < 1$, (and $Z'(\beta, z) = \frac{\partial}{\partial z} Z(\beta, z)$)

 \bullet $Z(\beta, z) = 0 \Longrightarrow |z| = 1.$ [Lee and Yang, 1952]

$$
\bullet \, Z'(\beta, z) = 0 \Longrightarrow |z| < 1.
$$

[Sinclair, S., 2014]

In particular, $gcd(Z(\beta, \lambda), Z'(\beta, \lambda)) = 1$

Theorem

For a connected graph with $0 < \beta < 1$, (and $Z'(\beta, z) = \frac{\partial}{\partial z} Z(\beta, z)$)

 \bullet $Z(\beta, z) = 0 \Longrightarrow |z| = 1.$ [Lee and Yang, 1952] $Z'(\beta, z) = 0 \Longrightarrow |z| < 1.$ [Sinclair, S., 2014]

In particular, $gcd(Z(\beta, \lambda), Z'(\beta, \lambda)) = 1$

Theorem [Sinclair, S., 2014]

- Computing the mean magnetization of the ferromagnetic Ising model is #P-hard
- Similar strategy for matchings using the **Heilmann-Lieb** theorem [1972]

Theorem

For a connected graph with $0 < \beta < 1$, (and $Z'(\beta, z) = \frac{\partial}{\partial z} Z(\beta, z)$)

 \bullet $Z(\beta, z) = 0 \Longrightarrow |z| = 1.$ [Lee and Yang, 1952] Z'

$$
0 \Longrightarrow |z| < 1.
$$

[Sinclair, S., 2014]

In particular, $gcd(Z(\beta, \lambda), Z'(\beta, \lambda)) = 1$

But. . .

- This strategy fails for Antiferromagnetic Ising $(\beta > 1)$ and independent sets
- Z and $\frac{\partial}{\partial \beta} Z$ can have common factors as polynomials in β
	- \triangleright ... so also does not apply to mean energy ("avg. cut size")

Such detailed information on zeros of Z is available only for very specific models

Circumventing Lee-Yang theorems

Averages and $\log Z$ ("free energy")

$$
\mu(\beta, \lambda) = \lambda \frac{Z'}{Z} = \lambda \frac{\partial}{\partial \lambda} \log Z
$$

$$
\implies \log Z = \int \frac{1}{\lambda} \mu(\beta, \lambda) d\lambda + c
$$

Exactly analogous relationships hold for all other models

Possible strategy for reduction

Numerically integrate evaluations of μ to find $\log Z$ and hence Z

- Can only evaluate μ at poly (n) points
- Not clear if this evaluates Z to sufficient accuracy

Averages and $\log Z$ ("free energy")

$$
\mu(\beta, \lambda) = \lambda \frac{Z'}{Z} = \lambda \frac{\partial}{\partial \lambda} \log Z
$$

$$
\implies \log Z = \int \frac{1}{\lambda} \mu(\beta, \lambda) d\lambda + c
$$

Exactly analogous relationships hold for all other models

Possible strategy for reduction

Numerically integrate evaluations of μ to find $\log Z$ and hence Z

- Can only evaluate μ at poly (n) points
- Not clear if this evaluates Z to sufficient accuracy

Attempt symbolic integration using evaluations of μ ?

Suppose $gcd(Z(\beta, \lambda), Z'(\beta, \lambda)) = g(\lambda)$, then

$$
\frac{1}{\lambda}\mu(\beta,\lambda) = \frac{a(\lambda)}{b(\lambda)}, \text{ where } a(\lambda) = \frac{Z'(\beta,\lambda)}{g(\lambda)}, b(\lambda) = \frac{Z(\beta,\lambda)}{g(\lambda)}.
$$

If
$$
Z(\beta, \lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d_i}
$$
, where $p_i(\lambda)$ are irreducible in $\mathbb{Q}[\lambda]$,
then $g(\lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d-1}$, $b(\lambda) = \prod_{i=1}^{k} p_i(\lambda)$.

Observation

Symbolic integration of $\mu(\beta, \lambda)/\lambda$ amounts to finding $p_i(\lambda)$ and d_i

Suppose $gcd(Z(\beta, \lambda), Z'(\beta, \lambda)) = g(\lambda)$, then

$$
\frac{1}{\lambda}\mu(\beta,\lambda) = \frac{a(\lambda)}{b(\lambda)}, \text{ where } a(\lambda) = \frac{Z'(\beta,\lambda)}{g(\lambda)}, b(\lambda) = \frac{Z(\beta,\lambda)}{g(\lambda)}.
$$

If
$$
Z(\beta, \lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d_i}
$$
, where $p_i(\lambda)$ are irreducible in $\mathbb{Q}[\lambda]$,
then $g(\lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d-1}$, $b(\lambda) = \prod_{i=1}^{k} p_i(\lambda)$.

Observation

Symbolic integration of $\mu(\beta,\lambda)/\lambda$ amounts to finding $p_i(\lambda)$ and d_i

 L emma \lfloor \lf

 $a(\lambda)$ and $b(\lambda)$ can be efficiently computed using evaluations of $\mu(\beta,\lambda)=\lambda\frac{a(\lambda)}{b(\lambda)}$ at poly (n) values $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_{\text{poly}(n)}$

$$
Z(\beta, \lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d_i}, \text{ where } p_i(\lambda) \text{ are irreducible in } \mathbb{Q}[\lambda],
$$

$$
\frac{1}{\lambda} \mu(\lambda) = \frac{a(\lambda)}{b(\lambda)}
$$

$$
a(\lambda) = Z'(\beta, \lambda) / \gcd(Z, Z'), \quad b(\lambda) = \prod_{i=1}^{d} p_i(\lambda)
$$

Determining $\overline{p_i}$ and $\overline{d_i}$ (sketch)

- **O** Compute $a(\lambda)$ and $b(\lambda)$ from poly (n) evaluations of μ at $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_{\text{poly}(n)}$
- \bullet p_i are uniquely (and efficiently) determined by factoring $b(\lambda)$ in $\mathbb{Q}[\lambda]$
- \bullet d_i are uniquely (and efficiently) determined via a partial fraction expansion of $a(\lambda)/b(\lambda)$

$$
Z(\beta, \lambda) = \prod_{i=1}^{k} p_i(\lambda)^{d_i}, \text{ where } p_i(\lambda) \text{ are irreducible in } \mathbb{Q}[\lambda],
$$

$$
\frac{1}{\lambda} \mu(\lambda) = \frac{a(\lambda)}{b(\lambda)}
$$

$$
a(\lambda) = Z'(\beta, \lambda) / \gcd(Z, Z'), \quad b(\lambda) = \prod_{i=1}^{d} p_i(\lambda)
$$

Determining $\overline{p_i}$ and $\overline{d_i}$ (sketch)

- **O** Compute $a(\lambda)$ and $b(\lambda)$ from poly (n) evaluations of μ at $\lambda = \lambda_1, \lambda_2, \ldots, \lambda_{\text{poly}(n)}$
- \bullet p_i are uniquely (and efficiently) determined by factoring $b(\lambda)$ in $\mathbb{Q}[\lambda]$
- \bullet d_i are uniquely (and efficiently) determined via a partial fraction expansion of $a(\lambda)/b(\lambda)$

Conclusion

Can symbolically integrate μ to obtain $Z(\beta,\lambda)$ using evaluations of μ at poly (n) values of λ

Completing the proof

• The above reduction requires evaluations of μ at several values of λ

- To prove hardness for a fixed value of λ , different values of λ are simulated by modifying the input graph
	- \blacktriangleright ... similar to techniques used previously for partition functions
	- \triangleright but some care is needed while extending these to averages

- The same proof strategy works for the other averages as well
	- \blacktriangleright ... the only model specific details appear in the above "simulation" step

Complexity of means

Precluding common factors

Leads to new results about zeros of partition functions, potentially of independent interest

Leads to new results about zeros of partition functions, potentially of independent interest

Symbolic integration

More general, but no new information about specific models

Leads to new results about zeros of partition functions, potentially of independent interest

Symbolic integration

More general, but no new information about specific models

Thank you!

Leads to new results about zeros of partition functions, potentially of independent interest

Symbolic integration

More general, but no new information about specific models

Thank you!

Leads to new results about zeros of partition functions, potentially of independent interest

Symbolic integration

More general, but no new information about specific models

Thank you!

Bibliography I

Taro Asano. Lee-Yang theorem and the Griffiths inequality for the anisotropic Heisenberg ferromagnet. *Phys. Rev. Lett.*, 24(25):1409–1411, June 1970. doi: 10.1103/PhysRevLett.24.1409. URL <http://link.aps.org/doi/10.1103/PhysRevLett.24.1409>.

- A. Bulatov and M. Grohe. The complexity of partition functions. *Theor. Comput. Sci.*, 348(2-3):148–186, 2005.
- Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A dichotomy theorem. In *Automata, Languages and Programming*, volume 6198 of *Lecture Notes in Computer Science*, pages 275–286. Springer, 2010. ISBN 978-3-642-14164-5. URL

<http://www.springerlink.com/content/46275700132p5250/abstract/>.

- Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomorphisms. *Random Struct. Algorithms*, 17(3-4):260–289, 2000.
- Jack Edmonds. Paths, trees, and flowers. *Canad. J. Math.*, 17(0):449–467, January 1965. ISSN 1496-4279, 0008-414X.

Bibliography II

- R. M. Karp. Reducibility among combinatorial problems. In *Proc. Complexity of Computer Computations*, pages 85–103. Plenum Press, 1972.
- T. D. Lee and C. N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. *Phys. Rev.*, 87(3):410–419, August 1952. doi: 10.1103/PhysRev.87.410.
- Nathaniel Macon and D. E. Dupree. Existence and uniqueness of interpolating rational functions. *Am. Math. Mon.*, 69(8):751–759, October 1962. ISSN 0002-9890. doi: 10.2307/2310771. URL

<http://www.jstor.org/stable/2310771>.

Charles M. Newman. Zeros of the partition function for generalized Ising systems. *Commun. Pure Appl. Math.*, 27(2):143–159, March 1974. ISSN 1097-0312. doi: 10.1002/cpa.3160270203. URL [http:](http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160270203/abstract)

[//onlinelibrary.wiley.com/doi/10.1002/cpa.3160270203/abstract](http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160270203/abstract).

Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. *SIAM J. Comput.*, 31(2):398–427, January 2001. ISSN 0097-5397, 1095-7111. doi: 10.1137/S0097539797321602. URL

<http://epubs.siam.org/doi/abs/10.1137/S0097539797321602>.

Bibliography III

- Leslie G. Valiant. The complexity of computing the permanent. *Theor. Comput. Sci.*, 8:189–201, 1979a.
- Leslie G. Valiant. The complexity of enumeration and reliability problems. *SIAM J. Comput.*, 8(3):410–421, 1979b.