Approximation algorithms for partition functions of edge-coloring models

Guus Regts

29 March 2016

The Classification Program of Counting Complexity, Simons Institute

Guus Regts

Approximation algorithms for partition function

29 March 2016 1 / 24

Correlation decay method (assuming $\Delta = \Delta(G)$ is constant) yields a (deterministic) FPTAS for:

- The number of weighted independent sets with weight $\lambda \ge 0$ for λ small enough (Weitz, 2006)
- The number of matchings in a graph (Bayati, Gamarnik, Katz, Nair and Tetali, 2007)
- The number of k-colorings of a graph for k > α∆ + 1 for α large enough (Lu and Yin, 2013)
- Partition function of real symmetric matrices A with $|A_{i,j} 1| \le c/\Delta$ (for some constant c) (Lu and Yin, 2013)

Low order Taylor approximations yield a (deterministic) QPTAS for:

- Permanent of complex matrices Z with $|Z_{i,j} 1| \le 0.5$ (Barvinok, 2016+)
- Permanent of real matrices Z with $\delta \leq Z_{i,j} \leq 1$ (Barvinok, 2016+)
- The partition function of complex symmetric matrices A with $|A_{i,j} 1| \le 0.34/\Delta(G)$ (Barvinok and Sobéron, 2016)
- The partition function of a complex-valued Boolean polynomial (Barvinok, 2015+)
- The Tutte polynomial, $Z(u, v)(G) := \sum_{A \subseteq E} u^{k(A)} v^{|A|}$ for any fixed $v \in \mathbb{C}$ and $u \in \mathbb{C}$ with |u| large enough (depending on v and $\Delta(G)$). (R., 2015+)

- 4 目 ト - 4 日 ト - 4 日 ト

What are edge-coloring models and their partition functions?

2 Main result

- 3 Algorithm and proof sketch
- Oiscussion and concluding remarks

Partition functions of edge-coloring models

Definition

A k-color edge-coloring model h is a collection of symmetric tensors $\{h^d\}_{d\in\mathbb{N}}$ with $h^d\in(\mathbb{C}^k)^{\otimes d}$.

Partition functions of edge-coloring models

Definition

A k-color edge-coloring model h is a collection of symmetric tensors $\{h^d\}_{d\in\mathbb{N}}$ with $h^d \in (\mathbb{C}^k)^{\otimes d}$. Let e_1, \ldots, e_k be the standard basis for \mathbb{C}^k . Then we can write

$$h^d = \sum_{\phi:[d] \to [k]} h^d(\phi) e_{\phi(1)} \otimes \cdots \otimes e_{\phi(d)}.$$

Definition

A *k*-color edge-coloring model *h* is a collection of symmetric tensors $\{h^d\}_{d\in\mathbb{N}}$ with $h^d \in (\mathbb{C}^k)^{\otimes d}$. Let e_1, \ldots, e_k be the standard basis for \mathbb{C}^k . Then we can write

$$h^d = \sum_{\phi: [d] o [k]} h^d(\phi) e_{\phi(1)} \otimes \cdots \otimes e_{\phi(d)}$$

Definition

The partition function of *h* is the graph parameter defined by $G = (V, E) \mapsto p(G)(h)$ with

$$p(G)(h) = \sum_{\phi: E \to [k]} \prod_{v \in V} (h^{\operatorname{deg}(v)}(\phi(\delta(v))).$$

Definition

A tensor network is a pair (G, h) where h is a collection of symmetric tensors $\{h^{\nu}\}_{\nu \in V(G)}$ with $h^{\nu} \in (\mathbb{C}^k)^{\otimes \deg(\nu)}$. Let e_1, \ldots, e_k be the standard basis for \mathbb{C}^k . Then we can write

$$h^{\mathsf{v}} = \sum_{\phi:[d] \to [k]} h^{\mathsf{v}}(\phi) e_{\phi(1)} \otimes \cdots \otimes e_{\phi(d)}.$$

Definition

The contraction of (G, h) is defined by $G = (V, E) \mapsto p(G)(h)$ with

$$p(G)(h) = \sum_{\phi: E \to [k]} \prod_{v \in V} (h^{v}(\phi(\delta(v)))).$$

Where do you find edge-coloring models?

$$p(G)(h) = \sum_{\phi: E(G) \to [k]} \prod_{v \in V(G)} h^{\deg(v)}(\phi(\delta(v)))$$

< 4 → <

Where do you find edge-coloring models?

$$p(G)(h) = \sum_{\phi: E(G) \to [k]} \prod_{v \in V(G)} h^{\deg(v)}(\phi(\delta(v)))$$

- Theoretical computer science: holant problems, tensor networks
- Statistical physics: partition functions of the vertex model (de la Harpe and Jones 1993)
- Knot theory: Lie algebra weight systems
- Invariant theory: invariants of the (complex) orthogonal group $O_k = \{g \in \mathbb{C}^{k \times k} \mid gg^T = I\}$ p(G)(gh) = p(G)(h).
- Combinatorics: counting perfect matchings, counting graph homomorphisms

Definition

Let A be a symmetric $n \times n$ matrix. The partition function of A is the graph invariant given by $G = (V, E) \mapsto p(G)(A)$ with

$$p(G)(A) := \sum_{\phi: V \to [n]} \prod_{uv \in E} A_{\phi(u), \phi(v)}.$$

Definition

Let A be a symmetric $n \times n$ matrix. The partition function of A is the graph invariant given by $G = (V, E) \mapsto p(G)(A)$ with

$$p(G)(A) := \sum_{\phi: V \to [n]} \prod_{uv \in E} A_{\phi(u), \phi(v)}.$$

Lemma (Szegedy 2007)

Write $A = B^T B$ (for some complex matrix B). Let b_1, \ldots, b_n be the columns of B. Define h^d by $h^d = \sum_{i=1}^n b_i^{\otimes d}$. Then

$$p(G)(h) = p(G)(A).$$

▲ @ ▶ ▲ ∃ ▶ ▲ ∃ ▶

Theorem (R. 2015)

Let (G, h) be a tensor network, where G has n vertices. If $|h^{v}(\phi) - 1| \leq \frac{0.35}{\Delta(G)+1}$ for each $\phi : [\deg(v)] \to [k]$ and each v, then for each $\varepsilon > 0$ we can (deterministically) compute in time $n^{O(\log n/\varepsilon)}$ a number ξ such that

$$e^{-\varepsilon} \leq \left|\frac{p(G)(h)}{\xi}\right| \leq e^{\varepsilon}.$$

Let $x \in \mathbb{C}^k$ be such that $x^T x \neq 0$ and let $X^d := x^{\otimes d}$.

Theorem (R. 2015)

Let (G, h) be a tensor network, where G has n vertices. If $|h^{v}(\phi) - X^{d}(\phi)|$ is sufficiently small for each $\phi : [\deg(v)] \rightarrow [k]$ and each v, then for each $\varepsilon > 0$ we can (deterministically) compute in time $n^{O(\log n/\varepsilon)}$ a number ξ such that

$$e^{-\varepsilon} \leq \left|\frac{p(G)(h)}{\xi}\right| \leq e^{\varepsilon}.$$

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(0) = k^{|E(G)|}$ and p(1) = p(G)(h).

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(0) = k^{|E(G)|}$ and p(1) = p(G)(h).

• If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by a low-order Taylor polynomial around 0.

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(0) = k^{|E(G)|}$ and p(1) = p(G)(h).

- If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by a low-order Taylor polynomial around 0.
- The Taylor polynomial can be expressed in terms of the derivatives of *p* at 0.

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(0) = k^{|E(G)|}$ and p(1) = p(G)(h).

- If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by a low-order Taylor polynomial around 0.
- The Taylor polynomial can be expressed in terms of the derivatives of *p* at 0.
- p(G)(h) ≠ 0 for all bounded degree graphs G and all h close enough to 1.

Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that $p(z) \neq 0$ for all $|z| \leq q$ with q > 1. Let $f(z) = \ln p(z)$ and let $T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}$. Then for $m = O(\ln(n/\varepsilon))$ we have that

$$e^{-arepsilon} \leq \left|rac{p(1)}{e^{\mathcal{T}_m(1)}}
ight| \leq e^{arepsilon}.$$

Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that $p(z) \neq 0$ for all $|z| \leq q$ with q > 1. Let $f(z) = \ln p(z)$ and let $T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}$. Then for $m = O(\ln(n/\varepsilon))$ we have that

$$e^{-\varepsilon} \leq \left| rac{p(1)}{e^{T_m(1)}}
ight| \leq e^{\varepsilon}.$$

Proof sketch:

Write

$$p(z) = p(0) \prod_{i=1}^{n} (1 - z/\alpha_i).$$

Lemma (Barvinok 2015)

Let p be a polynomial of degree n such that $p(z) \neq 0$ for all $|z| \leq q$ with q > 1. Let $f(z) = \ln p(z)$ and let $T_m(z) = \sum_{k=0}^m f^{(k)}(0) \frac{z^k}{k!}$. Then for $m = O(\ln(n/\varepsilon))$ we have that

$$e^{-\varepsilon} \leq \left| rac{p(1)}{e^{T_m(1)}}
ight| \leq e^{\varepsilon}.$$

Proof sketch: Write

$$p(z) = p(0) \prod_{i=1}^{n} (1 - z/\alpha_i).$$

Then

$$f(z) = \ln(p(z)) = \ln(p(0)) + \sum_{i=1}^{n} \ln(1 - z/\alpha_i).$$

Using the standard Taylor approximation of the natural logarithm, $\ln(1+x) = -\sum_{i=1}^{\infty} \frac{1}{i} (-x)^i$, we find that

$$\ln(1-1/\alpha_i) =$$

Using the standard Taylor approximation of the natural logarithm, $\ln(1+x) = -\sum_{i=1}^{\infty} \frac{1}{i} (-x)^i$, we find that

$$\ln(1-1/\alpha_i) = -\sum_{j=1}^m \frac{1}{j} \left(\frac{1}{\alpha_i}\right)^j + R_m,$$

with

$$|R_m| \leq \sum_{j>m} \frac{1}{m+1} \left(\frac{1}{q}\right)^j \leq \frac{1}{m+1} \frac{1}{(1-1/q)q^{m+1}}.$$

Using the standard Taylor approximation of the natural logarithm, $\ln(1+x) = -\sum_{i=1}^{\infty} \frac{1}{i} (-x)^i$, we find that

$$\ln(1-1/\alpha_i) = -\sum_{j=1}^m \frac{1}{j} \left(\frac{1}{\alpha_i}\right)^j + R_m,$$

with

$$|R_m| \leq \sum_{j>m} \frac{1}{m+1} \left(\frac{1}{q}\right)^j \leq \frac{1}{m+1} \frac{1}{(1-1/q)q^{m+1}}.$$

This implies that

$$|f(1) - T_m(1)| \le \frac{n}{m+1} \frac{1}{(1-1/q)q^{m+1}}.$$

Using the standard Taylor approximation of the natural logarithm, $\ln(1+x) = -\sum_{i=1}^{\infty} \frac{1}{i} (-x)^i$, we find that

$$\ln(1-1/\alpha_i) = -\sum_{j=1}^m \frac{1}{j} \left(\frac{1}{\alpha_i}\right)^j + R_m,$$

with

$$|R_m| \leq \sum_{j>m} \frac{1}{m+1} \left(\frac{1}{q}\right)^j \leq \frac{1}{m+1} \frac{1}{(1-1/q)q^{m+1}}.$$

This implies that

$$|f(1) - T_m(1)| \le \frac{n}{m+1} \frac{1}{(1-1/q)q^{m+1}}.$$

Taking $m = O(\log(n/\varepsilon))$ we get $|f(1) - T_m(1)| \le \varepsilon$ and applying exp to both sides we have the lemma.

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(1) = k^{|E(G)|}$ and p(1) = p(G)(h).

- If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by order $\ln(|V|)$ Taylor polynomial around 0.
- The Taylor polynomial of $\ln(p(1))$ can be expressed in terms of the derivatives of p at 0.
- p(G)(h) ≠ 0 for all bounded degree graphs G and all h close enough to 1.

Recall
$$f(z) = \ln p(z)$$
. So
 $f'(z) = \frac{p'(z)}{p(z)}$

э

・ロン ・日ン ・ヨン・

Recall $f(z) = \ln p(z)$. So

$$f'(z)=rac{p'(z)}{p(z)}$$
 that is $p'(z)=p(z)f'(z)$

3

・ロト ・日下・ ・ヨト・

Recall $f(z) = \ln p(z)$. So

$$f'(z) = rac{p'(z)}{p(z)}$$
 that is $p'(z) = p(z)f'(z)$

So

$$p^{(2)}(z) = p(z)f^{(2)}(z) + p'(z)f'(z).$$

3

3

• • • • • • • • • • • •

Recall $f(z) = \ln p(z)$. So

$$f'(z) = rac{p'(z)}{p(z)}$$
 that is $p'(z) = p(z)f'(z)$

So

$$p^{(2)}(z) = p(z)f^{(2)}(z) + p'(z)f'(z).$$

More generally,

$$p^{(m)}(z) = \sum_{i=0}^{m-1} {m-1 \choose i} p^{(i)}(z) f^{(m-i)}(z).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall $f(z) = \ln p(z)$. So

$$f'(z) = rac{p'(z)}{p(z)}$$
 that is $p'(z) = p(z)f'(z)$

So

$$p^{(2)}(z) = p(z)f^{(2)}(z) + p'(z)f'(z).$$

More generally,

$$p^{(m)}(z) = \sum_{i=0}^{m-1} {m-1 \choose i} p^{(i)}(z) f^{(m-i)}(z).$$

As $p(0) \neq 0$ this yields a nondegerate triangular system to compute $f^{(m)}(0)$ in terms of the $p^{(k)}(0)$ in $O(m^2)$ time.

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Recall that
$$p(z) = p(G)(\mathbb{1} + z(h - \mathbb{1}))$$
. So

$$p(z) = \sum_{\phi: E \to [k]} \prod_{v \in V} (1 + z(h^v(\phi(\delta(v))) - 1))$$

3.5 3

・ロト ・日下・ ・ ヨト・

Recall that p(z) = p(G)(1 + z(h - 1)). So

$$p(z) = \sum_{\phi: E \to [k]} \prod_{v \in V} (1 + z(h^v(\phi(\delta(v))) - 1))$$

$$=\sum_{i=0}^{n} z^{i} \sum_{\substack{U \subseteq V \\ |U|=i}} \sum_{\phi: E \to [k]} \prod_{v \in U} (h^{v}(\phi(\delta(v))) - 1).$$

Image: A math a mat

Recall that p(z) = p(G)(1 + z(h - 1)). So

$$p(z) = \sum_{\phi: E \to [k]} \prod_{v \in V} (1 + z(h^v(\phi(\delta(v))) - 1))$$

$$=\sum_{i=0}^{n} z^{i} \sum_{\substack{U\subseteq V\\|U|=i}} \sum_{\phi:E\to[k]} \prod_{v\in U} (h^{v}(\phi(\delta(v)))-1).$$

So $p^{(m)}(0)$ can be computed in time $O(|V|^m)$.

• Let (G, h) be given. Let 1 be the all-ones model. Define

$$p(z) = p(G)(1 + z(h - 1)).$$

Then $p(1) = k^{|E(G)|}$ and p(1) = p(G)(h).

- If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by order $\log(|V|)$ Taylor polynomial at 0.
- The Taylor polynomial of ln(p(1)) can be expressed in terms of the derivatives of p at 0 at cost |V|^m for order m
- p(G)(h) ≠ 0 for all bounded degree graphs G and all h close enough to 1.

Theorem (R. 2015)

Let (G, h) be a tensor network. If $|h^{v}(\phi) - 1| \leq \frac{0.355}{\Delta(G)+1}$ for each $\phi : [\deg(v)] \rightarrow [k]$ and each v, then

 $p(G)(h) \neq 0.$

Proof is by sophisticated induction.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Let (G, h) be given. Let 1 be the all-ones model. Define

$$p(z) = p(G)(\mathbb{1} + z(h - \mathbb{1})).$$

Then $p(1) = k^{|E(G)|}$ and p(1) = p(G)(h).

- If $p(z) \neq 0$ for all $|z| \leq q$ with q > 1, then $\ln(p(1))$ is well approximated by order $\log(|V|)$ Taylor polynomial at 0.
- The Taylor polynomial of ln(p(1)) can be expressed in terms of the derivatives of p at 0 at cost |V|^m for order m
- $p(G)(h) \neq 0$ for all graphs G and all h such that

$$|h^{\mathsf{v}}(\phi)-1| \leq \frac{0.355}{\Delta(G)+1}$$

for all v and ϕ .

• Correlation decay method, for counting independent sets, matchings, graph coloring etc., is based on absence of phase transition, i.e., uniqueness of Gibss measure.

- Correlation decay method, for counting independent sets, matchings, graph coloring etc., is based on absence of phase transition, i.e., uniqueness of Gibss measure.
- The method presented here is also based on absence of phase transition, i.e., via the Lee-Yang theorem no complex zeros ⇒ no phase transition.

 Correlation decay method yields an FPTAS, but currently only seems to work for positive real numbers, i.e., # weighted independent sets with weight λ > 0, partition function of symmetric matrices A with A_{i,i} > 0, the chromatic polynomial at positive integers.

- Correlation decay method yields an FPTAS, but currently only seems to work for positive real numbers, i.e., # weighted independent sets with weight $\lambda > 0$, partition function of symmetric matrices A with $A_{i,j} > 0$, the chromatic polynomial at positive integers.
- The method presented here only seems to yield a QPTAS, but works for complex numbers: partition function of complex valued symmetric matrices/edge-coloring models, the Tutte/chromatic polynomial at a complex number, etc.

- Correlation decay method yields an FPTAS, but currently only seems to work for positive real numbers, i.e., # weighted independent sets with weight $\lambda > 0$, partition function of symmetric matrices A with $A_{i,j} > 0$, the chromatic polynomial at positive integers.
- The method presented here only seems to yield a QPTAS, but works for complex numbers: partition function of complex valued symmetric matrices/edge-coloring models, the Tutte/chromatic polynomial at a complex number, etc.
- Partition functions of complex edge-coloring models make sense!

Together with Alexander Barvinok and Viresh Patel:

- Try to push QPTAS to FPTAS: faster computation of derivatives indicates that this can be done in certain cases: partition functions of complex edge-coloring models/symmetric matrices and Tutte polynomial on bounded degree graphs!
- Try to find larger zero-free regions. Also other shapes than disks.

∃ →

• • • • • • • • • • • •

э