Counting Matrix Partitions of Graphs

David Richerby

University of Oxford

Joint work with Martin Dyer, Andreas Göbel, Leslie Ann Goldberg, Colin McQuillan and Tomoyuki Yamakami

Graph homomorphisms

A homomorphism from G to H is a partition of $V(G)$ such that

- \bullet each part is labeled with a vertex of H;
- *G* has no edges between parts *u* and *v* if $uv \notin E(H)$.
- G has no edges within part u if $uu \notin E(H)$.

Graph homomorphisms

A homomorphism from G to H is a partition of $V(G)$ such that

- \bullet each part is labeled with a vertex of H;
- *G* has no edges between parts *u* and *v* if $uv \notin E(H)$.
- G has no edges within part u if uu $\notin E(H)$.

Graph homomorphisms

A homomorphism from G to H is a partition of $V(G)$ such that

- \bullet each part is labeled with a vertex of H;
- *G* has no edges between parts *u* and *v* if $uv \notin E(H)$.
- G has no edges within part u if uu $\notin E(H)$.

Theorem (Dyer–Greenhill)

If every component of H is a clique with a self-loop on every vertex, or is a complete bipartite graph, counting homomorphisms to H is in FP; otherwise, it is $\#P$ -complete.

Note: easy cases are near-trivial.

For any target graph H, we can define a constraint language Γ_{H} :

- \bullet domain is $V(H)$;
- single binary relation $R = E(H)$.

A homomorphism $G \rightarrow H$ is a satisfying assignment to the instance of $CSP(\Gamma_H)$ with:

- \bullet variables $V(G)$;
- constraints $\{R, u, v\}$ | $uv \in E(G)$ }.

Let M be a symmetric $k \times k$ matrix over $\{0, 1, *\}.$

An M-partition of G is a partition V_1, \ldots, V_k of $V(G)$ such that:

- G has no edges between V_i and V_j if $M_{i,j}=0$;
- G has every possible edge between V_i and V_j if $M_{i,j}=1;$
- if $M_{i,j}=*$, there is no constraint on the edges between $\,V_i$ and $\,V_j.$

 V_i is an independent set if $M_{i,i} = 0$ and a clique if $M_{i,i} = 1$.

Let M be a symmetric $k \times k$ matrix over $\{0, 1, *\}.$

An M-partition of G is a partition V_1, \ldots, V_k of $V(G)$ such that:

G has no edges between V_i and V_j if $M_{i,j}=0$;

- G has every possible edge between V_i and V_j if $M_{i,j}=1;$
- if $M_{i,j}=*$, there is no constraint on the edges between $\,V_i$ and $\,V_j.$

 V_i is an independent set if $M_{i,i} = 0$ and a clique if $M_{i,i} = 1$.

Homomorphism problems are M-partition problems where M is a {0, ∗}-matrix.

 QQ

÷ × \mathcal{A}

÷,

 299

K ロト K 伊 ト K 毛

 \setminus $\overline{1}$

÷ × \mathcal{A}

K ロ ▶ K 御 ▶ K 舌

÷,

×

K ロ ▶ K 御 ▶ K 舌

÷,

≃

目

4 ロ ▶ 4 母 ▶ 4

э

4 0 8

4 母 8 4

э

4 0 8

目

∢ 何 ≯ →

э

David Richerby (Oxford) [Counting Matrix Partitions of Graphs](#page-0-0) 29th March 2016 6 / 18

4 日下

э

41 n → n → n Þ

э

э

For a $k \times k$ symmetric $\{0, 1, *\}$ -matrix M, define Γ_M :

- \bullet domain $\{1, \ldots, k\}$;
- binary relation $R^+ = \bigl\{(i,j) \mid M_{i,j} \in \{1,*\}\bigr\};$
- binary relation $R^-=\big\{(i,j)\mid \mathit{M}_{i,j}\in\{0,*\}\big\}$.

For a $k \times k$ symmetric $\{0, 1, *\}$ -matrix M, define Γ_M :

- \bullet domain $\{1, \ldots, k\}$;
- binary relation $R^+ = \bigl\{(i,j) \mid M_{i,j} \in \{1,*\}\bigr\};$
- binary relation $R^-=\big\{(i,j)\mid \mathit{M}_{i,j}\in\{0,*\}\big\}$.

An M-partition of G is a satisfying assignment to the $CSP(\Gamma_M)$ instance with

 \bullet variables $V(G)$;

e constraints

$$
\{\langle R^+,u,v\rangle \mid uv \in E(G)\} \cup \{\langle R^-,u,v\rangle \mid u \neq v \text{ and } uv \notin E(G)\}.
$$

Theorem (Bulatov, Dyer–Richerby)

For every constraint language Γ , $\#\text{CSP}(\Gamma)$ is either in FP or is $\#P$ -complete. Further, deciding which of the two cases holds is in NP.

4 D F

Theorem (Bulatov, Dyer–Richerby)

For every constraint language Γ , $\#\text{CSP}(\Gamma)$ is either in FP or is $\#P$ -complete. Further, deciding which of the two cases holds is in NP.

This doesn't resolve the complexity of counting M-partitions because there are instances of $CSP(\Gamma_M)$ that don't correspond to M-partitions problems.

Maybe these instances are the hard ones?

Most work has been on the "list" version of the problem.

Instance: a graph G and a function $\lambda: V(G) \to \mathcal{P}(\{1,\ldots,k\}).$

Question: how many M-partitions σ of G, with $\sigma(v) \in \lambda(v)$ for all $v \in V(G)$?

(We say that such a partition σ respects the list function λ .)

Theorem (Feder, Hell, 2006)

For every fixed M, LIST-M-PARTITIONS is either in Time $\lceil n^{O(\log n)} \rceil$ or is NP-complete.

Theorem (Feder, Hell, 2006)

For every fixed M, LIST-M-PARTITIONS is either in Time $\lceil n^{O(\log n)} \rceil$ or is NP-complete.

Theorem (this talk)

For every symmetric $M \in \{0,1,*\}^{k \times k}$, if M has a "derectangularizing sequence", then $\#$ LIST-M-PARTITIONS is $\#$ P-complete; otherwise, it is in FP.

Theorem (Feder, Hell, 2006)

For every fixed M, LIST-M-PARTITIONS is either in Time $\lceil n^{O(\log n)} \rceil$ or is NP-complete.

Theorem (this talk)

For every symmetric $M \in \{0,1,*\}^{k \times k}$, if M has a "derectangularizing sequence", then $\#$ LIST-M-PARTITIONS is $\#$ P-complete; otherwise, it is in FP.

For the non-list version, we know what happens for small matrices: Feder, Hell, Klein, Motwani (decision); Hell, Hermann, Nevisi, and Dyer, Goldberg, Richerby (counting).

For any subset-closed $\mathcal{L} \subseteq \mathcal{P}(\{1,\ldots,k\})$, $\#\mathcal{L}\text{-}M\text{-PARTITIONS}$ is "#LIST-M-PARTITIONS but you're only allowed elements of $\mathcal L$ as lists."

Allows recursive definition of algorithms.

Take $\mathcal{L} = \mathcal{P}(\{1,\ldots,k\})$ to recover #LIST-M-PARTITIONS.

From now on, write $D = \{1, \ldots, k\}.$

A set $\mathcal{L} \subseteq \mathcal{P}(D)$ is M-purifying if all submatrices $M|_{X \times Y}$ $(X, Y \in \mathcal{L})$ are pure.

$$
M = \begin{pmatrix} * & * & 0 \\ * & 1 & * \\ 0 & * & * \end{pmatrix} \qquad \qquad \mathcal{L} = \{ \{2\}, \{1, 3\} \}
$$

4 D F

∢ n →

÷

A set $\mathcal{L} \subseteq \mathcal{P}(D)$ is M-purifying if all submatrices $M|_{X \times Y}$ $(X, Y \in \mathcal{L})$ are pure.

$$
M = \begin{pmatrix} * & * & 0 \\ * & 1 & * \\ 0 & * & * \end{pmatrix} \qquad \qquad \mathcal{L} = \{ \{2\}, \{1, 3\} \}
$$

目

 QQQ

K ロ ト K 何 ト K ヨ ト K ヨ

A set $\mathcal{L} \subseteq \mathcal{P}(D)$ is M-purifying if all submatrices $M|_{X \times Y}$ $(X, Y \in \mathcal{L})$ are pure.

$$
M = \begin{pmatrix} * & * & 0 \\ * & 1 & * \\ 0 & * & * \end{pmatrix} \qquad \qquad \mathcal{L} = \{ \{2\}, \{1, 3\} \}
$$

目

 QQQ

K ロ ト K 何 ト K ヨ ト K ヨ

A set $\mathcal{L} \subseteq \mathcal{P}(D)$ is M-purifying if all submatrices $M|_{X \times Y}$ $(X, Y \in \mathcal{L})$ are pure.

$$
M = \begin{pmatrix} * & * & 0 \\ * & 1 & * \\ 0 & * & * \end{pmatrix} \qquad \qquad \mathcal{L} = \{ \{2\}, \{1,3\} \}
$$

目

 QQQ

イロト イ押ト イヨト イヨト

Derectangularizing sequences

For
$$
X, Y \subseteq D, R_{X,Y} = \{(i,j) \in X \times Y \mid M_{i,j} = *\}.
$$

Definition

 D_1, \ldots, D_ℓ with each $D_i \subseteq D$ is a derectangularizing sequence for M if

- $\bullet \{D_1, \ldots, D_\ell\}$ is *M*-purifying;
- $R_{D_1,D_2} \circ R_{D_2,D_3} \circ \cdots \circ R_{D_{\ell-1},D_\ell}$ is not rectangular.

Derectangularizing sequences

For
$$
X, Y \subseteq D, R_{X,Y} = \{(i,j) \in X \times Y \mid M_{i,j} = *\}.
$$

Definition

 D_1, \ldots, D_ℓ with each $D_i \subseteq D$ is a derectangularizing sequence for M if

- $\bullet \{D_1, \ldots, D_\ell\}$ is *M*-purifying;
- $R_{D_1,D_2} \circ R_{D_2,D_3} \circ \cdots \circ R_{D_{\ell-1},D_\ell}$ is not rectangular.

A rectangular relation satisfies:

$$
(x_1, y_1) \in R
$$
 (x₂, y₁) $\in R$
\n
$$
(x_1, y_2) \in R
$$

Derectangularizing sequences

For
$$
X, Y \subseteq D, R_{X,Y} = \{(i,j) \in X \times Y \mid M_{i,j} = *\}.
$$

Definition

 D_1, \ldots, D_ℓ with each $D_i \subseteq D$ is a derectangularizing sequence for M if

- $\bullet \{D_1, \ldots, D_\ell\}$ is *M*-purifying;
- $R_{D_1,D_2} \circ R_{D_2,D_3} \circ \cdots \circ R_{D_{\ell-1},D_\ell}$ is not rectangular.

A rectangular relation satisfies:

$$
(x_1, y_1) \in R \longrightarrow (x_2, y_1) \in R
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
(x_1, y_2) \in R \longrightarrow (x_2, y_2) \in R
$$

If $\mathcal L$ is subset-closed and M-purifying, then $\#\mathcal L$ -M-PARTITIONS is polytime-equivalent to $\#\text{CSP}(\Gamma)$, where

$$
\Gamma = \mathcal{P}(D) \cup \{R_{X,Y} \mid X, Y \in \mathcal{L}\}.
$$

Theorem

For any symmetric matrix $M \in \{0,1,*\}^{k \times k}$ and any subset-closed, M-purifying set \mathcal{L} , $\#\mathcal{L}\text{-}M\text{-PARTITIONS}$ is $\#\text{P-complete}$ if $\mathcal L$ contains a derectangularizing sequence for M and in FP, otherwise.

A useful trick: let \overline{M} be M with 0s and 1s switched and \overline{G} be the complement of G.

There's a one-to-one correspondence between M partitions of G and \overline{M} -partitions of \overline{G} . So all pure matrices are essentially homomorphism problems.

Allows translation of $\#\mathcal{L}\text{-}M\text{-}\text{PARTITIONS}$ instances to $\#\text{CSP}(\Gamma_M)$ instances.

If there's no derectangularizing sequence, solve these using arc-consistency.

Existence of a derectangularizing sequence corresponds directly to $\#P$ -completeness of $\#CSP(\Gamma_M)$.

By equivalence of $\#\text{CSP}(\Gamma_M)$ and $\#\mathcal{L}\text{-}M\text{-PARTITIONS}$, the partitions problem is hard, too.

Existence of a derectangularizing sequence corresponds directly to $\#P$ -completeness of $\#CSP(\Gamma_M)$.

By equivalence of $\#\text{CSP}(\Gamma_M)$ and $\#\mathcal{L}\text{-}M\text{-PARTITIONS}$, the partitions problem is hard, too.

But what if $\mathcal L$ isn't *M*-purifying?

Especially, what if $P(D)$ isn't M-purifying – the most interesting case!

Input: a graph G and an assignment of lists $\lambda: V(G) \to \mathcal{L}$

 $\mathsf{Output:}$ a sequence $\lambda_1,\ldots,\lambda_t \colon V(\mathsf{G}) \to \mathcal{L}$

4 D F

Input: a graph G and an assignment of lists $\lambda: V(G) \to \mathcal{L}$

 $\mathsf{Output:}$ a sequence $\lambda_1, \ldots, \lambda_t \colon V(\mathsf{G}) \to \mathcal{L}$ such that

1 for each i, $\text{img}(\lambda_i)$ is M-purifying;

Input: a graph G and an assignment of lists $\lambda: V(G) \to \mathcal{L}$

 $\mathsf{Output:}$ a sequence $\lambda_1, \ldots, \lambda_t \colon V(\mathsf{G}) \to \mathcal{L}$ such that

1 for each i, $\text{img}(\lambda_i)$ is M-purifying;

2 for each *i* and each $v \in G$, $\lambda_i(v) \subseteq \lambda(v)$;

Input: a graph G and an assignment of lists λ : $V(G) \rightarrow \mathcal{L}$

 $\mathsf{Output:}$ a sequence $\lambda_1, \ldots, \lambda_t \colon V(\mathsf{G}) \to \mathcal{L}$ such that

- **1** for each i, $\text{img}(\lambda_i)$ is M-purifying;
- **2** for each *i* and each $v \in G$, $\lambda_i(v) \subseteq \lambda(v)$;
- \bullet every M -partition of G that respects λ respects exactly one of the $\lambda_i.$

Input: a graph G and an assignment of lists λ : $V(G) \rightarrow \mathcal{L}$

 $\mathsf{Output:}$ a sequence $\lambda_1, \ldots, \lambda_t \colon V(\mathsf{G}) \to \mathcal{L}$ such that

- **1** for each i, $\text{img}(\lambda_i)$ is M-purifying;
- 2 for each i and each $v \in G$, $\lambda_i(v) \subset \lambda(v)$;
- \bullet every M -partition of G that respects λ respects exactly one of the $\lambda_i.$

Purification runs in polynomial time if there's no derectangularizing sequence $D_1, D_2 \subset \text{img}(\lambda)$.

 QQ

Theorem

For any symmetric matrix $M \in \{0,1,*\}^{k \times k}$ and any subset-closed set of allowable lists $\mathcal{L} \subseteq \mathcal{P}(\{1,\ldots,k\})$, the problem $\#\mathcal{L}\text{-}M\text{-PARTITIONS}$ is $\#P$ -complete if L contains a derectangularizing sequence for M and is in FP, otherwise.

For #LIST-M-PARTITIONS, take $\mathcal{L} = \mathcal{P}(\{1,\ldots,k\})$.