Finding a Large Submatrix of a Random Matrix, and the Overlap Gap Property

David Gamarnik

MIT

The Classification Program of Counting Complexity

Joint work with Quan Li (MIT)

April 1, 2016

Gamarnik & Li

 Many optimization problems over random instances (random K-SAT, coloring of a random graph, maximum independent set of a random graph) exhibit an apparent gap between algorithmic and existential results.

- Many optimization problems over random instances (random K-SAT, coloring of a random graph, maximum independent set of a random graph) exhibit an apparent gap between algorithmic and existential results.
- What is the source of the apparent hardness?

- Many optimization problems over random instances (random K-SAT, coloring of a random graph, maximum independent set of a random graph) exhibit an apparent gap between algorithmic and existential results.
- What is the source of the apparent hardness?
- Overlap Gap Property originating from the theory of Spin Glasses.

- Many optimization problems over random instances (random K-SAT, coloring of a random graph, maximum independent set of a random graph) exhibit an apparent gap between algorithmic and existential results.
- What is the source of the apparent hardness?
- Overlap Gap Property originating from the theory of Spin Glasses.
- This talk: illustration of the OGP using the maximum submatrix problem.

• Consider $\mathbb{G}(n, p)$.

- Consider $\mathbb{G}(n, p)$.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{p}} n$.

- Consider $\mathbb{G}(n, p)$.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} n$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{2}} n$.

- Consider $\mathbb{G}(n, p)$.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} n$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{2}} n$.
- Karp [1976] Find a better algorithm.

- Consider $\mathbb{G}(n, p)$.
- The largest clique (fully connected subgraph) is $\sim 2 \log_{\frac{1}{2}} n$.
- A trivial greedy algorithm finds a clique of size $\sim \log_{\frac{1}{2}} n$.
- Karp [1976] Find a better algorithm.
- Still open. This is embarrassing...

• Consider $\mathbb{G}(n, d/n)$. *d* is constant.

- Consider $\mathbb{G}(n, d/n)$. *d* is constant.
- The largest independent set (a subset of nodes with no edges) is

$$\sim rac{2\log d}{d}n,$$

Frieze, Luczak [1992]

- Consider $\mathbb{G}(n, d/n)$. *d* is constant.
- The largest independent set (a subset of nodes with no edges) is

$$\sim rac{2\log d}{d}n,$$

Frieze, Luczak [1992]

• A trivial greedy algorithm finds an independent set of size

$$\sim rac{\log d}{d} n.$$

- Consider $\mathbb{G}(n, d/n)$. *d* is constant.
- The largest independent set (a subset of nodes with no edges) is

$$\sim rac{2\log d}{d}n,$$

Frieze, Luczak [1992]

• A trivial greedy algorithm finds an independent set of size

$$\sim rac{\log d}{d} n.$$

• Better algorithm?

- Consider $\mathbb{G}(n, d/n)$. *d* is constant.
- The largest independent set (a subset of nodes with no edges) is

$$\sim rac{2\log d}{d}n,$$

Frieze, Luczak [1992]

• A trivial greedy algorithm finds an independent set of size

$$\sim rac{\log d}{d}$$
n.

- Better algorithm?
- Similar story for many other combinatorial optimization problems.

This Talk: Maximum Submatrix of a Gaussian Matrix

Given $n \times n$ matrix C_n with standard normal i.i.d. entries

$$C_n = \left[egin{array}{cccc} C_{11} & \ldots & C_{1n} \\ \vdots & \ddots & \vdots \\ C_{n1} & \ldots & C_{nn} \end{array}
ight],$$

and given k, find a $k \times k$ submatrix

with the largest average entry

Ave
$$(C_{n,k}^*) = \frac{1}{k^2} \sum_{1 < c.r < k} C_{i_c,j_r}$$

Gamarnik & Li

Large Submatrix

[Bhamidi, Dey & Nobel 2013]

[Bhamidi, Dey & Nobel 2013]

Global optimum

$$\operatorname{Ave}(C^*_{n,k}) pprox \sqrt{rac{4\log n}{k}}.$$

[Bhamidi, Dey & Nobel 2013]

Global optimum

$$\operatorname{Ave}(C^*_{n,k}) pprox \sqrt{rac{4\log n}{k}}.$$

Intuition:

[Bhamidi, Dey & Nobel 2013]

Global optimum

$$\operatorname{Ave}(C^*_{n,k}) \approx \sqrt{rac{4\log n}{k}}.$$

- Intuition:
 - If Z_1, \ldots, Z_N are $N(0, \sigma^2)$, then max $Z_i \approx \sigma \sqrt{2 \log N}$.

[Bhamidi, Dey & Nobel 2013]

Global optimum

$$\operatorname{Ave}(C^*_{n,k}) \approx \sqrt{rac{4\log n}{k}}.$$

- Intuition:
 - If Z_1, \ldots, Z_N are $N(0, \sigma^2)$, then max $Z_i \approx \sigma \sqrt{2 \log N}$.
 - Maximum of $\binom{n}{k}^2 N(0, \frac{1}{k^2})$ Gaussians is then

$$\frac{1}{k}\sqrt{2\log\binom{n}{k}^2}\approx\frac{1}{k}\sqrt{4k\log n}.$$

[Bhamidi, Dey & Nobel 2013]

Global optimum

$$\operatorname{Ave}(C^*_{n,k}) \approx \sqrt{\frac{4\log n}{k}}.$$

- Intuition:
 - If Z_1, \ldots, Z_N are $N(0, \sigma^2)$, then max $Z_i \approx \sigma \sqrt{2 \log N}$.
 - Maximum of $\binom{n}{k}^2 N(0, \frac{1}{k^2})$ Gaussians is then

$$\frac{1}{k}\sqrt{2\log\binom{n}{k}^2}\approx\frac{1}{k}\sqrt{4k\log n}.$$

What about algorithms?

Motivation and Prior Work

 Genetics, bioinformatics and social networks. Madeira [2004], Fortunato [2010], Shabalin [2009].

Motivation and Prior Work

- Genetics, bioinformatics and social networks. Madeira [2004], Fortunato [2010], Shabalin [2009].
- The problem of finding the optimal k × k submatrix amongst ⁿ_k² choices is computationally challenging for large k.

Motivation and Prior Work

- Genetics, bioinformatics and social networks. Madeira [2004], Fortunato [2010], Shabalin [2009].
- The problem of finding the optimal k × k submatrix amongst ⁿ_k² choices is computationally challenging for large k.
- A natural heuristics: ISP (Iterative Search Procedure) Shabalin [2009]. It iteratively updates rows and columns until no further improvement can be obtained.

ISP Algorithm

ISP Algorithm

Initialize: Select *k* columns *J* uniformly at random.

Initialize: Select *k* columns *J* uniformly at random.

Loop: Iterate until convergence of *I* and *J*: Let I := k rows with the largest entry sums over the columns in *J*. Let J := k columns with the largest entry sums over the rows in *I*.

Initialize: Select *k* columns *J* uniformly at random.

Loop: Iterate until convergence of *I* and *J*: Let I := k rows with the largest entry sums over the columns in *J*. Let J := k columns with the largest entry sums over the rows in *I*.

Output: Submatrix associated with final *I* and *J*.
Gamarnik & Li

• Observe that **ISP** outputs a matrix which is *locally* (row and column) optimal.

[Bhamidi, Dey & Nobel]: Most locally optimal matrices have value $1/\sqrt{2}$ smaller than the global optimum:

$$(1+o(1))\sqrt{\frac{2\log n}{k}}.$$

• Observe that **ISP** outputs a matrix which is *locally* (row and column) optimal.

[Bhamidi, Dey & Nobel]: Most locally optimal matrices have value $1/\sqrt{2}$ smaller than the global optimum:

$$(1+o(1))\sqrt{\frac{2\log n}{k}}.$$

• Intuition. The best submatrix for a fixed set of k rows has average $\sim \sqrt{2 \log n/k}$. Further iterations do not improve the average significantly.

Gamarnik & Li

• Open questions:

- Open questions:
- What is the value Ave($C_{n,k}^{ISP}$) produced by ISP?

- Open questions:
- What is the value $Ave(C_{n,k}^{ISP})$ produced by ISP?
- Are there better algorithms?

- Open questions:
- What is the value $Ave(C_{n,k}^{ISP})$ produced by ISP?
- Are there better algorithms?
- What is the reason for apparent computational complexity?

• Fix
$$\theta > 0$$
 and let $A_{i,j} = \mathbf{1} (C_{i,j} > \theta)$.

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix},$$

• Fix
$$\theta > 0$$
 and let $A_{i,j} = \mathbf{1} (C_{i,j} > \theta)$.

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix},$$

• *A* is a bi-partite Erdös-Rényi graph $\mathbb{G}(n, n, p), p = \mathbb{P}(Z > \theta)$.

• Fix
$$\theta > 0$$
 and let $A_{i,j} = \mathbf{1} (C_{i,j} > \theta)$.

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix},$$

- *A* is a bi-partite Erdös-Rényi graph $\mathbb{G}(n, n, p), p = \mathbb{P}(Z > \theta)$.
- Fact: W.h.p. a simple greedy algorithm produces a $m \times m$ clique $A_{n,m}^{\text{Greedy},\theta}$ with $m = \log n / \log(1/p)$.

• Fix
$$\theta > 0$$
 and let $A_{i,j} = \mathbf{1} (C_{i,j} > \theta)$.

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 1 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \dots & 0 \end{bmatrix},$$

- *A* is a bi-partite Erdös-Rényi graph $\mathbb{G}(n, n, p), p = \mathbb{P}(Z > \theta)$.
- Fact: W.h.p. a simple greedy algorithm produces a $m \times m$ clique $A_{n,m}^{\text{Greedy},\theta}$ with $m = \log n / \log(1/p)$.
- **Observation:** The corresponding matrix $C_{n,m}^{\text{Greedy},\theta}$ has *minimum* entry value θ .

Main Results

Main Results

Theorem 1

The number of iterations T_n of **ISP** is O(1) and w.h.p.

$$Ave(C_{n,k}^{ISP}) = (1+o(1))\sqrt{rac{2\log n}{k}},$$

factor $\sqrt{2}$ smaller than Ave($C_{n,k}^*$)

Main Results

Theorem 1

The number of iterations T_n of **ISP** is O(1) and w.h.p.

$$Ave(C_{n,k}^{ISP}) = (1+o(1))\sqrt{rac{2\log n}{k}},$$

factor $\sqrt{2}$ smaller than Ave $(C_{n,k}^*)$

Theorem 2

Setting $\theta = \sqrt{2 \log n/k}$, leads to $k \times k$ clique. Thus

$$C_{n,k}^{ extsf{Greedy}, heta} = (1 + o(1)) C_{n,k}^{ extsf{ISP}, heta}.$$

Main Results (continued)

We propose a new algorithm Sequential Greedy (IG).

We propose a new algorithm Sequential Greedy (IG).

Theorem 3

$$Ave(C_{n,k}^{SG}) = (1 + o(1))\frac{4}{3}\sqrt{\frac{2\log n}{k}} = (1 + o(1))\frac{4}{3}Ave(C_{n,k}^{ISP}).$$

Sequential Greedy Algorithm

Sequential Greedy Algorithm

• In even step 2*t* the algorithm produces greedily a $(t + 1) \times t$ matrix $C_{n,t}^{SG}$.

Sequential Greedy Algorithm

• In even step 2*t* the algorithm produces greedily a $(t + 1) \times t$ matrix $C_{n,t}^{SG}$.

• In odd step 2t + 1 it produces greedily a $(t + 1) \times (t + 1)$ matrix $C_{n,t}^{SG}$.

• In step 2t (2t + 1) the added column (row) has entry sum $\approx \sqrt{2t \log n}$.

- In step 2t (2t + 1) the added column (row) has entry sum $\approx \sqrt{2t \log n}$.
- Thus the total value is

$$\sum_{1 \le t \le k} 2\sqrt{2t \log n} \approx 2\sqrt{2\log n} \int_1^k t^{\frac{1}{2}} dt$$
$$= 2\sqrt{2\log n} \frac{2}{3}k^{\frac{3}{2}}$$
$$= \frac{4}{3}k\sqrt{2k\log n}$$

- In step 2t (2t + 1) the added column (row) has entry sum $\approx \sqrt{2t \log n}$.
- Thus the total value is

$$\sum_{1 \le t \le k} 2\sqrt{2t \log n} \approx 2\sqrt{2\log n} \int_1^k t^{\frac{1}{2}} dt$$
$$= 2\sqrt{2\log n} \frac{2}{3}k^{\frac{3}{2}}$$
$$= \frac{4}{3}k\sqrt{2k\log n}$$

Thus

$$\mathsf{Ave}(C^{\mathbf{SG}}_{n,k}) pprox rac{4}{3} \sqrt{rac{2\log n}{k}}$$

• Global optimum matrix:

$$\sqrt{2}\sqrt{\frac{2\log n}{k}}.$$

• Global optimum matrix:

$$\sqrt{2}\sqrt{\frac{2\log n}{k}}.$$

Best one found algorithmically

$$\frac{4}{3}\sqrt{\frac{2\log n}{k}}$$

• Global optimum matrix:

$$\sqrt{2}\sqrt{\frac{2\log n}{k}}.$$

Best one found algorithmically

$$\frac{4}{3}\sqrt{\frac{2\log n}{k}}$$

• What is happening in $\left[\frac{4}{3}, \sqrt{2}\right]$?

Fix $\alpha \in [\frac{4}{3}, \sqrt{2}]$ and two submatrices C_1, C_2 with

$$\operatorname{Ave}(C_1) \approx \operatorname{Ave}(C_2) \approx \alpha \sqrt{\frac{2 \log n}{k}}.$$

Fix $\alpha \in [\frac{4}{3}, \sqrt{2}]$ and two submatrices C_1, C_2 with

$$\operatorname{Ave}(C_1) \approx \operatorname{Ave}(C_2) \approx \alpha \sqrt{\frac{2 \log n}{k}}$$

Theorem 4

The expected number of such pairs C_1 , C_2 with y_1k common rows and y_2k common columns is

 $\exp\left(f\left(\alpha,y_{1},y_{2}\right)k\log n\right),$

where

$$f(\alpha, y_1, y_2) = 4 - y_1 - y_2 - \frac{2}{1 + y_1 y_2} \alpha^2.$$

Fix $\alpha \in [\frac{4}{3}, \sqrt{2}]$ and two submatrices C_1, C_2 with

$$\operatorname{Ave}(C_1) \approx \operatorname{Ave}(C_2) \approx \alpha \sqrt{\frac{2 \log n}{k}}$$

Theorem 4

The expected number of such pairs C_1 , C_2 with y_1k common rows and y_2k common columns is

 $\exp\left(f\left(\alpha,y_{1},y_{2}\right)k\log n\right),$

where

$$f(\alpha, y_1, y_2) = 4 - y_1 - y_2 - \frac{2}{1 + y_1 y_2} \alpha^2.$$

 $f(\alpha, y_1, y_2) < 0$ implies no such pairs.

Gamarnik & Li

Large Submatrix

 $\alpha < \alpha_* = \sqrt{3}/\sqrt{2} = 1.2247.$

 $f(\alpha, y_1, y_2) > 0$ everywhere

April 1, 2016 18 / 24

Gamarnik & Li

$$\alpha_* < \alpha < \alpha^* = \frac{5}{3}\sqrt{\frac{2}{3}} = 1.3608$$
. Includes 4/3

Color $f(\alpha, y_1, y_2) > 0$, white $f(\alpha, y_1, y_2) < 0$

At $\alpha^* = \frac{5}{3}\sqrt{\frac{2}{3}} = 1.3608$. Onset of the Overlap Gap Property

Gamarnik & Li

Large Submatrix

$\alpha \in [\alpha^*, \sqrt{2}]$. Overlap Gap Property

Gamarnik & Li

Limits for Local Algorithms

Limits for Local Algorithms

• The Overlap Gap Property occurs in sparse random graphs $\mathbb{G}(n, d/n)$ and is a *provable* obstacle for so-called *local* algorithms:

Theorem 5

[G & Sudan 2014, Rahman & Virag 2014] The largest independent set problem exhibits the Overlap Gap Property. As a result no local algorithm (appropriately defined) can improve upon the greedy algorithm.

Limits for Local Algorithms

• The Overlap Gap Property occurs in sparse random graphs $\mathbb{G}(n, d/n)$ and is a *provable* obstacle for so-called *local* algorithms:

Theorem 5

[G & Sudan 2014, Rahman & Virag 2014] The largest independent set problem exhibits the Overlap Gap Property. As a result no local algorithm (appropriately defined) can improve upon the greedy algorithm.

• Recall: in a sparse random graph $\mathbb{G}(n, \frac{d}{n})$

$$I^* \sim rac{2\log d}{d}n$$
 vs $I^{\operatorname{Alg}} \sim rac{\log d}{d}n.$

Theorem 6

[G & Sudan 2014] The NAE-K-SAT problem exhibits the overlap gap property approximately at the "failure" point of the simple greedy algorithm. As a result no local algorithm can find a satisfying assignment above this threshold.

• Overlaps of m > 2 matrices should push the phase transition down from $\frac{5}{3}\sqrt{\frac{2}{3}}$ (work in progress).

- Overlaps of m > 2 matrices should push the phase transition down from $\frac{5}{3}\sqrt{\frac{2}{3}}$ (work in progress).
- OGP in sparse regression (work in progress with Ilias Zadik).

- Overlaps of m > 2 matrices should push the phase transition down from $\frac{5}{3}\sqrt{\frac{2}{3}}$ (work in progress).
- OGP in sparse regression (work in progress with Ilias Zadik).
- Conjecture: The Clique problem for G(n, p) exhibits an Overlap Gap Property at log ¹/₁ n for general m > 0.

- Overlaps of m > 2 matrices should push the phase transition down from $\frac{5}{3}\sqrt{\frac{2}{3}}$ (work in progress).
- OGP in sparse regression (work in progress with Ilias Zadik).
- Conjecture: The Clique problem for G(n, p) exhibits an Overlap Gap Property at log 1 n for general m > 0.
- Challenge:

Random Constraint Satisfaction problem is tractable iff it does not exhibit the OGP.