Scoring transcript variation in single cell RNA-seq data

Xiuwei Zhang

Single cell RNA-seq provides data at cellular resolution

Single cell RNA-seq provides data at cellular resolution

Single cell RNA-seq also shows variation in read coverage profiles

Background

Traditional bulk RNA-seq tools for single cell data

- Calculating exon/intron inclusion scores:
 - MISO (Katz *et al.* 2010)
 used in Shalek *et al.* 2013
 high isoform variation, bimodal distribution of PSI scores
 - Bam2ssj (Pervouchine *et al*. 2013)
 used in Marinov *et al*, 2014
 number of isoforms for one gene in a cell
- Find novel splice junctions

Global analysis of profile variation across single cells Sources? patterns? sub-populations?

Outline

- Method
 - Profile Variation (PV) score

Benchmarking and thresholding

- Various data sets
- Various gene categories and exons
- Compare with bulk RNA-seq

Applications

- Genes with high isoform variation
- Patterns in isoform usage
- Genes which switch isoforms

Jensen-Shannon Divergence (JSD)

JSD
$$(P_1, P_2, ..., P_n) = H\left(\sum_{i=1}^n \pi_i P_i\right) - \sum_{i=1}^n \pi_i H(P_i)$$

H(): entropy

increases with the number of categories in a discrete probability distribution.

JSD
$$(P_1, P_2, ..., P_n) = H\left(\sum_{i=1}^n \pi_i P_i\right) - \sum_{i=1}^n \pi_i H(P_i)$$

H(): entropy

increases with the number of categories in a discrete probability distribution.

 $PV = JSD/log_2(L)$

PV with gene length regressed out

Th cells, Spearman r=0.79

$$Y_{PV} = \hat{\beta_0} + \hat{\beta_1} X_{length}$$

 $\hat{Y_{PV}} = \hat{\beta_0} + \hat{\beta_1} X_{length}$

 $Y_{PV} - \hat{Y_{PV}}$ is the length regressed PV scores PV_{length}

Outline

• Method

- Profile Variation (PV) score --- two versions of PV score

Benchmarking and thresholding

- Various data sets
- Various gene categories and exons
- Compare with bulk RNA-seq

Applications

- Genes with high isoform variation
- Patterns in isoform usage
- Genes which switch isoforms

Compare between data sets

Differentiating <u>T helper</u> cells

Embryonic stem (ES) cells: different culture conditions

different cell cycle phases

Mahata *et al* 2014 Kołodziejczyk *et al* 2015 Buttener *et al* 2015

Compare between gene categories

Thresholding PV scores

PV of AS genes

- * technical noise
- ★ biological noise
- ⋆ AS events

Thresholding PV scores

PV of AS genes

- * technical noise
- ★ biological noise
- ⋆ AS events

PV of exons

- ★ technical noise
- ★ biological noise

Thresholding PV scores with exons

300~600 genes were found to have highly variable isoform usage

Compare with bulk RNA-seq data

Compare with bulk RNA-seq data

What is consistent

What is different

- Genes with high PV but not detected by Cuffdiff
- Enriched in cell cycle genes
- Biological variation within one cell type

Outline

• Method

- Profile Variation (PV) score -- two versions of PV score

• Benchmarking and thresholding

- Various data sets -- conforms with biological heterogeneity
- Various gene categories and exons -- significant variation
- Compare with bulk RNA-seq -- consistent and more than bulk

• Applications

- Genes with high isoform variation
- Patterns in isoform usage
- Genes which switch isoforms

Genes with highly variable isoforms

Isoform variation at two levels

Find representative read coverage patterns

pairwise \sqrt{PV} is a metric

Find representative read coverage patterns

Find representative read coverage patterns

Example: Nsf in T cells

Find correlated genes in isoform usage

	Gene 1	Gene 2	Gene 3
Cell 1	Pattern A	Pattern A	Pattern A
Cell 2	Pattern A		Pattern A
Cell 3			Pattern C
Cell 4	Pattern B	Pattern B	Pattern B
Cell 5	Pattern B	Pattern B	

Difficulty: genes are expressed in a small number of cells.

Find correlated genes in isoform usage

Cell vs "gene pattern" binary matrix

	Gene1 PatternA	Gene1 PatternB	Gene2 PatternA	Gene2 PatternB	Gene3 PatternA	Gene3 PatternB	Gene3 PatternC
Cell 1	1	0	1	0	1	0	0
Cell 2	1	0	0	0	1	0	0
Cell 3	0	0	0	0	0	0	1
Cell 4	0	1	0	1	0	1	0
Cell 5	0	1	0	1	0	0	0

Stochasticity in isoform usage

Find clusters of genes with *Jaccard distance < h*

Compare with random binary matrices:

Isoform usage across single cells has high stochasticity

Genes which switch isoforms between cell types

ES cells NPC cells

1. high ratio of:

Average(Inter-group distances)

Average(Intra-group distances)

2. high PV(all cells)

Lig1

Lig1 protein domains of the long transcript

- Lig1 is a cell cycle gene
- Cells slow down cycling $ES \rightarrow NPC$
- Not detected in bulk data

Outline

• Method

- Profile Variation (PV) score -- two versions of PV score

• Benchmarking and thresholding

- Various data sets -- conforms with biological heterogeneity
- Various gene categories and exons -- significant variation
- Compare with bulk RNA-seq -- consistent and more than bulk

Applications

- Genes with high isoform variation -- sources of isoform variation
- Patterns in isoform usage -- high stochasticity
- Genes which switch isoforms -- function change during differentiation

Sarah Teichmann

Acknowledgements

Valentine Svensson

Jong Kyoung Kim

Oliver Stegle (EBI)

John Marioni (EBI)

Nick Owens (MRC NIMR)

Kaur Alasoo (Sanger Institute)

SWISS NATIONAL SCIENCE FOUNDATION