

Sequence Design Problems in Discovery of Regulatory Elements

Yaron Orenstein, Bonnie Berger and Ron Shamir

Nature Reviews | Genetics

Differentially methylated enhancers in cancer Bell et al. Genome Res 16

- Analyzed methylation patterns of 6200 tumors
 & normals from 25 cancer types
 - Enhancers show the most differential methylation patterns
 - Enhancer methylation patterns distinguish primary tumor types
 - Found enhancers whose methylation in metastatic melanoma correlated with patient mortality

transcription and RNA regulators

 Gene expression regulation by transcription factors binding to DNA

 Post-transcriptional regulation by RNA binding proteins

(Sutherland et al., Asian Journal of Andrology. 2015)

Measuring TF binding

Protein binding

Microarrays (Berger et al. 06)

Synthetic enhancers (Smith et al. 12)

 Both technologies require designing a set of double stranded sequences that together cover all possible k-mers.

Measuring protein-RNA binding

 RNAcompete covers each 9-mer at least 16 times in unstructured RNA probes.

(Ray et al., Nature Biotechnology 2009)

Require coverage of all RNA k-mers.

de Bruijn sequences

- Def: de Bruijn (dB) seq. of order k over Σ: Each k-mer appears exactly once.
 - Most compact. length = $|\Sigma|^k$.

de Bruijn graphs of order k-1

Using de Bruijn seqs is too naïve

 Redundancy in double-stranded DNA: by covering a k-mer, its reverse complement is covered too.

> tctttcatagttggaacaagattt agaaagtatcaaccttgttctaaa

Structured RNA probes: most random sequences are structured.

Challenge #1: cover all DNA k-mers in double-stranded probes

- Def:
- S is a reverse complmentary dB (RCdB) sequence if ∀ k-mer W it includes W or RC(W).

• Goal:

Generate a minimum length RCdB sequence

The RC Euler tour algorithm

Form two reverse-complementary cycles in a de Bruijn graph.

 When traversing an edge – mark both the edge and its RC edge.

The problem with even k

- The alg works on graphs that satisfy:
 - 1. The graph is strongly connected.
 - 2. Each vertex is balanced.
 - 3. \exists a pairing of the edges in RC pairs.

• Alg fails for even k due to palindromes!

The solution: adding cycles

 \forall pair of palindrome edges that are cyclic shifts of each other, add edges for all their cyclic shifts.

The augmented de Bruijn graph

- The addition of cycles preserves connectivity and vertex balance.
- Is the pairing preserved?
 - The added palindromes match the original palindromes in the graph.
 - The non-palindromic edges match each other.

- Alg: Augment the graph, form RC Euler tour
- Linear time, suboptimal seq length
- Developed netflow alg for opt seq length

Computational results

Lemma: length of RCdb seq of order k:

$$n^*(k) \geq \begin{cases} \frac{|\Sigma|^k}{2} & \text{if } k \text{ is odd} \\ \frac{|\Sigma|^k + |\Sigma|^{k/2}}{2} & \text{if } k \text{ is even} \end{cases}$$

Lengths (for even k)

К	2	4	6	8	10	12	14
Original	16	256	4,096	65,536	16,777,216	16,777,216	268,435,456
Lower bound	10	136	2,080	32,896	524,800	8,390,656	134,225,920
Linear algorithm	10	142	2,140	33,262	526,840	8,400,808	134,275,060
Optimal algorithm	10	142	2,140	33,262	526,816	8,400,772	134,274,844
Saving factor	1.6	1.8	1.91	1.97	1.99	1.997	1.999

Challenge #2: cover all k-mers in unstructured RNA probes

- Input:
 - $\mathbf{k} \mathbf{k}$ -mers to cover.
 - I length of probe.
 - p multiplicity of k-mers.
- p-multi k-mer coverage: each k-mer appears p times.
- Goal: minimum p-multi k-mer coverage by a restricted set of I-long sequences.

(Orenstein and Berger, JCB 2015)

K-mer coverage is NP-hard

- Easy when: all I-long sequences are allowed or I=k.
- Reduction from **minimum m-set cover**: find smallest subset S' of m-sets S that covers all elements in E.

Minimum 3-set cover example: $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $S = \{S_1, S_2, S_3, S_4, S_5\}$

Analogously:

- Each k-mer is an element.
- Each sequence is a set.

ACGU... → CGU[ACGU]

Reduction overview

- 1. Map elements to k-long {A,U}-representations.
- $k = [log_2|E|] \qquad e_{10} \rightarrow f_{01}(e_{10}) = 0001010 \rightarrow f_{AU}(e_{10}) = AAUAUA$
- 2. Convert each set to an I-long sequence (I=3km). – Pad each element w by G^k -w- C^k . $\{e_1, ..., e_m\} \rightarrow G^k f_{AU}(e_1) C^k ... G^k f_{AU}(e_m) C^k$
- 3. Find k-mer coverage over {A,C,G,U}.

Reduction time: $O((|E|^2+|S|) \cdot m \cdot \log|E|)$

Approximation algorithm

 $(H_{l-k+1}-\frac{1}{2})$ -approximation to k-mer coverage.

 $H_n = \sum_{i=1}^n \frac{1}{i} \le \ln(n) + 1 \qquad \text{(Levin, SIAM J. Discrete Math 2008)}$

<u>Algorithm 1</u>:

- 1. Find all I-long unstructured RNA sequences.
- 2. Apply the greedy set cover algorithm: Elements = all k-mers
 Sets = unstructured sequences

Running time:
$$\Omega(4^{I} \bullet I) \rightarrow \text{impractical}$$
.

Heuristic algorithm

Key points:

- 1. Random walks in de Bruijn graph to cover all edges.
- 2. Backtracking in case no unstructured oligo is found.

Heuristic algorithm

<u>Algorithm 2 (k, l, p)</u>

- 1. de Bruijn graph, order k-1, p copies of each edge.
- 2. L = I, V = arbitrary vertex.
- 3. While (edges exist):
 - a. Find unstructured L-long path. Output it, L = I.
 - b. If did not find after 100 attempts, L = L-1.
 - c. If (L = k-1), output a random edge from V, L = I.
 - d. If closed an unstructured cycle, output it, L = I, set V to a visited vertex.

Run time: O(#probes • f(l) • l)

 $\# probes = \Theta(4^k / (I-k+1)), f(I)=O(I^2)$

Extension algorithm

- Not all sequences are of length I (cycles, structured).
- Extend them to unstructured I-long sequences.

<u>Algorithm 3 (S, k, l)</u>:

- 1. Try at most 100 random extensions to unstructured.
- 2. If succeeded, output complete sequence.
- 3. If failed, divide to two overlapping halves: s_1 , s_2 .
- 4. If $|s_i| = k$, output s_i .
- 5. Continue recursively on s_i.

Implementation details

- 1. Limit number of random attempts (parameter).
- 2. Extend by doubling probe length.
- 3. Preform RNA secondary structure predictions based on previous predictions (not implemented).

Dynamic programming algorithm for all sub-sequences *i*,*j*, from smallest to largest:

(Eddy, Nature Biotechnology 2014)

Results comparison

- 1. Theoretical lower bound
 - Derived from k-mer counts

$$n(k,l) \ge \left[\frac{4^k \cdot p}{l-k+1}\right]$$

- 2. Naïve algorithm:
 - Generate random oligos.
 - Add those which are unstructured and cover uncovered k-mers.

Results for different (k,l)

	$\wedge \wedge \wedge$										
l	k	Lower	Incomplete	Incomplete	e 🧣	Complete		Complete	Structured	Naive set	Runtime
		bound	\mathbf{set}	Ratio		\mathbf{set}		ratio			(hh:mm:ss)
	5	40	50	1.25		51		1.27	0	149	00:02:11
20	6	164	182	1.11	Y	182	V	1.11	0	766	00:07:43
	7	684	737	1.08	Λ	739		1.08	0	3308	00:41:40
30	8	2850	3 0 8 1	1.08		3106	Λ	1.09		13801	02:58:52
	9	11916	12940	1.09		13069		1.10	59	57154	14:42:27
1	10	49934	55882	1.12		56526		1.13	670	236477	82:18:01
	5	34	41	1.21		41		1.21	0	131	00:03:13
	6	138	158	1.14		162		1.17	0	670	00:21:20
25	7	566	635	1.12		648		1.15	0	2884	01:17:43
00	8	2342	2670	1.14		2744		1.17	0	11961	06:03:05
	9	9710	11022	1.14		11439		1.18	60	49289	26:47:31
1	10	40330	47139	1.17		49225		1.22	609	202763	137:33:27
	5	30	37	1.23		38		1.27	0	117	00:02:44
	6	118	140	1.19		148	V	1.25	0 0	598	00:36:31
40	7	482	561	1.16	V	611	Y	1.27		2561	02:33:16
40	8	1986	2362	1.19		2627	٨	1.32		10597	11:24:15
	9	8192	9745	1.19		10966		1.34	60	43492	48:02:15
]	10	33826	41798	1.24	Ц	47457		1.40	557	178 187	246:05:17

Self-structured k-mers form structure with themselves.

Comparison to RNAcompete design

Parameters: k=9, l=35, p=16.

Design	Lower bound	#oligos	Ratio	#structured
Ours	155 246	166,649	1.07	841
RNAcompete	155,540	214,498	1.38	2,858

- Ours: all oligos 35-long.
- RNAcompete: varying lengths 35-38.

3.

Future extensions

- 1. Generalize to any property of RNA/DNA probes.
- 2. Remove specific k-mers (by removing their edges).

Summary

- Utilized de Bruijn graph to generate DNA/RNA libraries that cover all k-mers.
- De Bruijn graphs more flexible than LFSRs. # de Bruijn sequences = $(4!)^{4^{k-1}}/4^k$ # primitive polynomials = $\phi(4^{k-1})/k$
- General and flexible scheme for library design covering k-mers in specific sequences.

Acknowledgments

curlcake.csail.mit.edu

Berger lab

acgt.cs.tau.ac.il/shortcake

Shamir group

