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Independent sets

Max-Ind-Set NP-hard
#Ind-Set #P-hard
[Karp, 1972; Valiant, 1979a]

Question
What is the complexity of computing the average size of an independent set?
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Matchings

Max-Matching P
#Matching #P-hard
[Edmonds, 1965; Valiant, 1979a]

Question
What is the complexity of computing the average size of a matching?
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Ising model [Ising, 1925]

+ +

+

−

− −

−

w(C) = λ#(+)β|C|

Vertex activity

Edge activity

Partition function Z(β, λ) ··=
∑
cuts C

w(C)

Z(β, λ) is #P-hard for fixed (β, λ)

Ferromagnetic vs. Antiferromagnetic Ising

log β0

Ferro- Antiferro-

β < 1 and β > 1 are qualitatively very different
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w(C) = λ#(+)β|C|

Vertex activity

Edge activity

Partition function Z(β, λ) ··=
∑
cuts C

w(C)

Z(β, λ) is #P-hard for fixed (β, λ)

Questions (for both ferro- and antiferromagnetic Ising)
Mean magnetization

E
C∼w

[#(+)]

Mean energy (“Avg. cut size”)
E

C∼w
[|C|]

What is the complexity of computing the above?
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Why averages?

Approximation
Very extensively studied: a major application of sampling

Exact computation
Ising model: Computing magnetization is trivial for λ = 1 (spins are symmetric,
so magnetization = 1/2). Other λ? Mean energy? Other models

Technical reasons
Interesting questions about zeros of partition functions
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Results
All these averages are #P-hard to compute, even on bdd. degree graphs

[Schulman, Sinclair, S., IEEE FOCS 2015]

Avg. size of independent sets

Holds also for the “Hard core lattice gas”

Avg. size of matchings

Holds also for the “Monomer-dimer model”

Ising mean magnetization

For both Ferro- and Antiferro- Ising

Ising mean energy

For both Ferro- and Antiferro- Ising

Earlier results [Sinclair, S., Comm. Math. Phys. 2014]

#P hardness for Ferromagnetic Ising magnetization and for Monomer-dimer with edge weights
...using new extensions to Lee-Yang type theorems
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Proving #P-hardness: Partition functions

Recall that
Z(β, λ) =

∑
σ∈{+,−}V

β#(+,−)λ#(+)

Interpolation [Valiant, 1979b; . . . Vadhan, 2001; . . . Dyer and Greenhill, 2000; . . . ]

View Z(β, λ) =
∑|V |
k=1 αkλ

k as a polynomial in λ
Coefficients αk encode the solution to a #P-hard problem (e.g. #Max-Cut)
Find the coefficients αk using polynomial interpolation

Shows that computing Z(β, λ) is hard—at least when λ is part of the input

Complexity of partition functions is very well understood via dichotomy
theorems [e.g. Bulatov and Grohe, 2005; . . . Cai, Chen, and Lu, 2010. . . ]
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Proving #P-hardness: Magnetization

Magnetization µ(β, λ) can be written as

µ(β, λ) ··=
∑
σ#(+)w(σ)∑

σ w(σ)
=
λZ′

Z
, ∵∵∵ w(σ) = λ#(+)βC(σ),

where Z ′ = ∂
∂λZ(β, λ)

Interpolation
View µ(β, λ) as a rational function in λ
Coefficients of Z,Z ′ encode the solution to a #P-hard problem
Find the coefficients of Z (and Z ′) using rational interpolation

But. . .
Cannot interpolate p(x)

q(x) when p(x) and q(x) share common factors!
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Rest of the talk: Ensuring rational interpolation succeeds

Approach 1: Show there are no common factors
New results for zeros of partition functions

Approach 2: Interpolate with common factors
Integrate the mean
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Rational interpolation and #P-hardness

Rational Interpolation [Macon and Dupree, 1962]

Suppose R(x) = p(x)
q(x) where deg (p(x)) = deg (q(x)) = n.

If
gcd(p(x), q(x)) = 1

then p(x) and q(x) can be determined efficiently from 2n+ 2 evaluations of R

We had
µ(β, λ) = λ

Z ′

Z

Requirement: No common zeros for Z and Z ′

#P-hardness will follow if gcd (Z ′(β, λ), Z(β, λ)) = 1,

⇐⇒ Z(β, λ) and Z ′(β, λ) have no common complex zeros
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Rational interpolation and #P-hardness (contd. . . )

Conclusion

Z , Z ′ have no common zeros =⇒
magnetization µ is as hard to

compute as Z
(and hence #P-hard)

Disconnected graphs can have common zeros:
I e.g., ZG∪̇G = Z2

G, so that ZG∪̇G and Z ′
G∪̇G have lots of common zeros
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Complex zeros and Ferromagnetic Ising

Theorem [Lee and Yang, 1952]

When 0 < β ≤ 1, the zeros of Z(β, z) satisfy |z| = 1.

X

Y

O

|z| = 1

Lee-Yang theorem: Zeros of Z

Gauss-Lucas lemma: Z′(β, z) = 0 =⇒ |z| ≤ 1

I . . . but this is not sufficient for showing that
Z and Z ′ have no common zeros

Original motivation for the theorem was
studying phase transitions in the Ising model
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An extension of the Lee-Yang theorem

Theorem [Sinclair, S., 2014]

For a connected graph with 0 < β < 1, the zeros of Z ′(β, z) = ∂
∂zZ(J, z) satisfy

|z| < 1. In particular, gcd (Z(β, z), Z ′(β, z)) = 1.

X

Y

O

|z| < 1

Our theorem: Zeros of Z ′
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Proving Lee-Yang theorems

New approach
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Multivariate Lee-Yang theorems
Consider the scenario where the vertex activities can vary across vertices:

w(σ) = β#(+,−)
∏

v:σ(v)=+

zv

Magnetization operator

D :=
∑
v

zv
∂

∂zv

so that
DZ(β, z1, z2, . . . zn)|z1=z2=...=zn=x = z

∂

∂z
Z(β, z)|z=x

The magnetization itself is given by

µ(β, z1, z2, . . . zn) =
DZ(β, z1, z2, . . . zn)
Z(β, z1, z2, . . . zn)

Agrees with the univariate case: µ(β, λ) = λZ′

Z
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Multivariate Lee-Yang theorems (contd. . . )

Theorem [Lee and Yang, 1952; Asano, 1970]

Suppose 0 < β ≤ 1, and |zi| > 1 for 1 ≤ i ≤ n. Then,

Z(β, z1, z2, . . . , zn) 6= 0.

The univariate Lee-Yang theorem follows by setting zi = z for all i

Our theorem
On a connected graph, the conditions 0 < β < 1 and |zi| ≥ 1 for all 1 ≤ i ≤ n
imply that

DZ(β, z1, z2, . . . , zn) 6= 0.

Our univariate theorem follows from the above by setting zi = z for all i
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Proof Sketch

Theorem
On a connected graph, the conditions 0 < β < 1 and |zi| ≥ 1 for all 1 ≤ i ≤ n
imply that

DZ(β, z1, z2, . . . , zn) 6= 0.

Say that Z(β, z1, z2, . . . , zn) has property G if it satisfies the conclusion of
the above theorem

The proof proceeds by induction:
I Each step maintains the connectedness of the graph, and the property G

for its partition function
I Asano’s proof of the Lee-Yang theorem as a warm-up

16/28



Asano’s Proof of the Lee-Yang theorem
Property A
ZG has property A (denoted Z ∈ A) if

0 < β ≤ 1 and |zi| > 1 for all i
=⇒ ZG(β, z1, z2, . . . , zn) 6= 0

If G and H are disjoint graphs with ZG, ZH ∈ A, then
ZG∪̇H = ZGZH ∈ A

Single edge:

z1z2 + β(z1 + z2) + 1 ∈ A

Proof

z1z2 + β(z1 + z2) + 1 = 0 =⇒ |z2| =
∣∣∣∣1 + βz1
β + z1

∣∣∣∣
For 0 < β ≤ 1, this is a Möbius transform mapping the exterior of the unit disk to
its interior. Thus, if |z1| > 1 then |z2| ≤ 1
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Asano’s proof of the Lee-Yang theorem (contd.)
Merging vertices:

Az1z2 +Bz1 + Cz2 +D ∈ A =⇒ Az +D ∈ A

Proof
Let z3, z4, . . . zn be fixed so that |zi| > 1 for i ≥ 3.

Az1z2 +Bz1 + Cz2 +D ∈ A =⇒ Az1z2 +Bz1 + Cz2 +D 6= 0, for |z1| , |z2| > 1

=⇒ Az2 +Bz + Cz +D 6= 0 for |z| > 1

=⇒
∣∣∣∣DA
∣∣∣∣ ≤ 1 (Product of zeros)

Thus, Az +D = 0 =⇒ |z| = |D| / |A| ≤ 1
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Asano’s proof: Putting it together
Repeated use of above operations implies that G ∈ A for all graphs G
Example:

∈ A =⇒ ∈ A =⇒ ∈ A

Single edges
and

disjoint products
Merge
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Proof of our theorem: In Asano’s footsteps

Property G
ZG has property G (denoted Z ∈ G) if

0 < β < 1 and |zi| ≥ 1 for all i =⇒ DZG(β, z1, z2, . . . , zn) 6= 0
(Recall that D =

∑
v∈V zv

∂
∂zv

)

Single edge:

z1z2 + β(z1 + z2) + 1 ∈ G

I DZ = 2z1z2 + β(z1 + z2) = 0 implies that 1
|z1| +

1
|z2| ≥

2
β : contradiction

But things become too complicated when we try to merge graphs
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Proof of our theorem: The two inductive steps
Contracting vertices:

Az1z2 + Cz1 +Dz2 +B ∈ G =⇒ Az2 +B ∈ G

Adding a single new edge and a new vertex:

Az1 +B ∈ G =⇒ Az21(β + z) +B(1 + βz) ∈ G

Unlike Asano’s proof, each of the above steps requires a somewhat technical
argument relying on a correlation inequality due to Newman [1974]
Another technical problem is the change in degree of the activities

• 21/28
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Finishing the proof

Our proof works via an induction on the number of edges, using the above
operations to construct the graph

I See paper for details

. . . or arXiv:1407.5991 [S., Szegedy] for a shorter, more analytic proof of a weaker
(but sufficient) version

The main theorem then immediately implies the hardness result

Theorem
For any 0 < β < 1 and λ 6= 1 computing the magnetization of the Ising model is
#P-hard. This is true even for bounded degree graphs (with degree ≥ 4)
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Complex zeros and Ferromagnetic Ising magnetization

Theorem
For a connected graph with 0 < β < 1, (and Z ′(β, z) = ∂

∂zZ(β, z))
Z(β, z) = 0 =⇒ |z| = 1. [Lee and Yang, 1952]

Z ′(β, z) = 0 =⇒ |z| < 1. [Sinclair, S., 2014]

In particular, gcd (Z(β, λ), Z ′(β, λ)) = 1

X

Y

O

|z| = 1

Zeros of Z

X

Y

O

|z| < 1

Zeros of Z ′
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Complex zeros and Ferromagnetic Ising magnetization

Theorem
For a connected graph with 0 < β < 1, (and Z ′(β, z) = ∂

∂zZ(β, z))
Z(β, z) = 0 =⇒ |z| = 1. [Lee and Yang, 1952]

Z ′(β, z) = 0 =⇒ |z| < 1. [Sinclair, S., 2014]

In particular, gcd (Z(β, λ), Z ′(β, λ)) = 1

Theorem [Sinclair, S., 2014]

Computing the mean magnetization of the ferromagnetic Ising model is
#P-hard
Similar strategy for matchings using the Heilmann-Lieb theorem [1972]
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Complex zeros and Ferromagnetic Ising magnetization

Theorem
For a connected graph with 0 < β < 1, (and Z ′(β, z) = ∂

∂zZ(β, z))
Z(β, z) = 0 =⇒ |z| = 1. [Lee and Yang, 1952]

Z ′(β, z) = 0 =⇒ |z| < 1. [Sinclair, S., 2014]

In particular, gcd (Z(β, λ), Z ′(β, λ)) = 1

But. . .
This strategy fails for Antiferromagnetic Ising (β > 1) and independent sets
Z and ∂

∂βZ can have common factors as polynomials in β
I . . . so also does not apply to mean energy (“avg. cut size”)

Such detailed information on zeros of Z is available only for very specific models
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Circumventing Lee-Yang theorems
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Averages and logZ (“free energy”)

µ(β, λ) = λ
Z′

Z
= λ

∂

∂λ
logZ

=⇒ logZ =

∫
1

λ
µ(β, λ)dλ+ c

Exactly analogous relationships hold for all other models

Possible strategy for reduction
Numerically integrate evaluations of µ to find logZ and hence Z

Can only evaluate µ at poly (n) points
Not clear if this evaluates Z to sufficient accuracy

Attempt symbolic integration using evaluations of µ?
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Coping with common factors
Suppose gcd(Z(β, λ), Z′(β, λ)) = g(λ), then

1

λ
µ(β, λ) =

a(λ)

b(λ)
, where a(λ) = Z′(β, λ)

g(λ)
, b(λ) =

Z(β, λ)

g(λ)
.

If Z(β, λ) =
k∏
i=1

pi(λ)
di , where pi(λ) are irreducible in Q[λ],

then g(λ) =

k∏
i=1

pi(λ)
d−1, b(λ) =

k∏
i=1

pi(λ).

Observation
Symbolic integration of µ(β, λ)/λ amounts to finding pi(λ) and di

Lemma [Well known, or follows from Macon and Dupree, 1962]

a(λ) and b(λ) can be efficiently computed using evaluations of µ(β, λ) = λa(λ)
b(λ)

at
poly (n) values λ = λ1, λ2, . . . , λpoly(n)
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Coping with common factors

Z(β, λ) =
k∏
i=1

pi(λ)
di , where pi(λ) are irreducible in Q[λ],

1

λ
µ(λ) =

a(λ)

b(λ)

a(λ) = Z′(β, λ)/ gcd(Z,Z′), b(λ) =
d∏
i=1

pi(λ)

Determining pi and di (sketch)
Compute a(λ) and b(λ) from poly (n) evaluations of µ at λ = λ1, λ2, . . . , λpoly(n)

pi are uniquely (and efficiently) determined by factoring b(λ) in Q[λ]

di are uniquely (and efficiently) determined via a partial fraction expansion of a(λ)/b(λ)

Conclusion
Can symbolically integrate µ to obtain Z(β, λ) using evaluations of µ at poly (n) values of λ
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Completing the proof
The above reduction requires evaluations of µ at several values of λ

To prove hardness for a fixed value of λ, different values of λ are simulated by
modifying the input graph

I . . . similar to techniques used previously for partition functions
I but some care is needed while extending these to averages

The same proof strategy works for the other averages as well
I . . . the only model specific details appear in the above “simulation” step

28/28



Complexity of means

Precluding common factors
Leads to new results about zeros of partition
functions, potentially of independent interest

Symbolic integration
More general, but no new information about
specific models
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