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Many optimization problems over random instances (random
K-SAT, coloring of a random graph, maximum independent set of
a random graph) exhibit an apparent gap between algorithmic and
existential results.

What is the source of the apparent hardness?

Overlap Gap Property originating from the theory of Spin Glasses.

This talk: illustration of the OGP using the maximum submatrix
problem.
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(Arguably) Most Embarrassing Algorithmic Problem in Random
Graphs

Consider G(n,p).
The largest clique (fully connected subgraph) is ∼ 2 log 1

p
n.

A trivial greedy algorithm finds a clique of size ∼ log 1
p

n.

Karp [1976] Find a better algorithm.
Still open. This is embarrassing...
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Sparse Random Graphs: Similar Story

Consider G(n,d/n). d is constant.
The largest independent set (a subset of nodes with no edges) is

∼ 2 log d
d

n,

Frieze, Luczak [1992]
A trivial greedy algorithm finds an independent set of size

∼ log d
d

n.

Better algorithm?
Similar story for many other combinatorial optimization problems.
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This Talk: Maximum Submatrix of a Gaussian Matrix

Given n × n matrix Cn with standard normal i.i.d. entries

Cn =

 C11 . . . C1n
...

. . .
...

Cn1 . . . Cnn

 ,
and given k , find a k × k submatrix


C11 . . . C1n

...

 ∗ . . . ∗
... C∗

n,k
...

∗ . . . ∗

 ...

Cn1 . . . Cnn

 ,
with the largest average entry

Ave(C∗
n,k ) =

1
k2

∑
1≤c,r≤k

Cic ,jr
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Paper Motivating This Works

[Bhamidi, Dey & Nobel 2013]

Global optimum

Ave(C∗
n,k ) ≈

√
4 log n

k
.

Intuition:

If Z1, . . . ,ZN are N(0, σ2), then max Zi ≈ σ
√

2 log N.
Maximum of

(n
k

)2 N(0, 1
k2 ) Gaussians is then

1
k

√
2 log

(
n
k

)2

≈ 1
k

√
4k log n.

What about algorithms?
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Motivation and Prior Work

Genetics, bioinformatics and social networks. Madeira [2004],
Fortunato [2010], Shabalin [2009].

The problem of finding the optimal k × k submatrix amongst
(n

k

)2

choices is computationally challenging for large k .
A natural heuristics: ISP (Iterative Search Procedure) Shabalin
[2009]. It iteratively updates rows and columns until no further
improvement can be obtained.
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ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



ISP Algorithm

Input: An n × n matrix C and a fixed integer k ≥ 1.

Initialize: Select k columns J uniformly at random.

Loop: Iterate until convergence of I and J:
Let I := k rows with the largest entry sums over the columns in J.
Let J := k columns with the largest entry sums over the rows in I.

Output: Submatrix associated with final I and J.

Gamarnik & Li Large Submatrix April 1, 2016 8 / 24



Observe that ISP outputs a matrix which is locally (row and
column) optimal.
[Bhamidi, Dey & Nobel]: Most locally optimal matrices have value
1/
√

2 smaller than the global optimum:

(1 + o(1))

√
2 log n

k
.

Intuition. The best submatrix for a fixed set of k rows has average
∼
√

2 log n/k . Further iterations do not improve the average
significantly.
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Open questions:
What is the value Ave(CISP

n,k ) produced by ISP?
Are there better algorithms?
What is the reason for apparent computational complexity?
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A Simpler Algorithm

Fix θ > 0 and let Ai,j = 1
(
Ci,j > θ

)
.

A =


0 1 0 . . . 1
1 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0

 ,
A is a bi-partite Erdös-Rényi graph G(n,n,p),p = P(Z > θ).
Fact: W.h.p. a simple greedy algorithm produces a m ×m clique
AGreedy,θ

n,m with m = log n/ log(1/p).

Observation: The corresponding matrix CGreedy,θ
n,m has minimum

entry value θ.

Gamarnik & Li Large Submatrix April 1, 2016 11 / 24



A Simpler Algorithm

Fix θ > 0 and let Ai,j = 1
(
Ci,j > θ

)
.

A =


0 1 0 . . . 1
1 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0

 ,

A is a bi-partite Erdös-Rényi graph G(n,n,p),p = P(Z > θ).
Fact: W.h.p. a simple greedy algorithm produces a m ×m clique
AGreedy,θ

n,m with m = log n/ log(1/p).

Observation: The corresponding matrix CGreedy,θ
n,m has minimum

entry value θ.

Gamarnik & Li Large Submatrix April 1, 2016 11 / 24



A Simpler Algorithm

Fix θ > 0 and let Ai,j = 1
(
Ci,j > θ

)
.

A =


0 1 0 . . . 1
1 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0

 ,
A is a bi-partite Erdös-Rényi graph G(n,n,p),p = P(Z > θ).

Fact: W.h.p. a simple greedy algorithm produces a m ×m clique
AGreedy,θ

n,m with m = log n/ log(1/p).

Observation: The corresponding matrix CGreedy,θ
n,m has minimum

entry value θ.

Gamarnik & Li Large Submatrix April 1, 2016 11 / 24



A Simpler Algorithm

Fix θ > 0 and let Ai,j = 1
(
Ci,j > θ

)
.

A =


0 1 0 . . . 1
1 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0

 ,
A is a bi-partite Erdös-Rényi graph G(n,n,p),p = P(Z > θ).
Fact: W.h.p. a simple greedy algorithm produces a m ×m clique
AGreedy,θ

n,m with m = log n/ log(1/p).

Observation: The corresponding matrix CGreedy,θ
n,m has minimum

entry value θ.

Gamarnik & Li Large Submatrix April 1, 2016 11 / 24



A Simpler Algorithm

Fix θ > 0 and let Ai,j = 1
(
Ci,j > θ

)
.

A =


0 1 0 . . . 1
1 1 0 . . . 0
...

...
...

. . .
...

0 0 1 . . . 0

 ,
A is a bi-partite Erdös-Rényi graph G(n,n,p),p = P(Z > θ).
Fact: W.h.p. a simple greedy algorithm produces a m ×m clique
AGreedy,θ

n,m with m = log n/ log(1/p).

Observation: The corresponding matrix CGreedy,θ
n,m has minimum

entry value θ.

Gamarnik & Li Large Submatrix April 1, 2016 11 / 24



Main Results

Theorem 1
The number of iterations Tn of ISP is O(1) and w.h.p.

Ave(CISP
n,k ) = (1 + o(1))

√
2 log n

k
, factor

√
2 smaller than Ave(C∗

n,k )

Theorem 2

Setting θ =
√

2 log n/k, leads to k × k clique. Thus

CGreedy,θ
n,k = (1 + o(1))CISP,θ

n,k .
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Main Results (continued)

We propose a new algorithm Sequential Greedy (IG).

Theorem 3

Ave(CSG
n,k ) = (1 + o(1))

4
3

√
2 log n

k
= (1 + o(1))

4
3

Ave(CISP
n,k ).
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Sequential Greedy Algorithm

In even step 2t the algorithm produces greedily a (t + 1)× t matrix
CSG

n,t .



C11 . . . C1n
C21 t C2n

... t + 1

 ∗ . . . ∗
... CSG

n,t
...

∗ . . . ∗

 ...

Cn1 . . . Cnn


,

In odd step 2t + 1 it produces greedily a (t + 1)× (t + 1) matrix
CSG

n,t .

Gamarnik & Li Large Submatrix April 1, 2016 14 / 24



Sequential Greedy Algorithm

In even step 2t the algorithm produces greedily a (t + 1)× t matrix
CSG

n,t .



C11 . . . C1n
C21 t C2n

... t + 1

 ∗ . . . ∗
... CSG

n,t
...

∗ . . . ∗

 ...

Cn1 . . . Cnn


,

In odd step 2t + 1 it produces greedily a (t + 1)× (t + 1) matrix
CSG

n,t .

Gamarnik & Li Large Submatrix April 1, 2016 14 / 24



Sequential Greedy Algorithm

In even step 2t the algorithm produces greedily a (t + 1)× t matrix
CSG

n,t .



C11 . . . C1n
C21 t C2n

... t + 1

 ∗ . . . ∗
... CSG

n,t
...

∗ . . . ∗

 ...

Cn1 . . . Cnn


,

In odd step 2t + 1 it produces greedily a (t + 1)× (t + 1) matrix
CSG

n,t .

Gamarnik & Li Large Submatrix April 1, 2016 14 / 24



Proof Sketch

In step 2t (2t + 1) the added column (row) has entry sum
≈
√

2t log n.
Thus the total value is∑

1≤t≤k

2
√

2t log n ≈ 2
√

2 log n
∫ k

1
t

1
2 dt

= 2
√

2 log n
2
3

k
3
2

=
4
3

k
√

2k log n

Thus

Ave(CSG
n,k ) ≈

4
3

√
2 log n

k
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Overlap Gap Property (OGP) and Phase Transition

Global optimum matrix:

√
2

√
2 log n

k
.

Best one found algorithmically

4
3

√
2 log n

k

What is happening in [4
3 ,
√

2]?
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Overlap Gap Property (OGP) and Phase Transition

Fix α ∈ [4
3 ,
√

2] and two submatrices C1,C2 with

Ave(C1) ≈ Ave(C2) ≈ α
√

2 log n
k

.

Theorem 4
The expected number of such pairs C1,C2 with y1k common rows and
y2k common columns is

exp (f (α, y1, y2) k log n) ,

where

f (α, y1, y2) = 4− y1 − y2 −
2

1 + y1y2
α2.

f (α, y1, y2) < 0 implies no such pairs.
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α < α∗ =
√

3/
√

2 = 1.2247.

f (α, y1, y2) > 0 everywhere

1y

2y
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α∗ < α < α∗ = 5
3

√
2
3 = 1.3608. Includes 4/3

Color f (α, y1, y2) > 0, white f (α, y1, y2) < 0

1y

2y
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At α∗ = 5
3

√
2
3 = 1.3608. Onset of the Overlap Gap Property

1y

2y
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α ∈ [α∗,
√

2]. Overlap Gap Property

1y

2y
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Limits for Local Algorithms

The Overlap Gap Property occurs in sparse random graphs
G(n,d/n) and is a provable obstacle for so-called local algorithms:

Theorem 5
[G & Sudan 2014, Rahman & Virag 2014] The largest independent set
problem exhibits the Overlap Gap Property. As a result no local
algorithm (appropriately defined) can improve upon the greedy
algorithm.

Recall: in a sparse random graph G(n, d
n )

I∗ ∼ 2 log d
d

n vs IAlg ∼ log d
d

n.
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Theorem 6
[G & Sudan 2014] The NAE-K-SAT problem exhibits the overlap gap
property approximately at the ”failure” point of the simple greedy
algorithm. As a result no local algorithm can find a satisfying
assignment above this threshold.
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Remarks and Ongoing Work

Overlaps of m > 2 matrices should push the phase transition

down from 5
3

√
2
3 (work in progress).

OGP in sparse regression (work in progress with Ilias Zadik).
Conjecture: The Clique problem for G(n,p) exhibits an Overlap
Gap Property at log 1

p
n for general m > 0.

Challenge:

Random Constraint Satisfaction problem is tractable iff it does not
exhibit the OGP.
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