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Ising Model

Edge interaction
0 1

0 β 1
1 1 β

1β

β1

1β

β1

1β
β1

β11β

Configuration σ : V → {0, 1}

w(σ) = βmono(σ)

π(σ) ∼ w(σ)

Partition function (normalizing factor):

ZG(β) =
∑

σ:V→{0,1}

w(σ)

where w(σ) = βmono(σ), mono(σ) is the number of monochromatic edges under σ.
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2-State Spin System

Edge:
0 1

0 β 1
1 1 β

Vertex: 0 1
1 1

More generally, three parameters β,γ, and λ.

w(σ) = βm0(σ)γm1(σ)λn0(σ)

m0(σ): # of (0, 0) edges;

m1(σ): # of (1, 1) edges;

n0(σ): # of 0 vertices.

ZG(β,γ, λ) =
∑

σ:V→{0,1}

w(σ)
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Examples

Ising model:
[
β 1
1 β

]
(no field)

ZG(β) =
∑

σ:V→{0,1}

βmono(σ)

Hardcore gas model:
[

0 1
1 1

]
and

[
λ

1

]
(Weighted independent set)

ZG(β) =
∑

Independent set I

λ|I|
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Approximate Counting

Exact evaluating Z is #P-hard unless βγ = 1 or β = γ = 0 or λ = 0.

Approximate the partition function Z .

▶ Fully Polynomial-time Randomized Approximation Scheme (FPRAS)

and FPTAS:

polynomial time in n and 1
ε

(multiplicative error ε).

Approximating Z is equivalent to approximate marginal probabilities

pv due to self-reducibility [Jerrum, Valiant, Vazirani 86] .
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Ferromagnetic and Anti-ferromagnetic

Edge Interaction[
β 1
1 γ

]

If βγ = 1, then the 2-spin system is trivial.

Ferromagnetic Ising: βγ > 1.

Neighbours tend to have the same spin.

Anti-ferromagnetic Ising: βγ < 1.

Neighbours tend to have different spins.
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Outline

1 Anti-ferromagnetic 2-Spin Systems

2 Ferromagnetic 2-Spin Systems

3 Complex weighted Ising models

(approximation of |Z |)
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Anti-ferromagnetic Systems
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Anti-ferromagnetic Systems

For antiferro systems,

FPTAS for Z ⇔ Correlation decays
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Computational Transition

Approximate counting weighted independent sets (Hardcore model)

Edge:
[

0 1
1 1

]
Vertex:

[
λ

1

]

For G with a bounded degree ∆:

Activity λλc(∆) =
(∆−1)∆−1

(∆−2)∆

FPTAS NP-hard

Algorithm: [Weitz 06]

Hardness: [Sly 10] [Galanis, Štefankovič, Vigoda 12] [Sly Sun 14]
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Heng Guo (QMUL) 2-Spin Systems 2016/03/28 10 / 34



Uniqueness Transition

λc(∆): uniqueness threshold of Gibbs measures in T∆.

Two extremal cases: all leaves are 0 or 1.

v

...
...
...

...

· · ·

...
...
...

...

· · · · · ·· · ·

· · · · · ·· · ·

1

0

1

...

0

1

p+

...

...

0

1

p−

...

...

λ
1+λ

0

p+/p−

...

...

...

1/0
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Does |p+ − p−| go to 0 or not?
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|p+ − p−| → 0 ⇔ λ ⩽ λc(∆).
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Uniqueness Transition (cont.)
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Uniqueness Transition (cont.)
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Uniqueness Transition (cont.)
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Weak and Strong Spatial Mixing

WSM: Let σΛ and τΛ be two partial configurations on Λ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v ,Λ)))

SSM: Let S be the set where σΛ and τΛ differ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v , S)))

SSM ⇒ WSM ⇔ Uniqueness

SSM in T∆ ⇒ FPTAS in graphs of degree ⩽ ∆ [Weitz 06]

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 13 / 34



Weak and Strong Spatial Mixing

WSM: Let σΛ and τΛ be two partial configurations on Λ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v ,Λ)))

SSM: Let S be the set where σΛ and τΛ differ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v , S)))

SSM ⇒ WSM ⇔ Uniqueness

SSM in T∆ ⇒ FPTAS in graphs of degree ⩽ ∆ [Weitz 06]

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 13 / 34



Weak and Strong Spatial Mixing

WSM: Let σΛ and τΛ be two partial configurations on Λ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v ,Λ)))

SSM: Let S be the set where σΛ and τΛ differ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v , S)))

SSM ⇒ WSM ⇔ Uniqueness

SSM in T∆ ⇒ FPTAS in graphs of degree ⩽ ∆ [Weitz 06]

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 13 / 34



Weak and Strong Spatial Mixing

WSM: Let σΛ and τΛ be two partial configurations on Λ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v ,Λ)))

SSM: Let S be the set where σΛ and τΛ differ,

|pσΛ
v − pτΛ

v | ⩽ exp(−Ω(dist(v , S)))

SSM ⇒ WSM ⇔ Uniqueness

SSM in T∆ ⇒ FPTAS in graphs of degree ⩽ ∆ [Weitz 06]

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 13 / 34



Breaking Cycles

Goal: calculate marginal probabilities using tree recursions.

Replace a vertex of degree d with d copies.

Rv =
Pr(v = 0)
Pr(v = 1)

=
Pr(v1 = 0, . . . , vd = 0)
Pr(v1 = 1, . . . , vd = 1)

=
Pr(0000)
Pr(0001)

· Pr(0001)
Pr(0011)

· Pr(0011)
Pr(0111)

· Pr(0111)
Pr(1111)

Each term Pr(0011)
Pr(0111) can be viewed as the marginal ratio of

vi conditioned on a certain configuration of other vj ’s.

v

⇓

v1 v2 v3 v4
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Self-Avoiding Walk (SAW) Tree

SAW tree is essentially the tree of self-avoiding walks originating at v except

that the vertices closing a cycle are also included in the tree.

▶ Cycle-closing vertices are fixed according to the rule in the last slide.

Do the tree recursion to calculate pv .

a

b c d

e f

⇒

a

b c d

e fd c

f ea

c c

a
e f

f e

c c
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Weitz’s Algorithm

However, SAW tree is of exponential size in general.

▶ Truncate the recursion within logarithmic depth.

▶ SSM bounds the error.

Non-uniqueness leads to constant error.

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

⇒

a

b c d

e fd c

f ea

c c

a
e f

f e

c c
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Classification of Antiferro 2-Spin Systems

The implication

Uniqueness ⇒ SSM.

is established for all anti-ferromagnetic 2-spin systems (βγ < 1).

[Sinclair, Srivastava, Thurley 12] , [Li, Lu, Yin 12,13]

Hence, for any anti-ferromagnetic 2-spin system,

Uniqueness ⇔ SSM ⇔ FPTAS.

(For general graphs, we require uniqueness to hold for all integer degrees.)
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Ferromagnetic 2-Spin Systems
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Ferromagnetic Ising

Ferro (β > 1) Ising without field:

Edge:
[
β 1
1 β

]
Vertex:

[
1

1

]
For fixed ∆:

ββc(∆) =
∆

∆−21

Uniqueness in T∆ Non-uniqueness

β1

FPRAS [Jerrum, Sinclair 93]

(General graphs)
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Jerrum-Sinclair chain

Markov chain in the “subgraphs” world:

fast mixing for any β = γ > 1 and λv ⩾ 1 (or ⩽ 1) for all v ∈ V .

(even if uniqueness or SSM fails) [Jerrum, Sinclair 93]

Extended to λv ⩽ γ
β

(if β ⩽ γ)

[Goldberg, Jerrum, Paterson 03] , [Liu, Lu, Zhang 14] .
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Ferro 2-Spin

Ferro 2-spin systems: Edge:
[
β 1
1 γ

]
Vertex:

[
λv

1

]

For general graph G, assuming β ⩽ γ:

λ

λint
c =

(
γ

β

)(⌊∆c⌋+1)/2
, where ∆c = 2

√
βγ√

βγ−1 . λc =
(

γ

β

)∆c/2
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Conditional Spatial Mixing

If λv < λc for all v , conditional spatial mixing holds in arbitrary trees:

Instead of worst case configurations in SSM, we only allow partial configurations

that are dominated by the product measure of isolated vertices (pv ⩽ λ
1+λ

).

(All vertices are leaning towards the good spin.)

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

v.s.

a

b c d

e fd c

f ea

c c

a
e f

f e

c c
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Pruning

If β ⩽ 1 < γ, in the SAW tree, we may first remove “bad” pinnings,

the effective field is smaller (better).

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

v.s.

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

CSM ⇒ SSM
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What about β > 1?

If β > 1, then pruning fails.

In fact, there is no λ such that SSM holds for general trees.

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

⇒

a

b c d

e fd c

f ea

c c

a
e f

f e

c c

However, if λv ⩽ λc , then pv ⩽ λ
1+λ

for any graph G.

FPTAS without SSM?
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The Exact Threshold?

Our result is tight up to an integrality gap.

However, neither λc nor λint
c is the right bound.

There exists a small interval beyond λc where FPTAS still exists.

▶ Since degrees have to be integers.

There is a λ < λint
c such that SSM fails (in an irregular tree).

Uniqueness (in T∆) ̸⇒ SSM

(even if β ⩽ 1 < γ)

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 25 / 34



The Exact Threshold?

Our result is tight up to an integrality gap.

However, neither λc nor λint
c is the right bound.

There exists a small interval beyond λc where FPTAS still exists.

▶ Since degrees have to be integers.

There is a λ < λint
c such that SSM fails (in an irregular tree).

Uniqueness (in T∆) ̸⇒ SSM

(even if β ⩽ 1 < γ)

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 25 / 34



The Exact Threshold?

Our result is tight up to an integrality gap.

However, neither λc nor λint
c is the right bound.

There exists a small interval beyond λc where FPTAS still exists.

▶ Since degrees have to be integers.

There is a λ < λint
c such that SSM fails (in an irregular tree).

Uniqueness (in T∆) ̸⇒ SSM

(even if β ⩽ 1 < γ)

Heng Guo (QMUL) 2-Spin Systems 2016/03/28 25 / 34



Complex Ising Model
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Complex Ising Model

Complex-weighted Ising model:
[
β 1
1 β

]
(no field) with β ∈ C

ZG(β) =
∑

σ:V→{0,1}

βmono(σ)

Exact evaluation of ZG(β):

#P-hard unless β = 0,±1,±i. [Jaeger, Vertigan, Welsh 90]

Lemma ( Fuiji, Morimae 13 )
Given an IQP circuit C and an output x, there is a graph G such that the

marginal probability of x equals to |ZG(eπi/4)| up to an easy to compute

factor.
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Approximating |ZG(β)|

Approximation complexity of |ZG(β)| for β ∈ C.

β ∈ {0,±1,±i}, tractable. [JVW90]

β ∈ (1,∞), FPRAS. [JS93]

β ∈ (0, 1), NP-hard. [JS93]

β ∈ (−1, 0), NP-hard. [GJ08]

β ∈ (−∞,−1), #PM. [GJ08]

β ̸∈ R∪ {i,−i}, NP-hard.

[GG14]

β ∈ (−1, 0), #P-hard. [GG14]

|β| = 1, β ̸∈ {±1,±i}, #P-hard. [GG14]

Re(β)=0, β ̸∈ {0,±i}, #P-hard. [GG14]

Re(β)

Im(β)

i

−i

1−1
0

If β = reiθ where θ = pπ
2q , p and q are two co-prime positive integers and p is odd,

#P-hard. [GG14]
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#P-hardness

If ZG(β) = 0, even the approximation requires the exact answer.

We relax our problem so that if ZG(β) = 0, we accept any return.

Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (s, t)-CUT [Provan, Ball 83] to

approximating |ZG(β)| for any β ∈ (−1, 0).

The key part of the #P-hardness proof is a bisection argument.

This idea has been used to show hardness of determining signs of Tutte

polynomials (at real points). [Goldberg, Jerrum 12]
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The Reduction

Given a graph G, suppose C = #Min-(s, t)-Cut.
We may assume (s, t) is not in G. Introduce a new edge e = (s, t).

We want to put a weight x on e and a fixed weight γ on every other edge.

▶ Using edge weight β, we build gadgets to implement γ.
We can also approximate any x ∈ (-1,0) exponentially accurately.

Call the graph Gx . Let f (x) = ZGx (γ).
Notice that f (x) is a linear function in x .
Let x0 be the root of f (x).

Our choice of γ guarantees that f (0) > 0, f (-1) < 0.
Moreover if we can approximate x0 accurately enough, C can be computed
exactly.
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Bisection with an Oracle of Approximating Norms

The oracle returns |f (x)| up to some constant K . Call the approximation g(x).
We recursively shrink the interval containing x0.

We begin with the interval (-1,0).

Divide the current interval into 3 subintervals.

Evaluate |f(x)| approximately at the 4 endpoints.

If two points x1, x2 are on the same side of x0,
then the accuracy K guarantees that the ordering
of g(x1) and g(x2) is the same as that of |f(x1)|
and |f(x2)|.

Otherwise the order may be wrong,
but it happens at most once.

If g(e0)>g(e1)>g(e2), then e1<x0.
If g(e1)<g(e2)<g(e3), then e2>x0.

At least one of the cases is true,
so we can shrink the interval by 2

3 .

0-1 x

f(x)

e2e1

f(e2)

f(e1)

f(e0)

f(e3)

x0

Divide the interval into more subintervals so that we don’t need an exact
evaluation of |f (x)| at x0.
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Complex Ising with Fields

Edge weight β, external field λ:

ZG(β; λ) =
∑

σ:V→{0,1}

w(σ)

where w(σ) = βm(σ)λc1(σ), m(σ) is the number of monochromatic edges

under σ, and c1(σ) is the number of “blue” vertices.

Theorem
Let β and λ be two roots of unity. Then the following holds:

If β = ±1, or β = ±i and λ ∈ {1,−1, i,−i}, ZG(β; λ) can be

computed exactly in polynomial time.

Otherwise |ZG(β; λ)| is #P-hard to approximate.
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Approximate arg(ZG)

Hardness results of approximating arg(ZG):

Given an oracle computing the sign of Tutte polynomial at

(-e2πi/5,-e8πi/5) over planar graphs, all problems in BQP can be

solved classically in polynomial time.

[Bordewich, Freedman, Lovász, Welsh 05]

To determine this sign is #P-hard over general graphs.

[Goldberg, G. 14]
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Open Questions

Antiferro 2-spin systems:

Approximation complexity at the threshold.

Ferro 2-spin systems:

FPTAS for 1 < β ⩽ γ, λv < λc?

▶ Conditional spatial mixing for graphs instead of trees.

Avoiding the gadget gap in the hardness proof.

Thank You!
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