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@ Many optimization problems over random instances (random
K-SAT, coloring of a random graph, maximum independent set of
a random graph) exhibit an apparent gap between algorithmic and
existential results.
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@ Many optimization problems over random instances (random
K-SAT, coloring of a random graph, maximum independent set of
a random graph) exhibit an apparent gap between algorithmic and
existential results.

@ What is the source of the apparent hardness?
@ Overlap Gap Property originating from the theory of Spin Glasses.

@ This talk: illustration of the OGP using the maximum submatrix
problem.
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(Arguably) Most Embarrassing Algorithmic Problem in Random
Graphs
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(Arguably) Most Embarrassing Algorithmic Problem in Random
Graphs

@ Consider G(n, p).
@ The largest clique (fully connected subgraph) is ~ 2log1 n.
P

@ A trivial greedy algorithm finds a clique of size ~ log1 n.
P

@ Karp [1976] Find a better algorithm.
@ Still open. This is embarrassing...
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Sparse Random Graphs: Similar Story
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Sparse Random Graphs: Similar Story

@ Consider G(n,d/n). d is constant.

Gamarnik & Li Large Submatrix April 1, 2016 4/24



Sparse Random Graphs: Similar Story

@ Consider G(n,d/n). d is constant.
@ The largest independent set (a subset of nodes with no edges) is

2log d
~ g
Frieze, Luczak [1992]
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. logd
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Sparse Random Graphs: Similar Story

@ Consider G(n,d/n). d is constant.
@ The largest independent set (a subset of nodes with no edges) is

2log d
~ 7d n,
Frieze, Luczak [1992]
@ A trivial greedy algorithm finds an independent set of size

. logd

@ Better algorithm?
@ Similar story for many other combinatorial optimization problems.
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N
This Talk: Maximum Submatrix of a Gaussian Matrix

Given n x n matrix C, with standard normal i.i.d. entries
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[Bhamidi, Dey & Nobel 2013]

@ Global optimum
N [4logn
Ave( n,k) ~ kK
@ Intuition:

o IfZy,..., 2y are N(0,c?), then max Z; ~ o/2log N.
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Paper Motivating This Works

[Bhamidi, Dey & Nobel 2013]

@ Global optimum

4logn
Pt

Ave(Cp k) =~

@ Intuition:

o IfZy,..., 2y are N(0,c?), then max Z; ~ o/2log N.
o Maximum of ()% N(0, 7;) Gaussians is then

:( 2Iog( > \/4klogn
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Paper Motivating This Works

[Bhamidi, Dey & Nobel 2013]

@ Global optimum

4logn

Ave( ;,k) ~ k

@ Intuition:

o IfZy,..., 2y are N(0,c?), then max Z; ~ o/2log N.
o Maximum of ()% N(0, 7;) Gaussians is then

:( 2Iog( > \/4klogn

@ What about algorithms?
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Motivation and Prior Work

@ Genetics, bioinformatics and social networks. Madeira [2004],
Fortunato [2010], Shabalin [2009].
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Motivation and Prior Work

@ Genetics, bioinformatics and social networks. Madeira [2004],
Fortunato [2010], Shabalin [2009].

@ The problem of finding the optimal k x k submatrix amongst (Z)2
choices is computationally challenging for large k.

@ A natural heuristics: ISP (lterative Search Procedure) Shabalin

[2009]. It iteratively updates rows and columns until no further
improvement can be obtained.
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ISP Algorithm

Input: An n x n matrix C and a fixed integer k > 1.
Initialize: Select k columns J uniformly at random.
Loop: Iterate until convergence of / and J:

Let / := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in /.
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ISP Algorithm

Input: An n x n matrix C and a fixed integer k > 1.
Initialize: Select k columns J uniformly at random.
Loop: Iterate until convergence of / and J:
Let / := k rows with the largest entry sums over the columns in J.

Let J := k columns with the largest entry sums over the rows in /.

Output: Submatrix associated with final / and J.
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@ Observe that ISP outputs a matrix which is /locally (row and
column) optimal.
[Bhamidi, Dey & Nobel]: Most locally optimal matrices have value
1/+/2 smaller than the global optimum:

2logn
P

(1+0(1))
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@ Observe that ISP outputs a matrix which is /locally (row and
column) optimal.

[Bhamidi, Dey & Nobel]: Most locally optimal matrices have value
1/+/2 smaller than the global optimum:

2logn
PR
@ Intuition. The best submatrix for a fixed set of k rows has average

~ y/2log n/k. Further iterations do not improve the average
significantly.

(1+0(1))
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@ Open questions:

® What is the value Ave(CkF) produced by ISP?

@ Are there better algorithms?

@ What is the reason for apparent computational complexity?
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@ Fix¢ >0andletA;;=1(Cj; > 6).

010 1
110 0

A= . . . ;
0 0 1 0

@ Ais a bi-partite Erd6s-Rényi graph G(n, n,p),p =P(Z > 0).
@ Fact: W.h.p. a simple greedy algorithm produces a m x m clique
ABreedy. with m = log n/ log(1/p).
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A Simpler Algorithm

@ Fix¢ >0andletA;;=1(Cj; > 6).

@ Ais a bi-partite Erd6s-Rényi graph G(n, n,p),p =P(Z > 0).
@ Fact: W.h.p. a simple greedy algorithm produces a m x m clique
ABreedy. with m = log n/ log(1/p).

@ Observation: The corresponding matrix Cﬁﬁﬁedy’e has minimum
entry value 6.
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Main Results

The number of iterations T, of ISP is O(1) and w.h.p.

2logn

Ave(CP) = (1 + o(1)) — factor /2 smaller than Ave(C;, ;)
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Main Results

The number of iterations T, of ISP is O(1) and w.h.p.

2logn

Ave(CP) = (1 + o(1)) — factor /2 smaller than Ave(C;, ;)

Setting 6 = \/2log n/k, leads to k x k clique. Thus

Greedy,0 ISP,0
Cnyzee =1+ o(1))C ™
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Main Results (continued)

We propose a new algorithm Sequential Greedy (1G).
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Main Results (continued)

We propose a new algorithm Sequential Greedy (1G).

Ave(CSS) = (140 (1))4,/2'7(9” (1+0(1))= Ave(C’SP
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Sequential Greedy Algorithm

@ In even step 2t¢ the algorithm produces greedily a (t + 1) x t matrix
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thf )
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Sequential Greedy Algorithm

@ In even step 2t¢ the algorithm produces greedily a (t + 1) x t matrix

SG
Cht-
[ C11 C1n i
Cg1 t CZn
t+1 CSG ’
| Cn1 Cnn h

@ In odd step 2t + 1 it produces greedily a (f + 1) x (f + 1) matrix
C368.
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Proof Sketch

@ In step 2t (2t + 1) the added column (row) has entry sum

~ \/2tlog n.
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Proof Sketch

@ In step 2t (2t + 1) the added column (row) has entry sum
~ \/2tlog n.

@ Thus the total value is

K
> 2\/2tlognw2\/2logn/ tz dt

1<t<k 1

=24/2log n%k%
= %k\/Zhogn
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N
Proof Sketch

@ In step 2t (2t + 1) the added column (row) has entry sum
~ \/2tlog n.

@ Thus the total value is

K
> 2\/2tlognw2\/2logn/ tz dt

1<t<k 1

=24/2log n%k%
= %k\/Zhogn

4 /2logn
Ave(c,s,ﬁ)zﬁ,/ >
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@ Global optimum matrix:

N 2Iogn.
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Overlap Gap Property (OGP) and Phase Transition

@ Global optimum matrix:

N 2Iogn.

@ Best one found algorithmically

4 [2logn
3 k

@ What is happening in [3,v/2]?
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Fix « € [, V2] and two submatrices Cy, C with

2logn
P

AVG(C1) ~ AVG(CQ) ~
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Overlap Gap Property (OGP) and Phase Transition

Fix « € [, V2] and two submatrices Cy, C with

2logn

AVG(C1) ~ AVG(CQ) ~ K

Theorem 4

The expected number of such pairs Cy, C> with y1k common rows and
Yok common columns is

eXp(f(a:}’1aY2) kIOg n) 5
where

2 2

fla,y1,y2) =4 — y4 —YZ—WQ .
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Overlap Gap Property (OGP) and Phase Transition

Fix « € [, V2] and two submatrices Cy, C with

2logn
P

The expected number of such pairs Cy, C> with y1k common rows and
Yok common columns is

AVG(C1) ~ AVG(CQ) ~

eXp(f(a:}’1aY2) kIOg n) 5
where

2 2

fla,y1,y2) =4 — y4 —YZ—WQ .

f(a, y1, ¥2) < 0 implies no such pairs.
Large Submatrix April1,2016  17/24
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o < o, = V/3/V2 =1.2247.

f(a, y1, y2) > 0 everywhere
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ay < a<af 3\/7 1.3608. Includes 4/3

Color f(a, y1,y2) > 0, white f(a, y1,¥2) <0

0.3
0.2
0.1
0 Y i i i i i
u] 01 0.2 0.3 0.4 05 0.6 07 0.8 0.9 1
Y1
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At o* = 2,/2 = 1.3608. Onset of the Overlap Gap Property
3\/ 3

)y os}- ER—
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0 i
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a € [a*,V/2]. Overlap Gap Property

0 01 nZ 03 04 05 0B 07 ng 08 1
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Limits for Local Algorithms

@ The Overlap Gap Property occurs in sparse random graphs
G(n,d/n) and is a provable obstacle for so-called local algorithms:

[G & Sudan 2014, Rahman & Virag 2014] The largest independent set
problem exhibits the Overlap Gap Property. As a result no local

algorithm (appropriately defined) can improve upon the greedy
algorithm.
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Limits for Local Algorithms

@ The Overlap Gap Property occurs in sparse random graphs
G(n,d/n) and is a provable obstacle for so-called local algorithms:

[G & Sudan 2014, Rahman & Virag 2014] The largest independent set
problem exhibits the Overlap Gap Property. As a result no local

algorithm (appropriately defined) can improve upon the greedy
algorithm.

i d
@ Recall: in a sparse random graph G(n, )

2logd
d

[~

log d
IAIg ~ ="
n VS d n
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Theorem 6

[G & Sudan 2014] The NAE-K-SAT problem exhibits the overlap gap
property approximately at the "failure” point of the simple greedy
algorithm. As a result no local algorithm can find a satisfying
assignment above this threshold.
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@ Overlaps of m > 2 matrices should push the phase transition
down from g\/g (work in progress).
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Gap Property at log: n for general m > 0.
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Remarks and Ongoing Work

@ Overlaps of m > 2 matrices should push the phase transition
down from g\/g (work in progress).
@ OGP in sparse regression (work in progress with llias Zadik).

@ Conjecture: The Clique problem for G(n, p) exhibits an Overlap
Gap Property at log: n for general m > 0.
P

@ Challenge:

Random Constraint Satisfaction problem is tractable iff it does not
exhibit the OGP.

Gamarnik & Li Large Submatrix April 1, 2016 24/24



