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Ising Model

Edge interaction
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W(O') — Bmono(c]

(o) ~ w(o)
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Ising Model

0 1
Edge interaction o |p 1
111 B
1 1
Pl_—%
B 1
1 B

Partition function (normalizing factor):

o:V—{0,1}

where w(o) = 3™°(°) mono(o) is the number of monochromatic edges under o.
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2-State Spin System

Edge: Vertex:
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2-State Spin System

Edge: [ff;] Vertex: [ﬂ

More generally, three parameters f3,v, and A.
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2-State Spin System

Edge: [ff;] Vertex: [ﬂ

More generally, three parameters f3,v, and A.

W(O‘) _ Bmo((?)ym1(a)7\no (o)
mo(o): # of (0,0) edges;
my(o): #of (1,1) edges;

no(o): # of 0 vertices.
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2-State Spin System

Edge: [ff;] Vertex: [ﬂ

More generally, three parameters f3,v, and A.
w(o) = By lc)
mqg(0): # of (0,0) edges;
my(o): #of (1,1) edges;
no(o): # of 0 vertices.

Zs(B,y, N = ) wlo)

o:V—{0,1}
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Examples

@ Ising model: [ff H (no field)

Ze(p)= ) B

o:V—{0,1}
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Examples

@ Ising model: [ff H (no field)

Ze(p)= ) pm

o:V—{0,1}

@ Hardcore gas model: {? }] and [ﬂ (Weighted independent set)

Zs(B)= ) Al

Independent set /
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Approximate Counting

@ Exact evaluating Z is #P-hard unless py =1or3 =y =00rA=0.
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Approximate Counting

@ Exact evaluating Z is #P-hard unless py =1or3 =y =00rA=0.
@ Approximate the partition function Z.

» Fully Polynomial-time Randomized Approximation Scheme (FPRAS)
and FPTAS:

polynomial time in n and % (multiplicative error ¢).
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Approximate Counting

@ Exact evaluating Z is #P-hard unless py =1or3 =y =00rA=0.
@ Approximate the partition function Z.

» Fully Polynomial-time Randomized Approximation Scheme (FPRAS)
and FPTAS:

polynomial time in n and % (multiplicative error ¢).

@ Approximating Z is equivalent to approximate marginal probabilities

py, due to self-reducibility [Jerrum, Valiant, Vazirani 86] .
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Ferromagnetic and Anti-ferromagnetic

Edge Interaction

5]
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Ferromagnetic and Anti-ferromagnetic

Edge Interaction
M
1y

@ If By =1, then the 2-spin system is trivial.
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Ferromagnetic and Anti-ferromagnetic
Edge Interaction
M
1y
@ If By =1, then the 2-spin system is trivial.

@ Ferromagnetic Ising: B =v > 1.

Neighbours tend to have the same spin.

@ Anti-ferromagnetic Ising: p =v < 1.

Neighbours tend to have different spins.
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Ferromagnetic and Anti-ferromagnetic
Edge Interaction
M
1y
@ If By =1, then the 2-spin system is trivial.

@ Ferromagnetic PRy > 1.

Neighbours tend to have the same spin.

@ Anti-ferromagnetic Py < 1.

Neighbours tend to have different spins.
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Outline

@ Anti-ferromagnetic 2-Spin Systems

© Ferromagnetic 2-Spin Systems

© Complex weighted Ising models

(approximation of |Z|)
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Anti-ferromagnetic Systems

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 8/34



Anti-ferromagnetic Systems

For antiferro systems,

FPTAS for Z <«  Correlation decays
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Computational Transition

Approximate counting weighted independent sets (Hardcore model)

Edge: [? ]} Vertex: D]
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Computational Transition

Approximate counting weighted independent sets (Hardcore model)

Edge: [? ]} Vertex: D]

For G with a bounded degree A:

FPTAS NP-hard

AL .
Ae(A) = ((AA_g)A Activity A
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Computational Transition

Approximate counting weighted independent sets (Hardcore model)

Edge: [? ]} Vertex: D]

For G with a bounded degree A:

FPTAS NP-hard

Al .
Ao(A) = ((AA_g)A Activity A

@ Algorithm: [Weitz 06]
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Computational Transition

Approximate counting weighted independent sets (Hardcore model)

Edge: [? ]} Vertex: D]

For G with a bounded degree A:

FPTAS NP-hard

Al .
Ao(A) = ((AA_g)A Activity A

@ Algorithm: [Weitz 06]

@ Hardness: [Sly 10] [Galanis, Stefankovi¢, Vigoda 12] [Sly Sun 14]
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Uniqueness Transition

@ A(A): uniqueness threshold of Gibbs measures in T .

@ Two extremal cases: all leaves are 0 or 1.
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Uniqueness Transition

@ A(A): uniqueness threshold of Gibbs measures in T .

@ Two extremal cases: all leaves are 0 or 1.
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Uniqueness Transition

@ A(A): uniqueness threshold of Gibbs measures in T .

@ Two extremal cases: all leaves are 0 or 1.

p*
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Uniqueness Transition

@ A(A): uniqueness threshold of Gibbs measures in T .

@ Two extremal cases: all leaves are 0 or 1.

pt/p”

/NN

Does |[p" — p | go to 0 or not?
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Uniqueness Transition

@ A(A): uniqueness threshold of Gibbs measures in T .

@ Two extremal cases: all leaves are 0 or 1.

pt/p”

/NN

pt—p =0 & A<A(A).
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Uniqueness Transition (cont.)
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Uniqueness Transition (cont.)

A > A (A)
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Uniqueness Transition (cont.)

A > A (A)
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Weak and Strong Spatial Mixing

@ WSM: Let 0x and Tt be two partial configurations on A,

|p;y/\ _p”vf/\‘ < exp(—Q(diSt(Vy /\)))
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Weak and Strong Spatial Mixing

@ WSM: Let 0x and Tt be two partial configurations on A,
loyr — py| < exp(—Q(dist(v, A)))
@ SSM: Let S be the set where o4 and T, differ,

PN — pir| < exp(—Q(dist(v, S)))
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Weak and Strong Spatial Mixing

@ WSM: Let 0x and Tt be two partial configurations on A,
oy — Pyt | < exp(—Q(dist(v, A)))
@ SSM: Let S be the set where ox and T, differ,
oy — Pyl < exp(—Q(dist(v, S)))

@ SSM = WSM < Uniqueness
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Weak and Strong Spatial Mixing

@ WSM: Let 0x and Tt be two partial configurations on A,
oy — Pyt | < exp(—Q(dist(v, A)))
@ SSM: Let S be the set where ox and T, differ,
oy — Pyl < exp(—Q(dist(v, S)))

@ SSM = WSM < Uniqueness

@ SSMin Ta = FPTAS in graphs of degree < A [Weitz 06]
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Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

Priv =9 A
v=1)

r
RV—Pr(i
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Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.
"4
A _ Prlv=0) Pr(v =0,...,v4=0) A
T Priv=1)  Prvi=1,...,vg=1)

v
v
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Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.
Pr

"4
0) Pr(vi=0,...,vy=0) A
Pr 1) Privi=1,...,vg=1)

(

(
Pr(0000) Pr(0001) Pr(0011) Pr(0111)
Pr(0001) Pr(0011) Pr(0111) Pr(1111)

v
Ry
v

U

Vi Vo V3 Wy

1111
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Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

R _ Pr(v=0) Pr(vy=0,...,vg=0)
T Priv=1)  Privy=1,...,vg=1)
__Pr(0000) Pr(0001) Pr(0011) Pr(0111)
~ Pr(0001) Pr(0011) Pr(0111) Pr(1111)
Each term 2% ¢an be viewed as the marginal ratio of

Pr(0111)
v; conditioned on a certain configuration of other v;’s.
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Self-Avoiding Walk (SAW) Tree

@ SAW tree is essentially the tree of self-avoiding walks originating at v except

that the vertices closing a cycle are also included in the tree.

» Cycle-closing vertices are fixed according to the rule in the last slide.

@ Do the tree recursion to calculate p,.
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Weitz’s Algorithm

@ However, SAW tree is of exponential size in general.

» Truncate the recursion within logarithmic depth.
» SSM bounds the error.

Non-uniqueness leads to constant error.

a

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 16/34



Classification of Antiferro 2-Spin Systems

The implication

Uniqueness = SSM.

is established for all anti-ferromagnetic 2-spin systems (y < 1).

[Sinclair, Srivastava, Thurley 12], [Li, Lu, Yin 12,13]
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Classification of Antiferro 2-Spin Systems

The implication
Uniqueness = SSM.

is established for all anti-ferromagnetic 2-spin systems (y < 1).

[Sinclair, Srivastava, Thurley 12], [Li, Lu, Yin 12,13]
Hence, for any anti-ferromagnetic 2-spin system,

Uniqueness < SSM < FPTAS.

(For general graphs, we require uniqueness to hold for all integer degrees.)
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Ferromagnetic 2-Spin Systems
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Ferromagnetic Ising

Ferro (3 > 1) Ising without field:

Edge: [‘13 H Vertex: [”
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Ferromagnetic Ising

Ferro (3 > 1) Ising without field:

Edge: [‘13 H Vertex: [”
For fixed A:
Uniqueness in Ta Non-uniqueness
1 Be(A) = 525
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Ferromagnetic Ising

Ferro (3 > 1) Ising without field:

Edge: [‘13 H Vertex: [”

For fixed A:

Uniqueness in Ta Non-uniqueness

O

1 Bo(A) = 225 B

FPRAS [Jerrum, Sinclair 93]

1 (General graphs) B
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Jerrum-Sinclair chain

Markov chain in the “subgraphs” world:

fast mixing forany =y >1andA, > 1 (or< 1)forallv e V.

(even if uniqueness or SSM fails) [Jerrum, Sinclair 93]
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Jerrum-Sinclair chain

Markov chain in the “subgraphs” world:

fast mixing forany =y >1andA, > 1 (or< 1)forallv e V.

(even if uniqueness or SSM fails) [Jerrum, Sinclair 93]

@ Extendedto A, < % (ifp <vy)
[Goldberg, Jerrum, Paterson 03], [Liu, Lu, Zhang 14] .
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Ferro 2-Spin

Ferro 2-spin systems: Edge: “5 H Vertex: {7\1}
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Ferro 2-Spin

Ferro 2-spin systems: Edge: “5 H Vertex: {7\1}

For general graph G, assuming 3 < vy:

FPRAS [LLZ14]

»R
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Ferro 2-Spin
Ferro 2-spin systems: Edge: {B 1 } Vertex: {)\1}

1y

For general graph G, assuming 3 < vy:

FPRAS [LLZ14] #BIS-hard [LLZ14]

% Al A
. ([Ac)+1)/2
int _ (v _ 2By
A= <B) » Where Ac = =
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Ferro 2-Spin
Ferro 2-spin systems: Edge: {B 1 } Vertex: {)\1}

1y

For general graph G, assuming 3 < vy:

FPRAS [LLZ14] #BIS-hard [LLZ14]

O—O
Y CSM  AAY A
[G. Lu 15]
) (lAc)+1)/2 Ac/2
At = <%)  where A = 27 ) = (%)
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Ferro 2-Spin

Ferro 2-spin systems: Edge: {ff H Vertex: {7\1}

For general graph G, assuming 3 < vy:

FPRAS [LLZ14] #BIS-hard [LLZ14]
CSM A A A
[G. Lu 15]

»R

o

FPTAS
(assume p < 1 <vy)

) (lAc)+1)/2 Ac/2
int _ (v _ 2VBy —_(x
AL _(B) ,whereAC_mq. ?\C_(ﬁ)
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Conditional Spatial Mixing

If A, <A forall v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations
that are dominated by the product measure of isolated vertices (p, < 1%\).

(All vertices are leaning towards the good spin.)
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Conditional Spatial Mixing

If A, <A forall v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations
that are dominated by the product measure of isolated vertices (p, < 1%\).

(All vertices are leaning towards the good spin.)

SSM:

V.S.
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Conditional Spatial Mixing

If A, <A forall v, conditional spatial mixing holds in arbitrary trees:
Instead of worst case configurations in SSM, we only allow partial configurations
that are dominated by the product measure of isolated vertices (p, < 1%\).

(All vertices are leaning towards the good spin.)

Conditional spatial mixing:

V.S.
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Pruning

If  <1<,inthe SAW tree, we may first remove “bad” pinnings,

the effective field is smaller (better).

V.S.
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Pruning

If  <1<,inthe SAW tree, we may first remove “bad” pinnings,

the effective field is smaller (better).

V.S.

CSM = SSM
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What about 3 > 1?

If 3 > 1, then pruning fails.

In fact, there is no A such that SSM holds for general trees.

a
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What about 3 > 1?

If 3 > 1, then pruning fails.

In fact, there is no A such that SSM holds for general trees.

a a

However, if A, < A¢, then p, < L}\ for any graph G.

FPTAS without SSM?
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The Exact Threshold?

Our result is tight up to an integrality gap.

However, neither A, nor ?\ic’” is the right bound.

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 25/34



The Exact Threshold?

Our result is tight up to an integrality gap.
However, neither A, nor ?\ic’” is the right bound.
@ There exists a small interval beyond A, where FPTAS still exists.

» Since degrees have to be integers.
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The Exact Threshold?

Our result is tight up to an integrality gap.
However, neither A, nor ?\’C’” is the right bound.
@ There exists a small interval beyond A, where FPTAS still exists.

» Since degrees have to be integers.

@ Thereis a A < A" such that SSM fails (in an irregular tree).
Uniqueness (in Tp) A SSM

(evenifp <1 <y)
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Complex Ising Model
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Complex Ising Model

Complex-weighted Ising model: [[13 H (no field) with p € C

Ze(p)= ) BT

o:V—{0,1}
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Complex Ising Model

Complex-weighted Ising model: [ff H (no field) with p € C

Ze(p)= ) BT
o:V—{0,1}

Exact evaluation of Zg(B):

@ #P-hard unless 3 =0,+1,+i. [Jaeger, Vertigan, Welsh 90]
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Complex Ising Model

Complex-weighted Ising model: [ff H (no field) with p € C
Ze(p)= ) BT
o:V—{0,1}
Exact evaluation of Zg(B):
@ #P-hard unless 3 =0,+1,+i. [Jaeger, Vertigan, Welsh 90]

Lemma ( Fuiji, Morimae 13 )
Given an IQP circuit C and an output x, there is a graph G such that the

marginal probability of x equals to |Zg(€™/*)| up to an easy to compute

factor.
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.
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Approximating [Z5(3)|

Approximation complexity of |Zg(3)| for p € C.

Re(B)
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Approximating [Z5(3)|

Approximation complexity of |Zg(3)| for p € C.

@ B €{0,£1,+i}, tractable. [JVW90]
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

@ B €{0,£1,+i}, tractable. [JVW90]

@ B € (1,00), FPRAS. [JS93]
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

® B €{0,41,+1}, tractable. [JVW90]
@ B € (1,00), FPRAS. [JS93]

@ B e (0,1),NP-hard. [JS93]
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

@ B €{0,£1,+i}, tractable. [JVW90]

@ B € (1,00), FPRAS. [JS93] me)
@ B € (0,1), NP-hard. [JS93] _
@ B € (—1,0), VP-hard. [GJ08] i
—1 1 Re(B)
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

@ B €{0,£1,+i}, tractable. [JVW90]
@ B € (1,00), FPRAS. [JS93]
@ B e (0,1), NP-hard. [JS93]

@ B € (—1,0), NP-hard. [GJOS]

@ B € (—o0,—1), #PM. [GJOS] —_—
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Approximating [Z5(3)|

Approximation complexity of |Zg(3)| for p € C.

@ 3 €{0,+1,+£i}, tractable. [JVW90]
Im(B)
B € (1,00), FPRAS. [JS93]
B € (0,1), NP-hard. [JS93]
B € (—1,0), NP-hard. [GJO8]

B € (—oo,—1), #PM. [GJO8] —1 1 Re(B)

B ¢RU{i,—i}, NP-hard.
[Goldberg, G. 14] —i
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Approximating [Z5(3)|

Approximation complexity of |Zg(3)| for p € C.

@ B €{0,£1,+i}, tractable. [JVW90]
Im(3)
@ B ¢ (1,00), FPRAS. [JS93]
@ B c(0,1), P -hard. [JS93]
@ B c(—1,0), NP-hard. [GJO8]
@ B e (—o0,—1), #PM. [GJO8] N 1 Re(B)
@ B ¢RUI4,—1i), NP-hard. [GG14]
°

B € (—1,0), #P-hard. [GG14] i
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

@ 3 €{0,+1,+£i}, tractable. [JVW90]
Im(B)
B € (1,00), FPRAS. [JS93]

B € (0,1), NP-hard. [JS93]

B € (—1,0), NP-hard. [GJO8]
B € (—oo,—1), #PM. [GJO8] —1 1 Re(B)
B Z€RU{i,—i}, NP-hard. [GG14]

B € (—1,0), #P-hard. [GG14] =

IBl =1, B & {%1,+1), #P-hard. [GG14]
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Approximating |Zg(B)|

Approximation complexity of |Zg(B)| for € C.

@ 3 €{0,+1,+£i}, tractable. [JVW90]

Im(B)
B € (1,00), FPRAS. [JS93]
B € (0,1), NP-hard. [JS93]
B € (—1,0), NP-hard. [GJO8]
B € (—oo,—1), #PM. [GJO8] —1 1 Re(B)
B ZgRU{L,—1i}, -hard. [GG14]
B € (—1,0), #P-hard. [GG14] —1

IBl =1, B & {%1,+1), #P-hard. [GG14]

® 6 6 66 66 o o o
o

Re(B)=0, p & {0, £i}, #P-hard. [GG14]
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Approximating [Z5(3)|

Approximation complexity of |Zg(3)| for p € C.

3 € {0,+£1,+£i}, tractable. [JVW90]
Im(3)
B € (1,00), FPRAS. [JS93]
B € (0,1), NP-hard. [JS93]

3 € (—1,0), P-hard. [GJ08]

B Z€RU{i,—i}, NP-hard. [GG14]
B € (—1,0), #P-hard. [GG14] —1

IBl =1, B & {%1,+1), #P-hard. [GG14]

°
°

°

°

@ B € (—oo,—1), #PM. [GJO8] —1 1 Re(B)
°

°

°

@ Re(B)=0, B & {0,+i}, #P-hard. [GG14]

°

If B = re*® where 0 = g—’;, p and g are two co-prime positive integers and p is odd,

#P-hard. [GG14]
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#P-hardness

If Zz(B) = 0, even the approximation requires the exact answer.
We relax our problem so that if Zg(f3) = 0, we accept any return.

Our hardness results hold for these relaxed versions.
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#P-hardness

If Zz(B) = 0, even the approximation requires the exact answer.
We relax our problem so that if Zg(f3) = 0, we accept any return.

Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (s, t)-CUT [Provan, Ball 83] to

approximating |Zg(B)| for any p € (—1,0).
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#P-hardness

If Zz(B) = 0, even the approximation requires the exact answer.
We relax our problem so that if Zg(f3) = 0, we accept any return.

Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (s, t)-CUT [Provan, Ball 83] to

approximating |Zg(B)| for any p € (—1,0).

The key part of the #P-hardness proof is a bisection argument.
This idea has been used to show hardness of determining signs of Tutte

polynomials (at real points). [Goldberg, Jerrum 12]
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The Reduction

@ Given a graph G, suppose C = #Min-(s, t)-Cut.
We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
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The Reduction

@ Given a graph G, suppose C = #Min-(s, t)-Cut.
We may assume (s, t) is not in G. Introduce a new edge e = (s, t).

@ We want to put a weight x on e and a fixed weight 'y on every other edge.

» Using edge weight 3, we build gadgets to implement .
We can also approximate any x € (-1,0) exponentially accurately.
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The Reduction

@ Given a graph G, suppose C = #Min-(s, t)-Cut.
We may assume (s, t) is not in G. Introduce a new edge e = (s, t).

@ We want to put a weight x on e and a fixed weight 'y on every other edge.
» Using edge weight 3, we build gadgets to implement .

We can also approximate any x € (-1,0) exponentially accurately.

@ Call the graph Gy. Let f(x) = Zg, (v)-
Notice that f(x) is a linear function in x.
Let xo be the root of f(x).

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 30/34



The Reduction

@ Given a graph G, suppose C = #Min-(s, t)-Cut.
We may assume (s, t) is not in G. Introduce a new edge e = (s, t).

@ We want to put a weight x on e and a fixed weight 'y on every other edge.
» Using edge weight 3, we build gadgets to implement .

We can also approximate any x € (-1,0) exponentially accurately.

@ Call the graph Gy. Let f(x) = Zg, (v)-
Notice that f(x) is a linear function in x.
Let xo be the root of f(x).

@ Our choice of y guarantees that f(0) > 0, f(-1) < 0.
Moreover if we can approximate x; accurately enough, C can be computed
exactly.

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 30/34



Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.
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The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).

We recursively shrink the interval containing Xp.

@ We begin with the interval (-1,0).

X0
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

@ We begin with the interval (-1,0).

@ Divide the current interval into 3 subintervals. fx)

€op=-1 1 €2 e3=0 x
X0
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

@ We begin with the interval (-1,0).
@ Divide the current interval into 3 subintervals. f(es) fx)

@ Evaluate |f(x)| approximately at the 4 endpoints.

€op=-1 1 €2 e3=0 x

f(eo)
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Bisection with an Oracle of Approximating Norms
The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

We begin with the interval (-1,0).
Divide the current interval into 3 subintervals. fes) fx)

Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, xo are on the same side of xp,

then the accuracy K guarantees that the ordering f(en)
of g(x1) and g(xz) is the same as that of |f(x1)|

and |f(x2)]. €o=-1 e e e3=0 x

f(eo)
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).

We recursively shrink the interval containing Xp.

We begin with the interval (-1,0).
Divide the current interval into 3 subintervals.
Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, xo are on the same side of xp,
then the accuracy K guarantees that the ordering
of g(x1) and g(xz) is the same as that of |f(x1)|
and |f(x2)].

Otherwise the order may be wrong,
but it happens at most once.
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Bisection with an Oracle of Approximating Norms
The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

We begin with the interval (-1,0).
Divide the current interval into 3 subintervals. fes) fx)

Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, xo are on the same side of xp,

then the accuracy K guarantees that the ordering f(en)
of g(x1) and g(xz) is the same as that of |f(x1)|

and |f(x2)]. €o=-1 e e e3=0 x

Otherwise the order may be wrong,
but it happens at most once. fler)

If g(eg)>g(e1)>g(ez), then e; <xo.

f(eo)
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Bisection with an Oracle of Approximating Norms
The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

We begin with the interval (-1,0).
Divide the current interval into 3 subintervals. fes) fx)

Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, xo are on the same side of xp,

then the accuracy K guarantees that the ordering f(en)
of g(x1) and g(xz) is the same as that of |f(x1)|

and |f(x2)]. €o=-1 e e e3=0 x

Otherwise the order may be wrong,
but it happens at most once.

@ Ifg(eg)>g(ei)>g(e), then e;<xp.
Ifg(er)<gl(e2)<g(es), then e2>xo.

f(eo)
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Bisection with an Oracle of Approximating Norms
The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.

We begin with the interval (-1,0).
Divide the current interval into 3 subintervals. fes) fx)

Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, xo are on the same side of xp,

then the accuracy K guarantees that the ordering f(e)
of g(x1) and g(xz) is the same as that of |f(x1)|

and |f(x2)]. €o=-1 e e e3=0 x

Otherwise the order may be wrong,

but it happens at most once. fler)
@ Ifg(eg)>g(ei)>g(e), then e;<xp.

It g(e1)<g(e2)<g(es), then e2>Xo.

@ Atleast one of the cases is true, fleo)
; ; 2
so we can shrink the interval by 5.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing Xp.
@ We begin with the interval (-1,0).
@ Divide the current interval into 3 subintervals. f(es) fx)
@ Evaluate |f(x)| approximately at the 4 endpoints.
@ |If two points xq, xo are on the same side of xg,
then the accuracy K guarantees that the ordering f(e)

of g(x1) and g(xz) is the same as that of |f(x1)|
and |f(x2)]. €o=-1 e e e3=0 x

@ Otherwise the order may be wrong,

but it happens at most once. fler)
@ Ifg(eg)>g(ei)>g(e), then e;<xp.

It g(e1)<g(e2)<g(es), then e2>Xo.

@ Atleast one of the cases is true, fleo)
; ; 2
so we can shrink the interval by 5.

Divide the interval into more subintervals so that we don’t need an exact
evaluation of |f(x)| at xp.
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Complex Ising with Fields
Edge weight (3, external field A:
Zg(B;A) = Y w(o)
o:V—{0,1}

where w(o) = ™97 (9) m(5) is the number of monochromatic edges
under o, and ¢y (o) is the number of “blue” vertices.

Theorem

Let 3 and A be two roots of unity. Then the following holds:

@ lfp==x1,orp==xiand A e{1,—1,i,—i}, Zg(PB;A) can be

computed exactly in polynomial time.

@ Otherwise |Zg(3;A)| is #P-hard to approximate.
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Approximate arg(Zg)

Hardness results of approximating arg(Zg):
@ Given an oracle computing the sign of Tutte polynomial at
(-e271/5 -g871/5) over planar graphs, all problems in BQP can be
solved classically in polynomial time.

[Bordewich, Freedman, Lovasz, Welsh 05]

@ To determine this sign is #P-hard over general graphs.

[Goldberg, G. 14]
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Open Questions

Antiferro 2-spin systems:

@ Approximation complexity at the threshold.
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Open Questions

Antiferro 2-spin systems:
@ Approximation complexity at the threshold.

Ferro 2-spin systems:
@ FPTASfor 1 < B < v, Ay <Ac?

» Conditional spatial mixing for graphs instead of trees.

@ Avoiding the gadget gap in the hardness proof.
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Open Questions

Antiferro 2-spin systems:
@ Approximation complexity at the threshold.

Ferro 2-spin systems:
@ FPTASfor 1 < B < v, Ay <Ac?

» Conditional spatial mixing for graphs instead of trees.

@ Avoiding the gadget gap in the hardness proof.

Thank You!
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