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Martin Dyer, Andreas Göbel, Leslie Ann Goldberg,

Colin McQuillan and Tomoyuki Yamakami

David Richerby (Oxford) Counting Matrix Partitions of Graphs 29th March 2016 1 / 18



Graph homomorphisms

A homomorphism from G to H is a partition of V (G ) such that

each part is labeled with a vertex of H;

G has no edges between parts u and v if uv /∈ E (H).

G has no edges within part u if uu /∈ E (H).

G H
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Complexity of counting homomorphisms

Theorem (Dyer–Greenhill)

If every component of H is a clique with a self-loop on every vertex, or is a
complete bipartite graph, counting homomorphisms to H is in FP;
otherwise, it is #P-complete.

Note: easy cases are near-trivial.
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Homomorphisms as CSPs

For any target graph H, we can define a constraint language ΓH :

domain is V (H);

single binary relation R = E (H).

A homomorphism G → H is a satisfying assignment to the instance of
CSP(ΓH) with:

variables V (G );

constraints {〈R, u, v〉 | uv ∈ E (G )}.
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Matrix partitions

Let M be a symmetric k × k matrix over {0, 1, ∗}.

An M-partition of G is a partition V1, . . . ,Vk of V (G ) such that:

G has no edges between Vi and Vj if Mi ,j = 0;

G has every possible edge between Vi and Vj if Mi ,j = 1;

if Mi ,j = ∗, there is no constraint on the edges between Vi and Vj .

Vi is an independent set if Mi ,i = 0 and a clique if Mi ,i = 1.

Homomorphism problems are M-partition problems where M is a
{0, ∗}-matrix.
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Examples

3-colouring
2 3

1 

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0



Split graphs
1 2

(

1 ∗
∗ 0

)

Clique cutsets
1 2 3



∗ ∗ 0
∗ 1 ∗
0 ∗ ∗


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An encoding as a CSP

For a k × k symmetric {0, 1, ∗}-matrix M, define ΓM :

domain {1, . . . , k};
binary relation R+ =

{
(i , j) | Mi ,j ∈ {1, ∗}

}
;

binary relation R− =
{

(i , j) | Mi ,j ∈ {0, ∗}
}

.

An M-partition of G is a satisfying assignment to the CSP(ΓM) instance
with

variables V (G );

constraints
{〈R+, u, v〉 | uv ∈ E (G )} ∪ {〈R−, u, v〉 | u 6= v and uv /∈ E (G )}.
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#CSP dichotomy

Theorem (Bulatov, Dyer–Richerby)

For every constraint language Γ, #CSP(Γ) is either in FP or is
#P-complete. Further, deciding which of the two cases holds is in NP.

This doesn’t resolve the complexity of counting M-partitions because there
are instances of CSP(ΓM) that don’t correspond to M-partitions problems.

Maybe these instances are the hard ones?

David Richerby (Oxford) Counting Matrix Partitions of Graphs 29th March 2016 8 / 18



#CSP dichotomy

Theorem (Bulatov, Dyer–Richerby)

For every constraint language Γ, #CSP(Γ) is either in FP or is
#P-complete. Further, deciding which of the two cases holds is in NP.

This doesn’t resolve the complexity of counting M-partitions because there
are instances of CSP(ΓM) that don’t correspond to M-partitions problems.

Maybe these instances are the hard ones?

David Richerby (Oxford) Counting Matrix Partitions of Graphs 29th March 2016 8 / 18



List M-partitions

Most work has been on the “list” version of the problem.

Instance: a graph G and a function λ : V (G )→ P({1, . . . , k}).

Question: how many M-partitions σ of G , with σ(v) ∈ λ(v) for
all v ∈ V (G )?

(We say that such a partition σ respects the list function λ.)
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Complexity of list M-partitions

Theorem (Feder, Hell, 2006)

For every fixed M, list-M-partitions is either in Time
[
nO(log n)

]
or is

NP-complete.

Theorem (this talk)

For every symmetric M ∈ {0, 1, ∗}k×k , if M has a “derectangularizing
sequence”, then #list-M-partitions is #P-complete; otherwise, it
is in FP.

For the non-list version, we know what happens for small matrices: Feder,
Hell, Klein, Motwani (decision); Hell, Hermann, Nevisi, and Dyer,
Goldberg, Richerby (counting).
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Parameterization

For any subset-closed L ⊆ P({1, . . . , k}), #L-M-partitions is
“#list-M-partitions but you’re only allowed elements of L as lists.”

Allows recursive definition of algorithms.

Take L = P({1, . . . , k}) to recover #list-M-partitions.

From now on, write D = {1, . . . , k}.
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Purity

A matrix M is pure if it has no 0s or no 1s.

A set L ⊆ P(D) is M-purifying if all submatrices M|X×Y (X ,Y ∈ L) are
pure.

M =

∗ ∗ 0
∗ 1 ∗
0 ∗ ∗

 L =
{
{2}, {1, 3}

}
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Derectangularizing sequences

For X ,Y ⊆ D, RX ,Y = {(i , j) ∈ X × Y | Mi ,j = ∗}.

Definition

D1, . . . ,D` with each Di ⊆ D is a derectangularizing sequence for M if

{D1, . . . ,D`} is M-purifying;

RD1,D2 ◦ RD2,D3 ◦ · · · ◦ RD`−1,D`
is not rectangular.

A rectangular relation satisfies:

(x1, y1) ∈ R (x2, y1) ∈ R

(x1, y2) ∈ R

(x2, y2) ∈ R
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Dichotomy for purifying lists (I)

If L is subset-closed and M-purifying, then #L-M-partitions is
polytime-equivalent to #CSP(Γ), where

Γ = P(D) ∪
{
RX ,Y | X ,Y ∈ L

}
.

Theorem

For any symmetric matrix M ∈ {0, 1, ∗}k×k and any subset-closed,
M-purifying set L, #L-M-partitions is #P-complete if L contains a
derectangularizing sequence for M and in FP, otherwise.
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Dichotomy for purifying lists (II)

A useful trick: let M be M with 0s and 1s switched and G be the
complement of G .

There’s a one-to-one correspondence between M partitions of G and
M-partitions of G . So all pure matrices are essentially homomorphism
problems.

Allows translation of #L-M-partitions instances to #CSP(ΓM)
instances.

If there’s no derectangularizing sequence, solve these using arc-consistency.
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Dichotomy for purifying lists (III)

Existence of a derectangularizing sequence corresponds directly to
#P-completeness of #CSP(ΓM).

By equivalence of #CSP(ΓM) and #L-M-partitions, the partitions
problem is hard, too.

But what if L isn’t M-purifying?

Especially, what if P(D) isn’t M-purifying – the most interesting case!

David Richerby (Oxford) Counting Matrix Partitions of Graphs 29th March 2016 16 / 18



Dichotomy for purifying lists (III)

Existence of a derectangularizing sequence corresponds directly to
#P-completeness of #CSP(ΓM).

By equivalence of #CSP(ΓM) and #L-M-partitions, the partitions
problem is hard, too.

But what if L isn’t M-purifying?

Especially, what if P(D) isn’t M-purifying – the most interesting case!

David Richerby (Oxford) Counting Matrix Partitions of Graphs 29th March 2016 16 / 18



Purification

For each L, M, we give a purification algorithm.

Input: a graph G and an assignment of lists λ : V (G )→ L

Output: a sequence λ1, . . . , λt : V (G )→ L

such that

1 for each i , img (λi ) is M-purifying;

2 for each i and each v ∈ G , λi (v) ⊆ λ(v);

3 every M-partition of G that respects λ respects exactly one of the λi .

Purification runs in polynomial time if there’s no derectangularizing
sequence D1,D2 ⊆ img (λ).
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Dichotomy

Theorem

For any symmetric matrix M ∈ {0, 1, ∗}k×k and any subset-closed set of
allowable lists L ⊆ P({1, . . . , k}), the problem #L-M-partitions is
#P-complete if L contains a derectangularizing sequence for M and is in
FP, otherwise.

For #list-M-partitions, take L = P({1, . . . , k}).
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