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Three Frameworks for Counting Problems

The following three frameworks are in increasing order of

strength.

1. Graph Homomorphisms

2. Constraint Satisfaction Problems (#CSP)

3. Holant Problems

In each framework, there has been remarkable progress in

the classification program.
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Graph Homomorphism

L. Lovász: Operations with structures, Acta Math. Hung.

18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Graphs and Homomorphisms

Pavol Hell and Jaroslav Nešetřil

Decision Dichotomy
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Graph Homomorphisms

Given a graph G = (V,E).

Consider all vertex assignments ξ : V → [q] = {1, 2, . . . , q}.
Suppose there is a binary constraint function

A = (Ai,j) ∈ Cq×q assigned to each edge. For each (u, v) ∈ E,

an assignment ξ gives an evaluation
∏

(u,v)∈E Aξ(u),ξ(v).

Then the partition function of Graph Homomorphism is

ZA(G) =
∑

ξ:V→[q]

∏

(u,v)∈E

Aξ(u),ξ(v).
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Counting Problems Expressed as Graph Homomorphisms

Independent Set

k-Coloring

Vertex Cover

Even-Odd Induced Subgraphs

H =


1 1

1 −1




ZH(G) computes the number of induced subgraphs of G

with an even (or odd) number of edges.

(
2n − ZH(G)

)/
2

is the number of induced subgraphs of G with an odd

number of edges.
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Dichotomy Theorem for Graph Homomorphism

After results by Dyer, Greenhill, Bulatov, Grohe,

Goldberg, Jerrum, Thurley, . . .

Theorem 0.1 (C. Xi Chen and Pinyan Lu). There is a complexity

dichotomy for ZA(·):
For any symmetric complex valued matrix A ∈ Cq×q, the problem

of computing ZA(G), for any input G, is either in P or #P-hard.

Given A, whether ZA(·) is in P or #P-hard can be decided in

polynomial time in the size of A.

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)
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Counting CSP (#CSP)

• Let F = {f1, . . . , fh} be a finite set of constraint

functions:

fi : [q]
ri → C.

• An instance of #CSP(F) consists of variables x1, . . . , xn

over [q] and a finite sequence of constraint functions

from F , each applied to a sequence of these variables.

It defines a new n-ary function F : for any assignment

x = (x1, . . . , xn) ∈ [q]n, F (x) is the product of the

constraint function evaluations.

• Given an input instance F , compute the partition

function: ∑

x∈[q]n

F (x)

This can be viewed in terms of a bipartite graph.
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Dichotomy Theorem for #CSP

After results by Creignou, Hermann, Goldberg, Jerrum,

Paterson, Bulatov, Dalmau, Dyer, Richerby, Jalsenius, C.,

Chen, Lu, Xia . . ..

Theorem 0.2 (C. and Chen). For any domain [q] and any

complex-valued constraint function set F , #CSP(F) is either

solvable in polynomial time (if F satisfies some tractability

conditions), or else it is #P-hard (if F fails these conditions).

It is not known whether it is decidable to classify a given

constraint function set F .

The strongest decidable dichotomy criterion is for

non-negative valued F .
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Signatures of Affine Type

Definition 0.3. A constraint function f(x1, . . . , xn) of arity n is

of affine type if it has the form

λ · χAX=0 · iQ(X),

where λ ∈ C, X = (x1, x2, . . . , xn, 1), A is a matrix over Z2,

Q(x1, x2, . . . , xn) ∈ Z4[x1, x2, . . . , xn] is a quadratic (total degree at

most 2) multilinear polynomial with the additional requirement that

the coefficients of all cross terms are even, and χ is a 0-1 indicator

function such that χAX=0 is 1 iff AX = 0. We use A to denote the

set of all affine signatures.
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Explicit List of Symmetric functions in A

1. [1, 0, . . . , 0,±1];

2. [1, 0, . . . , 0,±i];

3. [1, 0, 1, 0, . . . , 0 or 1];

4. [1,−i, 1,−i, . . . , (−i) or 1];

5. [0, 1, 0, 1, . . . , 0 or 1];

6. [1, i, 1, i, . . . , i or 1];

7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)];

8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)];

9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)];

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)].
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Signatures of Product Type

Definition 0.4. A constraint function on a set of variables X is of

product type if it can be expressed as a product of unary functions

u(xi), binary equality functions (xi = xj), and binary disequality

functions (xi 6= xj), on variables of X. We use P to denote the set

of product-type functions.
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A Concrete #CSP Dichotomy

Over the Boolean domain, for any set of complex-valued

constraint functions F there is an explicit dichotomy

criterion.

Theorem 0.5. Suppose F is a set of functions mapping Boolean

inputs to complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F )

is computable in polynomial time. Otherwise, #CSP(F ) is

#P-hard.

My main discussion today is what happens when we add

Valiant’s holographic algorithms.
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A Concrete #CSP Dichotomy

Over the Boolean domain, for any set of complex-valued

constraint functions F there is an explicit dichotomy

criterion.

Theorem 0.6. Suppose F is a set of functions mapping Boolean

inputs to complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F )

is computable in polynomial time. Otherwise, #CSP(F ) is

#P-hard.

My main discussion today is what happens when we add

Valiant’s holographic algorithms.

Do-Nothing reductions to FKT.
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Holant

A signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is

a graph, π labels each v ∈ V with a function fv ∈ F , and fv

maps {0, 1}deg(v) to C.

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(
σ |E(v)

)
.

where

• E(v) denotes the incident edges of v

• σ |E(v) denotes the restriction of σ to E(v).
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Perfect Matchings
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Matching as Holant

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(
σ |E(v)

)
.

The problem of counting Perfect Matchings on G

corresponds to attaching the Exact-One function at every

vertex of G.

The problem of counting all Matchings on G is to attach

the At-Most-One function at every vertex of G.
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FKT Algorithm

The Fisher-Kasteleyn-Temperley (FKT) algorithm is a

classical gem that counts perfect matchings over planar

graphs in P.

For almost 50 years, FKT stood as the P-time algorithm

for any counting problem over planar graphs that is

#P-hard over general graphs.

In 2001 Valiant introduced matchgates and holographic

algorithms. This novel technique extended the reach of

the FKT algorithm.
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FKT Algorithm

The Fisher-Kasteleyn-Temperley (FKT) algorithm is a

classical gem that counts perfect matchings over planar

graphs in P.

For almost 50 years, FKT stood as the P-time algorithm

for any counting problem over planar graphs that is

#P-hard over general graphs.

In 2001 Valiant introduced matchgates and holographic

algorithms. This novel technique extended the reach of

the FKT algorithm.

Do-Nothing reductions to FKT.
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Can Holographic Algorithms Solve NP-hard Problems?

. . . the situation with the P = NP question is not dissimilar to that

of other unresolved enumerative conjectures in mathematics. The

possibility that accidental or freak objects in the enumeration exist

cannot be discounted if the objects in the enumeration have not

been studied systematically.

—Leslie Valiant

Indeed, if any freak object exists in this framework, it

would collapse #P to P.
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Getting Acquainted

Consider the constraint function

f : {0, 1}4 → C,

where if the input (x1, x2, x3, x4) has Hamming weight w,

then f(x1, x2, x3, x4) = 3, 0, 1, 0, 3, if w = 0, 1, 2, 3, 4, resp.

We denote this function by f = [3, 0, 1, 0, 3].

What is the counting problem defined by the Holant sum?

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

f
(
σ |E(v)

)
.
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What’s that problem?

On 4-regular graphs,
∑

σ

∏
v∈V f

(
σ |E(v)

)
is a sum over all

0-1 edge assignments σ of products of local evaluations.

We only sum over assignments which assign an even

number of 1’s to the incident edges of each vertex, since

f = [3, 0, 1, 0, 3]

Thus f = 0 for w = 1 and 3.

Then each vertex contributes a factor 3 if the 4 incident

edges are assigned all 0 or all 1, and contributes a factor 1

if exactly two incident edges are assigned 1.
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What’s that problem?

On 4-regular graphs,
∑

σ

∏
v∈V f

(
σ |E(v)

)
is a sum over all

0-1 edge assignments σ of products of local evaluations.

We only sum over assignments which assign an even

number of 1’s to the incident edges of each vertex, since

f = [3, 0, 1, 0, 3]

Thus f = 0 for w = 1 and 3.

Then each vertex contributes a factor 3 if the 4 incident

edges are assigned all 0 or all 1, and contributes a factor 1

if exactly two incident edges are assigned 1.

Before anyone thinks that this problem is artificial, let’s

consider a holographic transformation.
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An Equivalent Bipartite Formulation

Let

I(G) = (E(G), V (G), {(e, v) | v is incident to e in G})

be the edge-vertex incidence graph of G.

Holant (=2 | f) on I(G):

Each e ∈ E(G) is attached =2 (binary Equality).

The truth table of =2 is (1, 0, 0, 1) indexed by {0, 1}2.
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A Holographic Transformation

Apply

Z =
1√
2


1 1

i −i


 ,

to

Holant (=2 | f) = Holant
(
(=2)Z

⊗2 | (Z−1)⊗4f
)

Here (=2)Z
⊗2 is a row vector indexed by {0, 1}2 denoting

the transformed function under Z from (=2) = (1, 0, 0, 1),

and (Z−1)⊗4f is the column vector indexed by {0, 1}4
denoting the transformed function under Z−1 from f .
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A Holographic Transformation

Z = 1√
2

[
1 1
i −i

]
transforms =2 to the binary Disequality:

(=2)Z
⊗2 = (1 0 0 1)Z⊗2

=
{
(1 0)⊗2 + (0 1)⊗2

}
Z⊗2

= 1
2

{
(1 1)⊗2 + (i − i)⊗2

}

= (0 1 1 0)

= [0, 1, 0]

= ( 6=2).
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A Holographic Transformation

Let

f̂ = [0, 0, 1, 0, 0]

be the Exact-Two function on {0, 1}4.
Consider Z⊗4f̂ , where

Z = 1√
2


1 1

i −i


 ,

Z
⊗4











1

0



 ⊗





1

0



 ⊗





0

1



 ⊗





0

1



 +





1

0



 ⊗





0

1



 ⊗





1

0



 ⊗





0

1



 + · · · +





0

1



 ⊗





0

1



 ⊗





1

0



 ⊗





1

0











= 1
4











1

i



 ⊗





1

i



 ⊗





1

−i



 ⊗





1

−i



 +





1

i



 ⊗





1

−i



 ⊗





1

i



 ⊗





1

−i



 + · · · +





1

−i



 ⊗





1

−i



 ⊗





1

i



 ⊗





1

i











= 1
2
[3, 0, 1, 0, 3] = 1

2
f

Hence (Z−1)⊗4f = 2f̂ .
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What’s Natural and What’s Artificial?

Holant (=2 | f) = Holant
(

(=2)Z
⊗2 | (Z−1)⊗4f

)

= Holant ( 6=2| 2[0, 0, 1, 0, 0])

Hence, up to a global constant factor of 2n on a graph

with n vertices, the Holant problem with [3, 0, 1, 0, 3] is

exactly the same as Holant ( 6=2 | [0, 0, 1, 0, 0]).

A moment’s reflection shows that Holant ( 6=2 | [0, 0, 1, 0, 0]) is

counting the number of Eulerian orientations on 4-regular

graphs, an eminently natural problem!

Our goal is to classify all of them.
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Matchgate Signatures

A planar matchgate Γ = (G,X) is a weighted graph

G = (V,E,W ) with a planar embedding, having external

nodes, placed on the outer face.

Define PerfMatch(G) =
∑

M

∏
(i,j)∈M wij, where the sum is

over all perfect matchings M .

A matchgate Γ is assigned a Matchgate Signature

G = (GS),

where

GS = PerfMatch(G− S).

We denote the class of matchgate signatures by M .
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Main Theorem

Theorem 0.7 (C., Zhiguo Fu). For any set of constraint functions

F over Boolean variables, each taking complex values and not

necessarily symmetric, #CSP(F) belongs to exactly one of three

categories according to F : (1) It is P-time solvable; (2) It is P-time

solvable over planar graphs but #P-hard over general graphs; (3) It

is #P-hard over planar graphs. Moreover, category (2) consists

precisely of those problems that are holographically reducible to the

FKT algorithm.

The tractability criterion for (2) is

F ⊆ A , or F ⊆ P, or F ⊆ M̂ .

http://arxiv.org/abs/1603.07046

Proof is 94 pages.
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Symmetric version over R by C., Pinyan Lu, Mingji Xia.

Symmetric version over C by Heng Huo, Tyson Williams.
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The Universality Claim

The claim that holographic reductions followed by the

FKT are universal (for all counting problems in #CSP on

Boolean variables that are #P-hard in general but

solvable in P over planar structure) is not self-evident.

In fact such a sweeping claim should invite skepticism.

Moreover, for Holant problems, the corresponding

universality statement is false [C., Heng Guo, Tyson

Williams, Zhiguo Fu, in FOCS 2015].
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#CSP and Holant Problems

It turns out that the class of Holant problems is more

than just a separate framework providing a cautionary

reference to our Main Theorem.

They form the main arena we carry out the proof.

A basic idea is a holographic transformation between the

#CSP setting and the Holant setting.

It is similar to the Fourier transform. Certain properties

are easier to handle in one setting while others are easier

after a transform. We will go back and forth.
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#CSP and Holant Problems

Define the Hadamard transformation

H2 =
1√
2


1 1

1 −1


 .

Define F̂ = H2F .

Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂), (1)
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Outline of the Proof

If F ⊆ A , or F ⊆ P, or F ⊆ M̂ , then Pl-#CSP(F) is

computable in polynomial time.

Otherwise, we want to show that Pl-#CSP(F) is #P-hard.

In the Pl-Holant(ÊQ, F̂) setting, the tractability condition is

expressed as F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆ M .

33



Outline of the Proof, continued.

A is invariant under the transformation, i.e., Â = A .

P̂ is more difficult to reason about than P, while M is

easier than M̂ to handle.

The former suggests that we carry our proof in the

Pl-#CSP framework, while the latter suggests the opposite,

that we do so in the Pl-Holant framework instead.
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Outline of the Proof, continued.

One necessary condition for M is the Parity Condition. If

some signature in F̂ violates the Parity Condition, then we

have eliminated one possibility F̂ ⊆ M . In this case we

prove in the Pl-#CSP framework, and avoid discussing M̂ .

If F̂ satisfies the Parity Condition, then we have the lucky

situation that F ∩P ⊆ A . This is equivalent to F̂ ∩ P̂ ⊆ A ,

and therefore F̂ ⊆ P̂ already implies F̂ ⊆ A , so we do not

need to specifically discuss the tractability condition

F̂ ⊆ P̂, avoidig the irksome class P̂.
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Outline of the Proof, continued.

The first main case is some f ∈ F̂ fails the Parity

Condition. We can construct a unary signature [1, w] with

w 6= 0 in the Holant framework Pl-Holant(ÊQ, F̂). Any

signature that violates the Parity Condition is a witness

that F̂ * M , or equivalently F * M̂ .

If F ⊆ A or F ⊆ P, then the problem Pl-#CSP(F) is in P.

Otherwise, there exist some signatures f, g ∈ F such that

f 6∈ A and g 6∈ P.

We would like to construct some symmetric signatures

from these that are also 6∈ A and 6∈ P, respectively, and

then apply the symmetric dichotomy theorem.
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Outline of the Proof, continued.

The second main case is when all signatures in F̂ satisfy

the Parity Condition.

In this case, if F̂ ⊆ A , or F̂ ⊆ P̂, or F̂ ⊆ M , then the

problem is tractable in P.

Due to the Parity Condition, there are really only two

kinds of containment here, F̂ ⊆ A or F̂ ⊆ M ; the

containment F̂ ⊆ P̂ is subsumed by F̂ ⊆ A .

Therefore we want to prove that if F̂ 6⊆ A and F̂ 6⊆ M ,

then Pl-Holant(ÊQ, F̂) is #P-hard.
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Outline of the Proof, continued.

A natural idea is to construct non-affine and

non-matchgate symmetric signatures from any such

asymmetric signatures, and then we can apply the known

dichotomy for symmetric signatures. But this idea does

not work.

For a given non-matchgate signature, we first construct a

non-matchgate signature f of arity 4. Then we can

construct either the crossover function X or (=4) from f .

With X, we can finish the proof by the non-planar #CSP

dichotomy Theorem.
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The Crossover Function

The crossover function X is a constraint function of arity 4

that satisfies X0000 = X1111 = X0101 = X1010 = 1 and Xα = 0 for

all other α ∈ {0, 1}4.

The signature matrix of X is

Mx1x2,x4x3(X) =




X0000 X0010 X0001 X0011

X0100 X0110 X0101 X0111

X1000 X1010 X1001 X1011

X1100 X1110 X1101 X1111



=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



.
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Outline of the Proof, continued.

If we have (=4), then we can get all EQ2. This implies that

Pl-Holant(ÊQ, F̂) ≡T Pl-Holant(EQ2, ÊQ, F̂) ≡T Pl-#CSP2(ÊQ, F̂),

(2)

where Pl-#CSP2 is a special kind of #CSP problems where

every variable appears an even number of times.
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Outline of the Proof, continued.

Now comes a “cognitive dissonance”. By (2), what used to

be the “right-hand-side” in the equivalence

Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂) will be treated as a

Pl-#CSP2 problem with function set ÊQ ∪ F̂ .

Pl-#CSP(F) ≡T Pl-Holant(ÊQ, F̂) ≡T Pl-Holant(EQ2, ÊQ, F̂)

|||T

Pl-#CSP2(ÊQ, F̂)
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Outline of the Proof, continued.

A Pl-#CSP2 problem is more in line with a Pl-#CSP

problem. For Pl-#CSP2 problems over symmetric

signatures, a known dichotomy theorem says that there

are five tractability classes P,A ,A †, M̂ and M̂ †. But now

we will apply these on the “dual side” ÊQ ∪ F̂ , instead of

the “primal side” F .

. . . a lot of difficulties are glossed over.

42



A Taste of the Dichotomy

Mx1x2,x4x3(f)

=




f0000 f0010 f0001 f0011

f0100 f0110 f0101 f0111

f1000 f1010 f1001 f1011

f1100 f1110 f1101 f1111




=




1 0 0 1

0 1 − 1 0

0 − 1 −1 0

1 0 0 − 1



∈ A ∩ M

f = χ[x1+x2+x3+x4=0](−1)x1+x2+x2x3
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A Taste of the Dichotomy

Mx1x2,x4x3(f) =




1 0 0 − 1

0 1 − 1 0

0 − 1 −1 0

1 0 0 1



∈ A \ M

Mx1x2,x4x3(f) =




1 0 0 0

0 1 0 0

0 − 1 1 0

1 0 0 1



∈ M \ A
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A Taste of Proof Ideas

Lemma 0.8. Suppose all signatures in F̂ take values in {0, 1,−1}
and satisfy the Parity Condition. If ∃f ∈ F̂ \ A of arity n ≥ 3,

then ∃g /∈ A of arity < n, such that

Pl-Holant(ÊQ, g, [1, 0,−1], F̂) ≤T Pl-Holant(ÊQ, [1, 0,−1], F̂).

Furthermore, if f satisfies the even Parity Condition, so does g.
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A Taste of Proof Ideas, continued

By induction on n.

0. A simple proof shows that we may assume f00...0 = 1 and

f satisfies the even parity.

1. Use Tableau Calculus we show that either supp(f) is an

affine subspace over Z2, or we are done.

So assume that supp(f) is affine and dim(supp(f)) = k ≤ n.

Let Y = {y1, y2, . . . , yk} ⊆ {x1, x2, . . . , xn} be a set of free

variables.

2. If k ≤ 2, prove directly.

So assume k ≥ 3. On supp(f) we denote the “compressed

signature” of f by f(y1, y2, . . . , yk).

I will sketch a proof when f has a special form.
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A Taste of Proof Ideas, continued

Since f takes values in {1,−1}, ∃ a unique multilinear

polynomial P (y1, y2, . . . , yk) ∈ Z2[Y ] such that

f(y1, y2, . . . , yk) = (−1)P (y1,y2,...,yk).

f ∈ A ⇐⇒ f ∈ A ⇐⇒ deg(P ) ≤ 2.

3. Using [1, 0] ∈ ÊQ, we can inductively reduce the proof to

the case when

P (y1, y2, . . . , yk) = Q(y1, y2, . . . , yk) + ay1y2 · · · yk,

where deg(Q) ≤ 2 and a = 0, 1. We want to show that a = 0.

For a contradiction suppose P = Q+ y1y2 · · · yk.
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A Taste of Proof Ideas, continued

Connecting one variable of [1, 0,−1] to yi of f , we get f ′

such that

f ′(x1, x2, . . . , xn) = (−1)yif(x1, x2, . . . , xn).

This implies that f ′ has the same support of f and

f ′(y1, y2, . . . , yk) = (−1)yi+Q(y1,y2,...,yk)+y1y2···yk ,

where f ′ is the compressed signature of f ′ for Y .

Thus f ′ 6∈ A . This implies that we can add a linear term to

P (y1, y2, . . . , yk) freely.
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A Taste of Proof Ideas, continued

Connect all variables of f except for y1 to n− 1 variables of

1

2
{[1, 1]⊗n + [1,−1]⊗n} = [1, 0, 1, . . . , 0 (or 1)] ∈ ÊQ

to get the binary signature f∗ = [f∗
00, 0, f

∗
11].

f∗
00 =

∑

y2,y3,...,yk∈{0,1}
fy1=0(y2, y3, . . . , yk),

f∗
11 =

∑

y2,y3,...,yk∈{0,1}
fy1=1(y2, y3, . . . , yk).

(3)
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A Taste of Proof Ideas, continued

We will sketch the proof for the special case where the

coefficient of yiyj in Q(y1, y2, . . . , yk) is nonzero for all

1 ≤ i < j ≤ k.

If k = 3, we may assume that

Q(y1, y2, y3) = y1 + y2 + y3 + y1y2 + y1y3 + y2y3.

Then we have

My1,y2y3(f) =


 1 −1 −1 −1

−1 −1 −1 −1


 .

Thus f∗ = [−2, 0,−4] 6∈ A , since its nonzero terms have

unequal norms.
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A Taste of Proof Ideas, continued

For k ≥ 4, we may assume that Q(y1, y2, . . . , yk) has no linear

terms since we can add linear terms freely.

We can calculate that

fy1=0 = [1, 1,−1,−1, . . . , (−1)
(k−1)(k−2)

2 ]

=
1

1 + i

{
[1, i]⊗k−1 + i[1,−i]⊗k−1

}
∈ A ,

fy1=1 = [1,−1,−1, 1, . . . , (−1)
k(k−1)

2 ] + error term

=
1

1− i

{
[1, i]⊗k−1 − i[1,−i]⊗k−1

}
− 2(−1)

k(k−1)
2 [0, 1]⊗k−1.
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A Taste of Proof Ideas, continued

f∗
00 =

∑

β∈{0,1}k−1

(fy1=0)β

= 2
k
2 cos((k − 2)π/4),

f∗
11 =

∑

β∈{0,1}k−1

(fy1=1)β

= −2
k
2 sin((k − 2)π/4)− 2(−1)

k(k−1)
2 .
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A Taste of Proof Ideas, continued

For k ≡ 1 mod 2, |f∗
00| = 2

k−1
2 , and |f∗

11| = 2
k−1
2 ± 2 (since

k ≥ 5), we have f∗
11f

∗
00 6= 0 and |f∗

11| 6= |f∗
00|. Thus f∗ /∈ A .

For k ≡ 2 mod 4, |f∗
00| = 2

k
2 ≥ 4 since k ≥ 4, and |f∗

11| = 2, so

f∗ /∈ A .

For k ≡ 0 mod 4, f∗
00 = 0, |f∗

11| = 2
k
2 ± 2 6= 0. So

f∗ = f∗
11[0, 1]

⊗2. By [1, 0,−1], [0, 1]⊗2 and f /∈ A , we can get a

binary signature that is not in A .

This completes the proof of the special case.
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Open Problems

• Tableau Calculus versus Clone Theory.

• Holant problems for asymmetric signatures.

• Planar Holant problems for asymmetric signatures.

• Higher Domain Problems.
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Some References

Holographic Algorithm with Matchgates Is Universal for Planar

#CSP Over Boolean Domain

C., Zhiguo Fu

http://arxiv.org/abs/1603.07046

THANK YOU!
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