Fine-Grained Complexity Classification of Counting Problems

Holger Dell

Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing

In P or not in P ?

Exact counting

P #P-hard

Approximate counting

FPRAS	#BIS-complete	#SAT-hard
FPRAS	no FPRAS unless	RP=NP

Motivation for fine-grained complexity

#P-hard problems could have algorithms running in time:

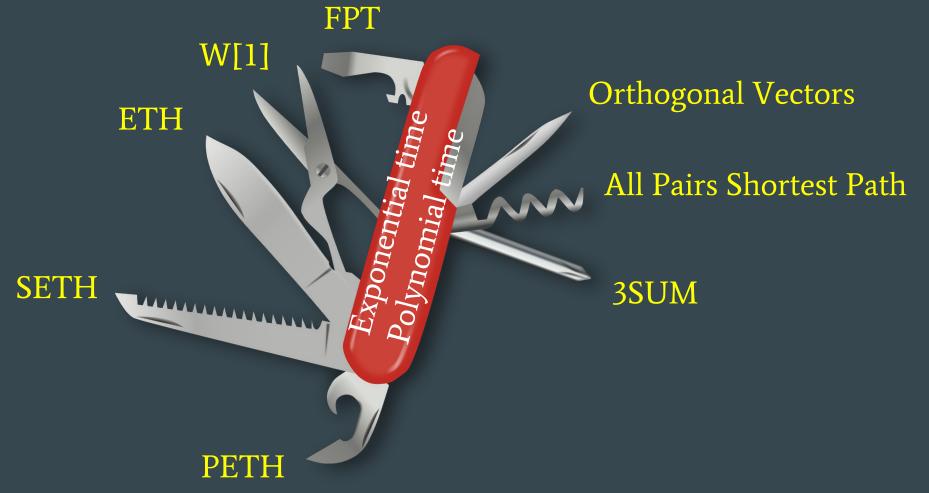
 $O(2^n) O(1.01^n) O(2^{\sqrt{n}}) O(n^k) O(2^k n)$

Problems in P could have algorithms running in time:

O(n) $O(n^2)$ $O(n^{100})$

Fine-grained complexity is a toolbox to pin down best running time more precisely

Available conjectures, problems, and classes

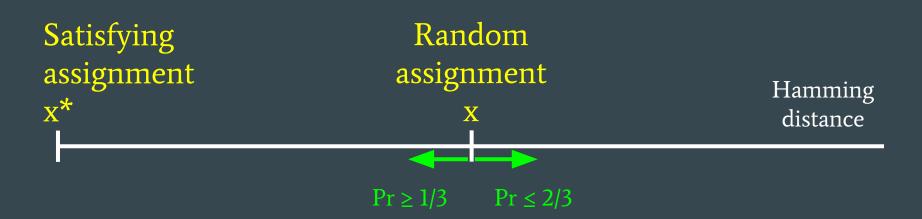


3-CNF-SAT faster than exhaustive search

Schöning's algorithm

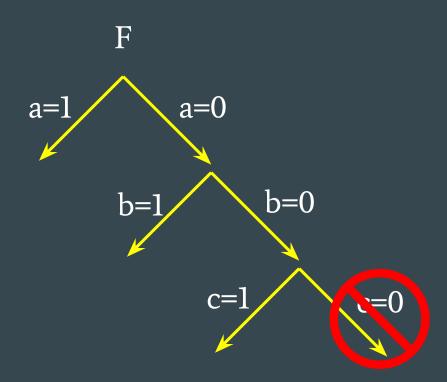
Expected running time: (4/3)ⁿ

- ➤ Sample random assignment $x \in \{0,1\}^n$
- > While there is clause (a \lor b \lor c) not satisfied by x:
 - Choose random literal in {a,b,c}
 - Flip its value in x
- ➤ Restart process if too long



Branching algorithms

Formula F contains clause (a \lor b \lor c)



For every clause (a \lor b \lor c), only need to look at $\frac{7}{8}$ of all assignments

 \rightarrow Time 7^{n/3} ~ 1.913ⁿ

Counting Satisfying Assignments of 3-CNFs

Kutzkov 07: exact counting in time O(1.6423ⁿ)

Thurley 12: ε -approximation in time O(ε^{-2} 1.5366ⁿ)

Exponential time hypothesis (#ETH) $\exists \delta > 0.$ **#SAT** for 3-CNFs is not in time $(1+\delta)^n$

Sparsification Lemma

(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D, Husfeldt, Wahlén 10)

Can assume #clauses ~ $(1/\delta)^3$ n

Sparsification Lemma

(Impagliazzo Paturi Zane 01; Calabro Impagliazzo Paturi 06; D Husfeldt Wahlén 10)

Input:

- k-CNF formula F with n variables and m clauses
- 8>0

Output:

$$\mathbf{F}_1 \dots \mathbf{F}_t$$
 such that

- sat(F) = sat(F_1) \sqcup ... \sqcup sat(F_t) - each F_i has $(k/\varepsilon)^k$ n clauses - $t = 2^{\varepsilon n}$

General CNFs

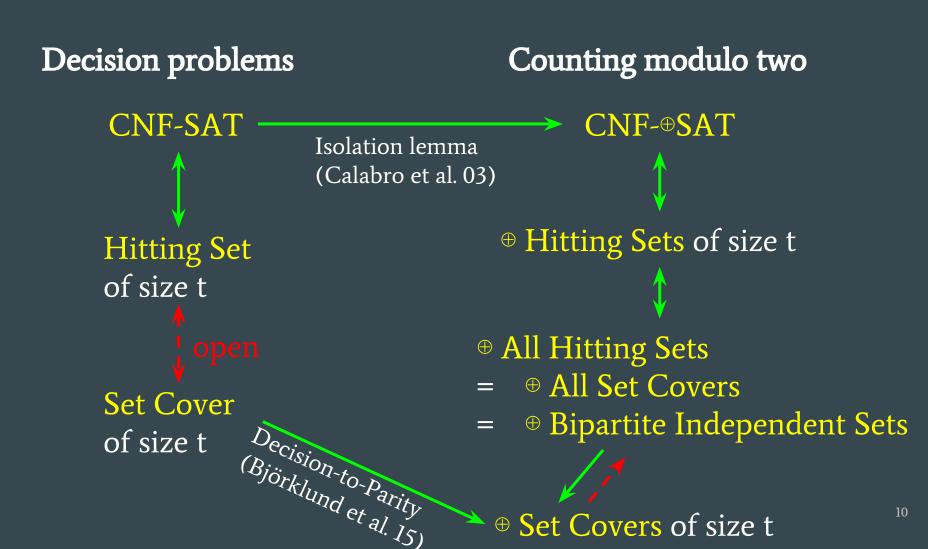
Chan and Williams 15:

Compute #SAT for a CNF formula F in time $2^{n}(1 - \text{savings})$

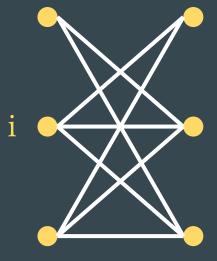
- **F** is a k-CNF \rightarrow savings ~ 1 / k
- F has cn clauses \rightarrow savings $\sim 1 / \log c$

Strong exponential time hypothesis (#SETH) $\forall \delta > 0 \exists k.$ #SAT for k-CNFs cannot have savings $\geq \delta$

Problems equivalent under SETH Cygan et al. 2012

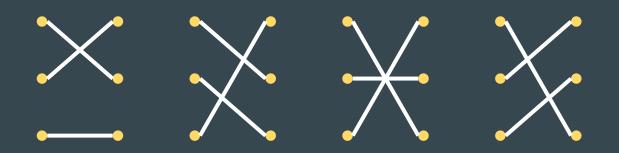


Perfect Matchings in Bipartite Graphs



d + d vertices

d×d matrix A A_{ij}=1 iff {i,j} is an edge



Perfect Matchings = per(A) = $\sum_{\text{permutation } \pi} \prod_{i \in \{1...d\}} A_{i \pi(i)}$

Computing the permanent

Evaluation time $\sim d! \sim 2^{d \log d}$

per($d \times d$ matrix A) = $\sum_{\text{permutation } \pi} A_{1 \pi(1)} \dots A_{d \pi(d)}$

$$= \sum_{all \text{ functions } f: \{1..d\} \rightarrow \{1..d\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$- \sum_{j} \sum_{f: \{1..d\} \rightarrow \{1..d\} \setminus \{j\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$+ \sum_{j,k} \sum_{f: \{1..d\} \rightarrow \{1..d\} \setminus \{j,k\}} A_{1 f(1)} \dots A_{d f(d)}$$

$$\prod_{i\in\{1..d\}}\sum_{j\in\{1..d\}}A_{ij}$$

Evaluation time O(d2^d)

Ryser's Inclusion-Exclusion Formula (1963)

...

$$= \sum_{S \subseteq \{1..d\}} (-1)^{|S|} \prod_{i \in \{1..d\}} \sum_{j \in \{1..d\} \setminus S} A_{ij}$$

Fine-Grained Complexity of the Permanent

Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10

If per($d \times d$ matrix A) can be computed in time $2^{o(d)}$, then #ETH is false

Servedio and Wan 05

If A has \leq cd nonzero entries, per(A) can be computed in time $(2-\delta)^d$ where $\delta(c) < 1$

Permanent Strong Exponential Time Hypothesis (PETH) $\forall \delta > 0 \exists c.$ per(c-sparse A) not in time $(2-\delta)^d$

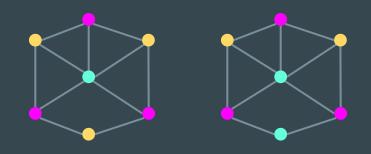
Count Perfect Matchings in General Graphs

- per((n/2)×(n/2) matrix)
- = # Perfect Matchings of bipartite graph with n/2+n/2 vertices $\rightarrow 2^{n/2}$ algorithm

Björklund 11

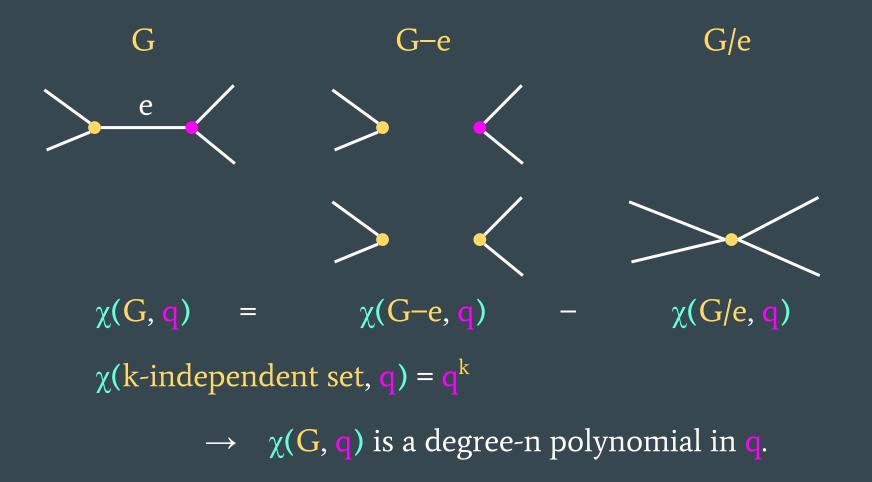
Count perfect matchings in general graphs in time $2^{n/2}$.

Proper q-colorings



Chromatic polynomial & Deletion-Contraction

 $\chi(G, q) = #$ proper q-colorings of G



Compute # q-Colorings

The deletion-contraction algorithm takes time 2^m.

Björklund Husfeldt Koivisto 09 Compute the number of q-colorings in time 2ⁿ.

Impagliazzo Paturi Zane 01 ETH \rightarrow no 2^{o(n)} algorithm for q-coloring.

The Tutte Polynomial

 $T(G, x, y) = \sum_{A \subseteq E} (x-1)^{k(A)-k(G)} (y-1)^{k(A)+|A|-|V|}$

Generalizes

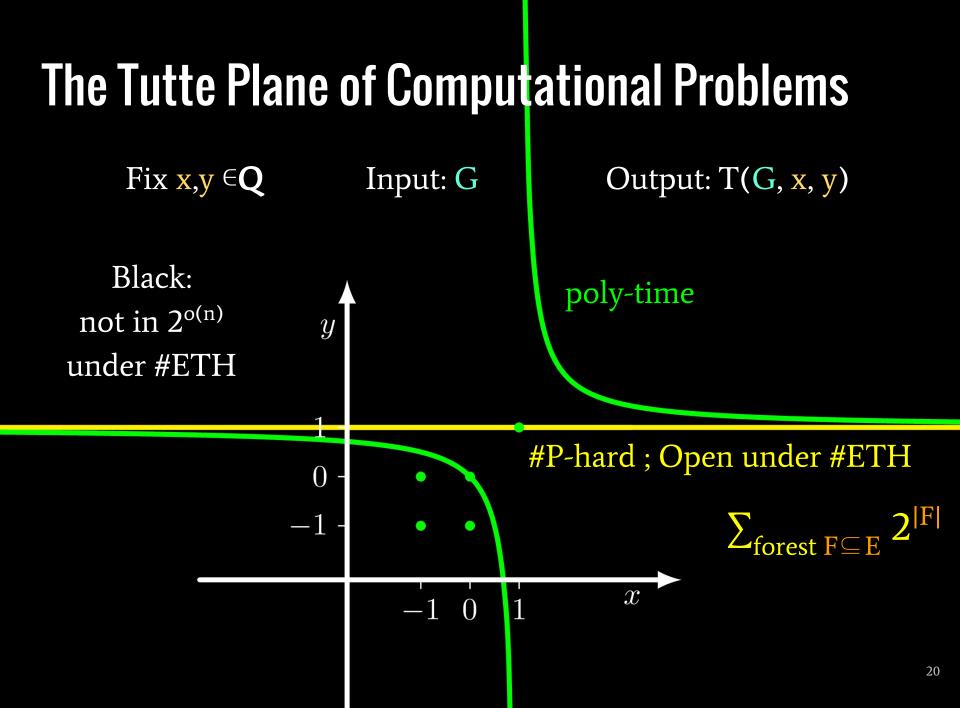
- chromatic polynomial $\chi(G, q) = (-1)^{n-k(G)} q^{k(G)} T(G, 1-q, 0)$
- Ising model, **q**-state Potts model
- many combinatorial problems

Computing the Tutte polynomial

The trivial algorithm runs in time 2^m

Björklund Husfeldt Kaski Koivisto 08 Time 2ⁿ algorithm

Curticapean 15; D Husfeldt Marx Taslaman Wahlén 10; Jaeger Vertigan Welsh 90 #ETH \rightarrow no $2^{o(n)}$ algorithm



Polynomial Interpolation

\rightarrow compute **p** in poly-time from samples

univariate polynomial p degree m

m + 1 samples (a, **p**(a))

Interpolation in Counting Complexity

G

 $P(G_{a_3})$

p(G,a)

Only rules out **2^{o(m/log m)}** time algorithms under #ETH

p(G,a)

 $p(G, a_i) = p(G_i, a)$

Need **m+1 samples** \rightarrow m+1 different gadgets \rightarrow m(G_i) ~ m log m

Graph polynomial p(G, z) degree m

G.

Block interpolation Curticapean 15

Univariate $\mathbf{p}(G, z) \rightarrow Multivariate \mathbf{q}(G, z_1, ..., z_{m/r})$ such that

- $\mathbf{p}(G, z) = \mathbf{q}(G, z_1, ..., z_{m/r})$
- Each z_i has degree r=O(1)
- $\rightarrow \text{Multivariate interpolation} \\ \sim \mathbf{r}^{\mathbf{m/r}} = \exp(\varepsilon \mathbf{m}) \text{ samples} \\ \mathbf{r+1=O(1) \text{ distinct gadgets per variable}}$

Can rule out **2^{o(m)}** time algorithms under #ETH

Approximate Counting

Valiant Vazirani 86 FPRAS for # Sat when given access to an NP-oracle

Traxler 14 If CNF-Sat is in cⁿ · poly(m) time, we can (1+1.1⁻ⁿ)-approximate # CNF-Sat in time (c + .00001)ⁿ

Is Counting really harder than Decision?

If SETH is true,

- CNF-SAT takes time 2ⁿ
- # CNF-SAT takes time 2ⁿ (even to approximate)
- QBF-SAT takes time 2ⁿ

In applications: CNF-SAT much easier than QBF-SAT.

Is there a tight reduction from QBF-SAT to # CNF-SAT ?

Open problems

- is computing $\sum_{\text{forest } F \subseteq E} 2^{|F|}$ hard under ETH or #ETH ?
- is the permanent hard under SETH ?
- which problems are hard under PETH ?
- fine-grained inapproximability for **#** CNF-SAT ?
- is counting really harder than decision?
 can we tightly reduce QBF-SAT to # CNF-SAT ?