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InPornotinP ?

Exact counting
P #P-hard

Approximate counting
FPRAS #BIS-complete #SAT-hard
FPRAS no FPRAS unless RP=NP



Motivation for fine-grained complexity

#P-hard problems could have algorithms running in time:

02" O(1.01") 0" O(nX) O(2%n)

Problems in P could have algorithms running in time:

O(n) O(n?) O(n'"")

Fine-grained complexity is a toolbox
to pin down best running time more precisely



Available conjectures, problems, and classes




3-CNF-SAT faster than exhaustive search

Schoning’s algorithm Expected running time: (4/3)"

> Sample random assignment x € {0,1}"

>  While there is clause (a V b V c) not satisfied by x:
- Choose random literal in {a,b,c}
- its value in x

> Restart process if too long

Satisfying Random
ai51gnment assignment Famming
X X distance




Branching algorithms

F
Formula F
contains clause ail/\io
(aVDbVoc)
b=1 b=0

c=1 \Li
For every clause (a V b V ¢), only
need to look at 7 of all assignments

— Time 7*3 ~ 19132



Counting Satisfying Assignments of 3-CNFs

Kutzkov 07: exact counting in time O( 1.6423" )

Thurley 12: &s-approximation in time O( e 1.5366" )

Exponential time hypothesis ( )

[

= 0>0. for 3-CNFs is not in time (1+0)*

Sparsification Lemma
(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D, Husfeldt, Wahlén 10)

Can assume #clauses ~ (1/0)° n



Sparsification Lemma

(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D Husfeldt Wahlén 10)

Input:

- k-CNF formula FF with n variables and m clauses
- &0

Output:
such that

- sat( F)=sat( I, )u..usat( F )
- each F has (k/¢)* n clauses
— t — 2811



General CNFs

Chan and Williams 15:

Compute for a CNF formula © in time 2 " = saiigs)

- ' isa k-CNF — savings~1/k
- " has cn clauses — savings ~1/log c

Strong exponential time hypothesis ( )

V>0 dk for k-CNFs cannot have savings > 6



Problems equivalent under SETH
Cygan et al. 2012

Decision problems Counting modulo two
CNF-SAT CNF-eSAT

Isolation lemma
(Calabro et al. 03)

Hitting Set ® Hitting Sets of size t
of size t
© All Hitting Sets
= @ All Set Covers
Set Cover : :
: 5 = © Bipartite Independent Sets
of size t ecis:
(8/01- 1012‘(‘0
A’/lu]d - c?[-jl} .

€t g i @ Set Covers of size t



Perfect Matchings in Bipartite Graphs

)

XK SR KX

d + d vertices

# Perfect Matchings
= per(A)
dxd matrix A

Aij =1 iff {i,j} is an edge

= Zpermutation T Hje{l,,d} Ai (i)



- Evaluation time
Computing the permanent 4l ~ ydlogd
per( dxd matrix A ) = Zpermutatiom A n(])"'A d(d)

~ 21l functions £+ [1.d] — L.d} 1 £1)~PAd f(a) [Hie{l..d} Zje{l..d} Aij}
- Zj 26 11.d} [LdRN] Ay ray-Ba gay
T Zj,k 2. [1.d} [1.dINjk] Ay fay-Ba gay
Evaluation time
O(d29)

Ryser’s Inclusion-Exclusion Formula (1963)

_ _1)ISI
ZS;{Ld}( 1) HiE{l..d} Zje{l--d}\s AiJ'
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Fine-Grained Complexity of the Permanent

Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10

If per( dxd matrix A ) can be computed in time 2°(?,
then #ETH is false

Servedio and Wan 05

If A has < cd nonzero entries,
per(A) can be computed in time (2—6 )4 where &(c) <1

Permanent Strong Exponential Time Hypothesis ( )
V0>0 dc.  per(c-sparse A) not in time (26 e
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Count Perfect Matchings in General Graphs

per( (n/2)%x(n/2) matrix )
= # Perfect Matchings of bipartite graph with n/2+n/2 vertices

— 22 algorithm

Bjorklund 11

Count perfect matchings in general graphs in time 2"
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Proper g-colorings



Chromatic polynomial & Deletion-Contraction
x(G, ) = # proper «-colorings of G

G G—e Gle

N~
AN

wG, q) = x(G—e,
w(k-independent set, <) = (¥

—  %(G, ) is a degree-n polynomial in .



Compute # g-Colorings

The deletion-contraction algorithm takes time 2™

Bjorklund Husfeldt Koivisto 09
Compute the number of g-colorings in time 2"

Impagliazzo Paturi Zane 01
ETH — no 2°™ algorithm for g-coloring,
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The Tutte Polynomial

T(G, x,y) = ZACE (x—1)k(A)K(G) (y_l)k(A)+|A|—|V|

Generalizes

- chromatic polynomial (G, q) = (-1)"KG) qk(G) T(G, 1-q, 0)
- Ising model, g-state Potts model
- many combinatorial problems

18



Computing the Tutte polynomial

The trivial algorithm runs in time 2™

Bjorklund Husfeldt Kaski Koivisto 08
Time 2" algorithm

Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10; Jaeger Vertigan Welsh 90
#ETH — no 2°™ algorithm
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The Tutte Plane of Computational Problems

Fix x,y €Q Input: G Output: T(G, x, y)

Black:
not in 2°0 Y
under #ETH

poly-time

#P-hard ; Open under #ETH

|F|
Zforest FCE 2
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Polynomial Interpolation

— compute p in poly-time from samples

univariate polynomial p
degree m

m + 1 samples

(a, p(a))
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Interpolation in Counting Complexity

Only rules out

20(mflogm) time algorithms

under #ETH

\
Cs?
Q\

p(G,ag)

p(G, ai) = p(Gi, a)
O

= > G

Need m+1 samples
— m+] different gadgets
— m(G,) ~m log m

Graph polynomial p(G, z)

degree m
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Block interpolation
Curticapean 15

)

Univariate p(G, z) — Multivariate q(G, ZAPP
such that

m/r

- p(G,2)=0(G,z,, ..,z

2 17 2 m/r)

- Each z, has degree r=0(1)
Can rule out 2°0®

— Multivariate interpolation . .
time algorithms

~ ™= exp(s m) samples
r+1=0(1) distinct gadgets per variable under #ETH
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Approximate Counting

Valiant Vazirani 86
FPRAS for # Sat when given access to an NP-oracle

Traxler 14
If CNF-Satisin c" - poly(m) time,
we can (1+1.17")-approximate # CNF-Sat in time (c +.00001)"
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Is Counting really harder than Decision?

If SETH is true,
- CNF-SAT takes time 2"
- # CNF-SAT takes time 2" (even to approximate)
- QBF-SAT takes time 2"

In applications: CNF-SAT much easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ¢
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Open problems

\

is computing Y. .. 2""'hard under ETH or #ETH ?

is the permanent hard under SETH ¢

which problems are hard under PETH ¢
fine-grained inapproximability for # CNF-SAT ¢

is counting really harder than decision?
can we tightly reduce QBF-SAT to # CNF-SAT ¢
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