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H-Colourings
Input: a (simple) graph G
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v2

v1 v3

v4

v2

v1 v3

Template: A graph H (possibly
with self-loops)

R B G

A homomorphism from G to H
is a function from V(G) to V(H)
which maps every edge of G to
an edge of H. It is referred to
as an H-colouring of G
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Many combinatorial structures can be represented as
H-colourings, for example independent sets

Homomorphism from G to H

v4

v2

v1 v3

H-colourings of G are
independent sets of G.
(Red corresponds to being in
the independent set.)

Template H

R B
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Homomorphism from G to H

v4

v2

v1 v3

Template H

R B

G

H-colourings of G are proper
3-colourings of G.
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The H-Colouring Decision Problem

Name H-Col
Instance A simple graph G.
Output Does G have an H-Colouring?

Hell and Nešetřil (1990): H-Col is in P if H has a loop or is
bipartite. For all other H it is NP-complete.

R B Y P R

W G B

The polynomial-time algorithm is easy. The hardness result is
difficult.
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The H-Colouring Counting Problem
Name #H-Col
Instance A simple graph G.
Output #H-Col(G) (the number of H-Colourings of G)

Dyer and Greenhill (2000): #H-Col is in FP if every component
of H is trivial (either a clique with all self-loops or a complete
bipartite graph with no self-loops). For all other H it is
#P-complete.

R Y P R

W G B

R B
G

The polynomial-time algorithm is easy. The hardness result is
difficult.
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What about approximately counting H-colourings.

FPRAS: randomised algorithm

Input: graph G, accuracy parameter ε > 0

Output: number which, with probability at least 3/4, is in
the range

[e−ε#H-Col(G), eε#H-Col(G)].

The running time of the algorithm is bounded by a polynomial
in |V(G)| and ε−1.
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Warm-up: connected 3-vertex H
Green: In FP
Red: ≡AP #SAT.
No FPRAS unless
every problem in
#P has an FPRAS
(hence NP=RP)
Blue: ≡AP #BIS.
No FPRAS unless
every problem in
#RHΠ1 has an
FPRAS.
Dyer, Goldberg,
Greenhill, Jerrum,
2003

#RHΠ1: introduced to classify approximation problems.

#A6AP #B⇒ FPRAS for #B yields an FPRAS for #A.
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We don’t have a trichotomy for all connected H

#BIS-hard but we don’t know whether it is #BIS-easy or
#SAT-hard.

As hard as counting 4-colourings of a bipartite graph since
each vertex is adjacent to all but one.

Other such problems: Kelk 2003
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No life below #BIS . . . detour into complexity of
sampling

PAS (polynomial approximate sampler) for sampling
H-colourings

Input: graph G, accuracy parameter ε ∈ (0, 1]

Output: total variation distance between the output
distribution of the algorithm and the uniform
distribution on H-colourings of G is at most ε.

Running time bounded by polynomial in |V(G)| and ε−1.

FPAS if the running time is bounded by a polynomial in |V(G)|

and log(ε−1).
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#BIS-hardness of approximate sampling

Theorem. Goldberg, Kelk, Paterson, 2004 Let H be a fixed
graph with no trivial components. If there is a PAS for sampling
H-colourings then there is an FPRAS for #BIS.
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#BIS-hardness of approximate sampling

Theorem. Goldberg, Kelk, Paterson, 2004 Let H be a fixed
graph with no trivial components. If there is a PAS for sampling
H-colourings then there is an FPRAS for #BIS.

and hence for all problems
that are ≡AP #BIS
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Disconnected H

For counting H-colourings, the existence of a single component
H1 of H such that counting H1-colourings is #P-complete means
that counting H-colourings is #P-complete. The same does not
hold for sampling/approximate counting. Consider this H.

Y P R B
G

There is a PAS for sampling H-colourings.
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Theorem. Goldberg, Kelk, Paterson, 2004 Let H be a fixed
graph with no trivial components. If there is a PAS for sampling
H-colourings then there is an FPRAS for #BIS.

Doesn’t imply hardness for approximately counting
H-colourings.

For self-reducible problems, approximate counting and
approximate sampling are equivalent.

An FPAS for sampling H-colourings implies an FPRAS for
counting H-colourings (Dyer, Goldberg, Jerrum 2004) but
the reverse direction is open.
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Theorem. Goldberg, Kelk, Paterson, 2004 Let H be a fixed
graph with no trivial components. If there is a PAS for sampling
H-colourings then there is an FPRAS for #BIS.

Doesn’t imply hardness for approximately counting
H-colourings.

For self-reducible problems, approximate counting and
approximate sampling are equivalent.

An FPAS for sampling H-colourings implies an FPRAS for
counting H-colourings (Dyer, Goldberg, Jerrum 2004) but
the reverse direction is open.

Jerrum Valiant Vazirani 1986
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Theorem. Goldberg, Kelk, Paterson, 2004 Let H be a fixed
graph with no trivial components. If there is a PAS for sampling
H-colourings then there is an FPRAS for #BIS.

Doesn’t imply hardness for approximately counting
H-colourings.

For self-reducible problems, approximate counting and
approximate sampling are equivalent.

An FPAS for sampling H-colourings implies an FPRAS for
counting H-colourings (Dyer, Goldberg, Jerrum 2004) but
the reverse direction is open.

gives example of a problem in #P is given which, under
usual complexity theory assumptions, admits an FPRAS
but not an FPAS.
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No life below #BIS

“Is there a graph H for which approximately counting
H-colourings is substantially easier than approximately
sampling H-colourings?”

“Is there a graph H such that #H-Col lies between P and
the class of #BIS-hard problems?”

Theorem. (Galanis, Goldberg, Jerrum, 2015) Let H be a
graph (possibly with self-loops but without parallel edges), all of
whose connected components are non-trivial. Then
#BIS 6AP #H-Col.
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No life below #BIS

“Is there a graph H for which approximately counting
H-colourings is substantially easier than approximately
sampling H-colourings?”

“Is there a graph H such that #H-Col lies between P and
the class of #BIS-hard problems?”

Theorem. (Galanis, Goldberg, Jerrum, 2015) Let H be a
graph (possibly with self-loops but without parallel edges), all of
whose connected components are non-trivial. Then
#BIS 6AP #H-Col.

Key Technique: Prove existence of gadgets using tools
from graph homomorphism theory (based on work of
Lovász1967)
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Proof overview

Goal: #BIS 6AP #H-Col

Proof by induction on |V(H)|

• Base case: 2-vertex graphs.

• Inductive step: find a subgraph H ′ of H

1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

By induction, #BIS 6AP #H ′-Col 6AP #H-Col.
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Proof overview

Goal: #BIS 6AP #H-Col

Proof by induction on |V(H)|

• Base case: 2-vertex graphs.

• Inductive step: find a subgraph H ′ of H

1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

By induction, #BIS 6AP #H ′-Col 6AP #H-Col.

Main Task: Finding such a subgraph H ′ of H
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

#H∗-Col 6AP #H-Col

G ′: input to #H∗-Col.

G ′ → G (input to #H-Col)

I large ind set

w

...

...G ′
I

The graph G

For |I|� |G ′|, #H-Col(G) ≈ (degH(v
∗))|I| #H∗-Col(G ′)
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

H∗ (red)

#H∗-Col 6AP #H-Col

G ′: input to #H∗-Col

I: large independent set

w

...

...G ′
I

The graph G

For |I|� |G ′|, #H-Col(G) ≈ (degH(v
∗))|I| #H∗-Col(G ′)

This H has a unique v∗ with maximum
degree. Let H∗ be induced by its neigh-
bourhood.
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

H∗ (red)

#H∗-Col 6AP #H-Col

G ′: input to #H∗-Col

I: large independent set

w

...

...G ′
I

The graph G

For |I|� |G ′|, #H-Col(G) ≈ (degH(v
∗))|I| #H∗-Col(G ′)

We will show 16
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

H∗ (red)

#H∗-Col 6AP #H-Col

G ′: input to #H∗-Col

I: large independent set

w

...

...G ′
I

The graph G

For |I|� |G ′|, #H-Col(G) ≈ (degH(v
∗))|I| #H∗-Col(G ′)

Potential problems for general H: (i) H∗ may have trivial components,
(ii) it may be that V(H∗) = V(H),
(iii) multiple vertices with max degree
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

H∗ (red)

#H∗-Col 6AP #H-Col

G ′: input to #H∗-Col.

w

...

...G ′
I

The graph G

For example, what
if H didn’t have its
loop

Potential problems for general H: (i) H∗ may have trivial components,
(ii) it may be that V(H∗) = V(H),
(iii) multiple vertices with max degree
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A First Attempt

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

v∗
H =

H∗ (red)

#H∗-Col 6AP #H-Col

w

...

...G ′
I

The graph G

For example, what if
H had an extra loop
on v∗

Potential problems for general H: (i) H∗ may have trivial components,
(ii) it may be that V(H∗) = V(H),
(iii) multiple vertices with max degree
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A First Attempt - Multiple vertices with Max Degree

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5

H1 induced by the
neighbourhood of
the max-degree
vertex v1

H2 induced by the
neighbourhood of
the max-degree
vertex v2

H3, H4, H5 isomor-
phic to H2
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A First Attempt - Multiple vertices with Max Degree

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5

H1 induced by the
neighbourhood of
the max-degree
vertex v1

H2 induced by the
neighbourhood of
the max-degree
vertex v2

#BIS 6AP #H1-Col and #BIS 6AP #H2-Col
(Kelk 2004)
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The Sampling World - Gluing Reductions

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5 w
G1

The graph G

..
.... G2

G ′: Input to SampleBIS.

Using sampling reductions from SampleBIS to Sample-H1-Col
and Sample-H2-Col, construct G1 and G2 such that

an (approximately) uniform H1-colouring of G1 allows us to
construct an (approximately) uniform independent set of G ′

an (approximately) uniform H2-colouring of G2 also allows
this.

From random H-colouring of G, construct random independent set of G ′.
20



The Sampling World - Gluing Reductions

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5 w
G1

The graph G

..
.... G2

G ′: Input to SampleBIS.

Using sampling reductions from SampleBIS to Sample-H1-Col
and Sample-H2-Col, construct G1 and G2 such that

an (approximately) uniform H1-colouring of G1 allows us to
construct an (approximately) uniform independent set of G ′

an (approximately) uniform H2-colouring of G2 also allows
this.

Didn’t include I in G be-
cause H is regular
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The Sampling World - Gluing Reductions

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5 w
G1

The graph G

..
.... G2

This fails in the counting setting!

#H-Col(G) = #H1-Col(G1) #H1-Col(G2)+4#H2-Col(G1) #H2-Col(G2)

An approximation Z of #H-Col(G) may not tell us much about #H1-Col(G1) or
#H2-Col(G2).
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The Sampling World - Gluing Reductions

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5 w
G1

The graph G

..
.... G2

This fails in the counting setting!

#H-Col(G) = #H1-Col(G1) #H1-Col(G2)+4#H2-Col(G1) #H2-Col(G2)

We have to somehow choose between H1 and H2.

In general, there may be more than two possibilities.
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Tools from Graph Homomorphisms

[Lovász ’67]: H1 � H2 =⇒ there exists J:
#H1-Col(J) 6= #H2-Col(J)

Extension: If H1, . . . , Ht are pairwise non-isomorphic,

there exists i∗ and a graph J so that #Hi∗-Col(J) > #Hi-Col(J)
for all i 6= i∗.

J will be used to “select” the subgraph Hi∗ .
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A First Attempt - Multiple vertices with Max Degree

Goal: find subgraph H ′ of H
1 #H ′-Col 6AP #H-Col.
2 |V(H ′)| < |V(H)|

3 H ′ has no trivial components.

The graph H The graph H1 The graph H2

v1

v2 v3

v4v5

J: #H1-Col(J) > #H2-Col(J) (by Lovász)
G ′: Input to #H1-Col.

w...

...G ′
I

The graph G

J J J J

m copies of J.
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