
Holger Dell

Saarland University and Cluster of Excellence (MMCI)

Simons Institute for the Theory of Computing

Fine-Grained Complexity Classification
of Counting Problems

1

Exact counting

P | #P-hard

Approximate counting

FPRAS | #BIS-complete | #SAT-hard

FPRAS | no FPRAS unless RP=NP

In P or not in P ?

2

Motivation for fine-grained complexity

Fine-grained complexity is a toolbox

to pin down best running time more precisely
3

O(2

n

) O(1.01

n

) O(2

√n

) O(n

k

) O(2

k

 n)

O(n) O(n

2

) O(n

100

)

#P-hard problems could have algorithms running in time:

Problems in P could have algorithms running in time:

Available conjectures, problems, and classes

4

SETH

ETH

W[1]

FPT

Orthogonal Vectors

All Pairs Shortest Path

3SUM

PETH

P
o

l
y
n

o
m

i
a
l

t
i
m

e

E
x
p

o
n

e
n

t
i
a
l

t
i
m

e

3-CNF-SAT faster than exhaustive search
Schöning’s algorithm

➢ Sample random assignment x ∊ {0,1}

n

➢ While there is clause (a ∨ b ∨ c) not satisfied by x:

- Choose random literal in {a,b,c}

- Flip its value in x

➢ Restart process if too long

5

Satisfying

assignment

x*

Random

assignment

x

Hamming

distance

Expected running time: (4/3)

n

Pr ≥ 1/3 Pr ≤ 2/3

Branching algorithms

6

Formula F

contains clause

(a ∨ b ∨ c)

F

c=0

a=0a=1

b=1 b=0

c=1

For every clause (a ∨ b ∨ c), only

need to look at ⅞ of all assignments

→ Time 7

n/3

 ~ 1.913

n

Counting Satisfying Assignments of 3-CNFs
Kutzkov 07: exact counting in time O(1.6423

n

)

Thurley 12: ᶗ-approximation in time O(ᶗ−2

 1.5366

n

)

Exponential time hypothesis (#ETH)

∃ᶖ>0. #SAT for 3-CNFs is not in time (1+ᶖ)

n

Sparsification Lemma

(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D, Husfeldt, Wahlén 10)

Can assume #clauses ~ (1/ᶖ)

3

 n

7

Sparsification Lemma
(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D Husfeldt Wahlén 10)

Input:

- k-CNF formula F with n variables and m clauses

- ᶗ>0

Output:

F

1

 … F

t

 such that

- sat(F) = sat(F

1

)

⊔ … ⊔ sat(F

t

)

- each F

i

 has (k/ᶗ)k

 n clauses

- t = 2

ᶗn

8

General CNFs

Chan and Williams 15:

Compute #SAT for a CNF formula F in time 2

n (1 − savings)

- F is a k-CNF → savings ~ 1 / k

- F has cn clauses → savings ~ 1 / log c

Strong exponential time hypothesis (#SETH)

∀ᶖ>0 ∃k. #SAT for k-CNFs cannot have savings ≥ ᶖ
9

Problems equivalent under SETH
Cygan et al. 2012

Decision problems

10

CNF-SAT

Hitting Set

of size t

Counting modulo two

Set Cover

of size t

open

CNF-⊕SAT

⊕ Hitting Sets of size t

⊕ All Hitting Sets

= ⊕ All Set Covers

= ⊕ Bipartite Independent Sets

⊕ Set Covers of size t

Isolation lemma

(Calabro et al. 03)

D

e
c
i
s
i
o
n

-
t
o
-
P

a
r
i
t
y

(
B

j
ö
r
k
l
u
n

d
 e

t
 a

l
. 1

5
)

Perfect Matchings in Bipartite Graphs

11

d + d vertices

d×d matrix A

A

ij

= 1 iff {i,j} is an edge

Perfect Matchings

= per(A)

= ∑

permutation π

 ∏

i∊{1..d}

 A

i π(i)

i

j

per(d×d matrix A) = ∑

permutation π

 A

1 π(1)

...A

d π(d)

Computing the permanent

12

Evaluation time

~ d! ~ 2

d log d

Evaluation time

O(d2

d

)

Ryser’s Inclusion-Exclusion Formula (1963)

= ∑

S⊆{1..d}

(−1)

|S|

∏

i∊{1..d}

∑

j∊{1..d}∖S

 A

ij

 = ∑

all functions f : {1..d} → {1..d}

A

1 f(1)

...A

d f(d)

 − ∑

j

∑

f : {1..d} → {1..d}∖{j}

A

1 f(1)

...A

d f(d)

 + ∑

j,k

∑

f : {1..d} → {1..d}∖{j,k}

A

1 f(1)

...A

d f(d)

…

∏

i∊{1..d}

∑

j∊{1..d}

 A

ij

Fine-Grained Complexity of the Permanent
Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10

If per(d×d matrix A) can be computed in time 2

o(d)

,

then #ETH is false

Servedio and Wan 05

If A has ≤ cd nonzero entries,

per(A) can be computed in time (2−ᶖ)

d

 where ᶖ(c) < 1

Permanent Strong Exponential Time Hypothesis (PETH)

∀ᶖ>0 ∃c. per(c-sparse A) not in time (2−ᶖ)

d

13

per((n/2)×(n/2) matrix)

= # Perfect Matchings of bipartite graph with n/2+n/2 vertices

→ 2

n/2

 algorithm

Björklund 11

Count perfect matchings in general graphs in time 2

n/2

.

Count Perfect Matchings in General Graphs

14

Proper q-colorings

15

χ(G, q) = χ(G−e, q) − χ(G/e, q)

χ(k-independent set, q) = q

k

→ χ(G, q) is a degree-n polynomial in q.

Chromatic polynomial & Deletion-Contraction

16

χ(G, q) = # proper q-colorings of G

e

G G/eG−e

Compute # q-Colorings

The deletion-contraction algorithm takes time 2

m

.

Björklund Husfeldt Koivisto 09

Compute the number of q-colorings in time 2

n

.

Impagliazzo Paturi Zane 01

ETH → no 2

o(n)

 algorithm for q-coloring.

17

The Tutte Polynomial

T(G, x, y) = ∑

A⊆E

 (x−1)

k(A)−k(G)

(y−1)

k(A)+|A|−|V|

Generalizes

- chromatic polynomial χ(G, q) = (−1)

n-k(G)

 q

k(G)

 T(G, 1−q, 0)

- Ising model, q-state Potts model

- many combinatorial problems

18

Computing the Tutte polynomial

The trivial algorithm runs in time 2

m

Björklund Husfeldt Kaski Koivisto 08

Time 2

n

 algorithm

Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10; Jaeger Vertigan Welsh 90

#ETH → no 2

o(n)

 algorithm

19

The Tutte Plane of Computational Problems
Fix x,y ∊Q Input: G Output: T(G, x, y)

20

poly-time

Black:

not in 2

o(n)

under #ETH

#P-hard ; Open under #ETH

∑

forest F⊆E

 2

|F|

Polynomial Interpolation

21

univariate polynomial p

degree m

m + 1 samples

(a, p(a))

→ compute p in poly-time from samples

Interpolation in Counting Complexity

22

p

(
G

,
a
)

p

(

G

,
a 1

)

Graph polynomial p(G, z)

degree m

p
(G

,a

2

)

p(G, a

i

) = p(G

i

, a)

p
(G

,a

3

)

G G

i

Need m+1 samples

→ m+1 different gadgets

→ m(G

i

) ~ m log m

Only rules out

2

o(m/log m)

 time algorithms

under #ETH

Univariate p(G, z) → Multivariate q(G, z

1

, … , z

m/r

)

such that

- p(G, z) = q(G, z

1

, … , z

m/r

)

- Each z

i

 has degree r=O(1)

→ Multivariate interpolation

~ r

m/r

= exp(ε m) samples

r+1=O(1) distinct gadgets per variable

Block interpolation
Curticapean 15

23

Can rule out 2

o(m)

time algorithms

under #ETH

Approximate Counting

Valiant Vazirani 86

FPRAS for # Sat when given access to an NP-oracle

Traxler 14

If CNF-Sat is in c

n

 ⋅ poly(m) time,

we can (1+1.1

−n

)-approximate # CNF-Sat in time (c + .00001)

n

24

Is Counting really harder than Decision?

If SETH is true,

- CNF-SAT takes time 2

n

- # CNF-SAT takes time 2

n

 (even to approximate)

- QBF-SAT takes time 2

n

In applications: CNF-SAT much easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ?

25

Open problems
- is computing ∑

forest F⊆E

 2

|F|

 hard under ETH or #ETH ?

- is the permanent hard under SETH ?

- which problems are hard under PETH ?

- fine-grained inapproximability for # CNF-SAT ?

- is counting really harder than decision?

can we tightly reduce QBF-SAT to # CNF-SAT ?

26

