Profiling Human Cell/Tissue Specific Gene Regulation Networks

Louxin Zhang Department of Mathematics National University of Singapore matzlx@nus.edu.sg

Network Biology

$$< y_1(t), y_2(t), \dots, y_k(t) >$$

subject to:

 $y_j(t) = \varphi_j(y_1, \dots, y_k, I_1, \dots, I_m)(t),$ $\varphi_1, \varphi_2, \dots, \varphi_k \text{ are governing functions}$ $I_1(t), I_2(t), \dots, I_m(t) \text{ are input functions}$

Cell Cell State Cell Type

Topological Features of Cellular Protein Networks

Degree distribution: scale-free or not

Over (or under)-represented network motifs

Motif: A graph pattern that appears much more frequently than would be expected in randomized networks

Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, Alon, *Science*, 2002 Albergante, Blow, Newman, *eLife*, 2014

- Difference in regulatory interaction between human cells/tissues
- Hierarchical organization of the TF regulatory networks of human cells/tissues
- > Motif counts for human cell/tissue specific TF reg. networks

Tran, Choi, Zhang, *Nature Communications*, 2013 Zhang, Tian, Tran, Choi, Zhang, *Nucleic Acids Res.*, 2014

Dataset

➢ 41 cell/tissue specific TF regulatory networks for humans

- Blood (7)Embryonic stem cell (ESC) (1)Cancer (2)Fetal (3)Endothelia (4)Stroma (14)Epithelia (6)Viscera (4)
- Each has about 475 TFs and 11,200 regulatory interactions
- Derived from DNaseI footprint data and predicted TRANSFAC binding-site motifs.

Part I Difference in Reg. Interaction between Human Cell Types

Left: Using the node-degree vectors of the entire networks (Neph et al., 2012)
 Right: Using the node-degree vectors of a subnetwork around six STATs

Both Neph et al (2012) and our studies suggest that 41 cell specific human TF regulatory networks are different globally as well as locally.

Part II Hierarchical Organization of human TF Networks

- The hierarchical structures obtained using a vertex-sort algorithm (Jothi et al., 2009)
- hESC has much less TFs in the top layer (6%), much more TFs in the core layer (85%) than other cell types.

> A difference in the topological organization between human and yeast TF networks.

The Enrichment (+) and Depletion (-) of Hub, Essential and Housekeeping (HK) TFs

	Hub TFs*		Essential TFs		HK TFs				
	Тор	Core	Bottom	Тор	Core	Bottom	Тор	Core	Bottom
Blood (7)	_	+	_			_	_	+	
Cancer (2)	—	+	_				—	+	
Endothelia (4)	_	+	_			_	_	+	
Epithelia (6)	_	+	_				—	+	
ESC (1)		+	_		+	_			
Fetal (3)	_	+	_		+	_	—	+	
Stroma (14)		+	—				_	+	
Viscera (4)	_	+	_			_	_	+	

* Hubs: top 20% TFs with the largest degrees

Regulatory Interactions Specific to hESCs

Hubs also in the original networks

> 1509 interactions are specific to hESCs, involving 411 TFs

Hubs only in the specific network

The subnetwork induced by these specific interactions has 82 hubs (top 20%, degree >11), only 35 are the hubs in the original network of ESCs.

Тор	HNF4A	PPARA			SPZ1			
Core	ALX1 ALX3 ALX4 ARX ATOH1 BARHL2 CDX2 CRX DMRT1 DMRT3 ETV7	FOXA1 FOXA2 FOXC1 FOXH1 FOXJ1 FOXJ1 GFI1 HOXB13 LHX4 LMX1A	LMX1B MNX1 MSX2 NANOG NKX2-2 NR5A2 OTP OTX2 PARP1 PAX2	PAX6 POU2F3 POU4F3 SIX3 SMAD4 TBX22 VAX1 ZIC1 ZIC2 ZIC2	ETS1 FOXD3 GTF21 IKZF1 MAZ MYCN NF1 NFKB2 NR2F1	NR2F2 NR2F6 PAX4 PAX5 POU2F1 OCT4 PURA REST RXRA	SOX2 SP1 SP2 SP3 SP11 SREBF2 STAT3 TCF3	TFAP2B TFAP2C VDR ZBTB7B ZFP42 ZNF148 ZNF219 ZNF216
Bottom	HBP1	OVOL2	PAX7	SIX6	Red T by a g a supe	Fs are e ene with r-enhan	ncoded h cer don	nain

- The 82 hubs are enriched with the TFs encoded by the 1076 genes that are overexpressed in hESCs (p-value < 1.6e-3) (Assou et al, 2007)</p>
- The core transcriptional regulatory subnetwork for ESC reported by Chen et al. (2008) is enriched with hESC specific regulatory interactions.

Part III Counting Motifs for TF Regulatory Networks

- > Currently, the existing regulatory interaction data are incomplete and noise
- > What is the size of the entire TF regulatory network *N* of a cell type?

How to estimate the

occurrences of a motif in the entire network?

 \succ How many times does the feed-forward loop appear in the entire network *N*?

Incomplete, noisy data

The entire network

Estimators for Error-Free Subnetwork Data

M: A graphlet with m nodes

G: An entire network with n nodes

 G^{obs} : An observed, error-free sub-network (of G) with n^{obs} nodes, in which M occurs N_M^{obs} times

Estimator:
$$\widehat{N}_{M} = \frac{\binom{n}{m}}{\binom{nobs}{m}} N_{M}^{obs}$$
 $\widehat{N}_{E} = \frac{\binom{n}{2}}{\binom{nobs}{2}} N_{E}^{obs}$
Stumpf *et al.*, PNAS, 2008

Theorem Assume G^{obs} is obtained by uniformly selecting nodes each with probability 0 in <math>G. Then,

$$E\left(\frac{\widehat{N}_M}{N_M}\right) = 1 - \sum_{0 \le j < m} \binom{n}{j} p^j (1-p)^{n-j},$$

converging to 1 fast as *n* goes to infinity.

Estimator \tilde{N}_M from Incomplete and Noise Subnetwork Data

$$\widehat{N}_{M} = \frac{\binom{n}{m}}{\binom{n o b s}{m}} N_{M}^{o b s}$$

$$Missing link rate $r_{-} = \frac{FN}{TP + FN}$

$$Spurious link rate $r_{+} = \frac{FP}{FP + TN}$

$$E(\widehat{N}_{M}) = \left(1 - \sum_{0 \le j < m} \binom{n}{j} p^{j} (1 - p)^{n-j}\right) [(1 - r_{+} - r_{-})^{|M|} N_{M} + W_{M}(n, r_{+}, r_{-}, N_{M'})]$$

$$\widetilde{N}_{M} = \frac{1}{(1 - r_{+} - r_{-})^{|M|}} \left(\widehat{N}_{M} - \widetilde{W}_{M}(n, r_{+}, r_{-}, N_{M'})\right)$$$$$$

Validation for Unbiasedness and Consistence

Model: Preferential Attachment

1	•••	$\widetilde{N}_1 = rac{1}{r} \left[\widehat{N}_1 - {n \choose 2} r_+ ight]$
2	\sim	$\widetilde{N}_2 = \frac{1}{r^2} \left[\widehat{N}_2 - 2(n-2)r_+ r\widetilde{N}_1 - 3\binom{n}{3}r_+^2 \right]$
3	\bigtriangleup	$\widetilde{N}_{3} = \frac{1}{r^{3}} \left[\widehat{N}_{3} - r_{+}r^{2}\widetilde{N}_{2} - (n-2)r_{+}^{2}r\widetilde{N}_{1} - \binom{n}{3}r_{+}^{3} \right]$
4	••	$\widetilde{N}_4 = \frac{1}{r} \left[\widehat{N}_4 - 2\binom{n}{2} r_+ \right]$
5	\wedge	$\widetilde{N}_5 = rac{1}{r^2} \left[\widehat{N}_5 - 2(n-2)r_+r\widetilde{N}_4 - 6{n \choose 3}r_+^2 ight]$
6	\wedge	$\widetilde{N}_6 = rac{1}{r^2} \left[\widehat{N}_6 - (n-2)r_+ r\widetilde{N}_4 - 3 {n \choose 3} r_+^2 ight]$
7	\wedge	$\widetilde{N}_7 = rac{1}{r^2} \left[\widehat{N}_7 - (n-2)r_+r\widetilde{N}_4 - 3\binom{n}{3}r_+^2 \right]$
8	Δ	$\widetilde{N}_8 = \frac{1}{r^3} \left[\widehat{N}_8 - r_+ r^2 \widetilde{N}_5 - (n-2) r_+^2 r \widetilde{N}_4 - 2 \binom{n}{3} r_+^3 \right]$
9	\bigtriangleup	$\widetilde{N}_{9} = \frac{1}{r^{3}} \left[\widehat{N}_{9} - r_{+}r^{2}(\widetilde{N}_{5} + 2\widetilde{N}_{6} + 2\widetilde{N}_{7}) - 3(n-2)r_{+}^{2}r\widetilde{N}_{4} - 6\binom{n}{3}r_{+}^{3} \right]$
\widehat{N}	$M_M = \frac{\left(\frac{1}{n} \right)^n}{\left(\frac{1}{n} \right)^n}$	$\left(\frac{N}{ M } \right)_{\substack{n \ n \ N}} N_M^{obs}, r = 1 - r_+ - r$

$$9 \qquad \bigwedge \qquad \widetilde{N}_{9} = \frac{1}{r^{3}} \left[\widehat{N}_{9} - r_{+}r^{2}(\widetilde{N}_{5} + 2\widetilde{N}_{6} + 2\widetilde{N}_{7}) - 3(n-2)r_{+}^{2}r\widetilde{N}_{4} - 6\binom{n}{3}r_{+}^{3} \right] \\ 10 \qquad \bigwedge \qquad \widetilde{N}_{10} = \frac{1}{r^{3}} \left\{ \widehat{N}_{10} - 2r_{+}r^{2} \left[\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{6} + \widetilde{N}_{7}) \right] - 6\binom{n-2}{2}r_{+}^{2}r\widetilde{N}_{4} - 24\binom{n}{4}r_{+}^{3} \right\} \\ 11 \qquad \bigwedge \qquad \widetilde{N}_{11} = \frac{1}{r^{4}} \left\{ \widehat{N}_{11} - r_{+}r^{3}\widetilde{N}_{10} - r_{+}^{2}r^{2} \left[\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{6} + \widetilde{N}_{7}) \right] - 2\binom{n-2}{2}r_{+}^{3}r\widetilde{N}_{4} - 6\binom{n}{4}r_{+}^{4} \right\} \\ 12 \qquad \bigwedge \qquad \widetilde{N}_{12} = \frac{1}{r^{3}} \left\{ \widehat{N}_{12} - r_{+}r^{2} \left[2\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{5} + 2\widetilde{N}_{7}) \right] - 6\binom{n-2}{2}r_{+}^{2}r\widetilde{N}_{4} - 24\binom{n}{4}r_{+}^{3} \right\} \\ 13 \qquad \bigwedge \qquad \widetilde{N}_{13} = \frac{1}{r^{3}} \left\{ \widehat{N}_{13} - r_{+}r^{2} \left[2\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{5} + 2\widetilde{N}_{6}) \right] - 6\binom{n-2}{2}r_{+}^{2}r\widetilde{N}_{4} - 24\binom{n}{4}r_{+}^{3} \right\} \\ \widetilde{N}_{14} = \frac{1}{r^{4}} \left\{ \widehat{N}_{14} - r_{+}r^{3}(\widetilde{N}_{12} + \widetilde{N}_{13}) - r_{+}^{2}r^{2} \left[2\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{5} + 2\widetilde{N}_{6}) \right] - 6\binom{n-2}{2}r_{+}^{2}r\widetilde{N}_{4} - 24\binom{n}{4}r_{+}^{3} \right\} \\ \widetilde{N}_{14} = \frac{1}{r^{4}} \left\{ \widehat{N}_{14} - r_{+}r^{3}(\widetilde{N}_{12} + \widetilde{N}_{13}) - r_{+}^{2}r^{2} \left[2\binom{\overline{N}_{4}}{2} + (n-3)(\widetilde{N}_{5} + \widetilde{N}_{6} + \widetilde{N}_{7}) \right] - 4\binom{n-2}{2}r_{+}^{2}r\widetilde{N}_{4} - 24\binom{n}{4}r_{+}^{3} \right\}$$

Estimation for Four Motifs in the Human Cell-Specific TF Networks

	\bigtriangleup	\bigwedge		
Blood cells	3,687	37,884	4,379,527	7,359,970
Cancer cells	2,738	30,122	2,862,215	6,267,987
Endothelia cells	3,160	35,314	3,844,161	6,877,606
Epithelia cells	1,896	19,901	1,858,957	3,238,587
Fetal cells	3,088	33,782	3,660,840	6,498,027
Stroma cells	2,727	29,155	3,052,803	5,094,576
ES cells	2,766	32,400	3,282,473	6,436,708

Embryonic stem cell has the smallest motif count relative to its network size

- Promyelocytic leukemia blood cell has the largest motif count
- \succ The feed-forward loop count is about 10 times that of the feed-back loop.

Motif Counts for PPI Networks

	S. cerevisiae ¹	C. elegans ²	H. sapiens ³	A. Thaliana ⁴
Total no. of proteins	6,000	20,065	22,500	27,029
No. of proteins examined	3,676	9,906	7,194	7,108
No. of interactions detected	967	1,816	2,754	4,890
Precision*	0.9400	0.8600	0.7940	0.8030
Sensitivity*	0.1700	0.0496	0.0950	0.1570
Missing link rate <i>r</i> _	0.8300	0.9500	0.9050	0.8430
Spurious link rate r_+	0.000008	0.000005	0.000002	0.000003

¹ Yu et al. 2008

² Simonis et al. 2009

³ Rual et al 2005; Venkatesan et al. 2009

⁴ Arabbidopsis Interactome Mapping Consortium, 2011

* Reported in 1-4

Predicted sizes of four model interactomes

	S. cerevisiae	C. elegans	H. sapiens	A. Thaliana
CCSB estimate	18,000±4,500	116,000±26,400	130,000±32,600	299,000±79,200
Our estimate	15,000±2,700	122,000±16,600	214,000±32,200	376,000±45,600
Hart et al. estimate	37,800-75,500		154,000-369,000	

Hart, Ramani and Marcotte, 2006

Triangle counts for four model interactomes

	S. cerevisiae	C. elegans	H. sapiens	A. Thaliana
Our estimate	53,000	6,263,000	10,270,000	10,697,000
Triangle density	1×10^{-6}	5×10^{-6}	5×10^{-6}	5×10^{-6}

The number of triangles in the human PPI network is 194 times that of the yeasts, 3 times as large as expected.

Summary

- > Topological structures of 41 cell/tissue specific TF networks
- Human ESC specific regulatory interactions
- > Motif counting for the TF networks.

Acknowledgements

Co-authors and collaborators

Kwok Pui Choi, National University of Singapore
Dechao Tian, A Postdoc at Carnegie Mellon University
Ngoc Hieu Tran A Postdoc at Nanyang Tech. University
Shihua Zhang Academy of Math and Systems Sci., China

Funding

Singapore Ministry of Education Tier-2 Research Grant