

Deep learning frameworks for regulatory genomics and epigenomics

Avanti Shrikumar

Chuan Sheng

Foo

TANFORD | Genetics

Nicholas Sinnott-Armstrong

ANSHUL KUNDAJE

Genetics, Computer science Stanford University

Johnny Israeli

Local chromatin architecture of

regulatory elements

Adapted from Shlyueva et al. (2014) Nature Reviews Genetics.

Combinatorial <u>chromatin states</u> define broad classes of elements

ChromHMM: automating chromatin-state discovery and characterization

ATAC-seq: genome-wide <u>chromatin</u> <u>accessibility</u> from low input material

ATAC-seq peaks identify chromatin accessible regulatory elements

ATAC-seq reveals chromatin architecture in genome-wide **fragment length distributions**

Buenrostro et al. (2013) Nature Methods.

Chromatin architecture reflects chromatin state

Fragment lengths

Position-aware 2D fragment length distributions (V-plots)

Plot at single CTCF site – sparse and noisy

V-plots were first introduced by Henikoff et al. 2011, PNAS

Can we predict chromatin states/histone marks at ATAC-peaks?

Deep neural networks (DNNs) for image classification

Lee et. al. (2009), ICML

Input: image pixel values

Deep neural networks (DNNs) for Vplot classification

An artificial neuron

$$h_{w,b}(x) = f(w^{\mathsf{T}}x+b)$$

$$f(z) = \frac{1}{1+e^{-z}}$$

 $\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ +1 \end{array} \rightarrow h_{w,b}(x)$

b: We can have an "always on" feature, which gives a class prior, or separate it out, as a bias term

Convolutional filters

Convolutional filters

Convolutional layer: multiple filters learn distinct features

Pooling layers: locally smooth signal

How does a deep conv. neural network transform the raw V-plot input at each layer

After initial pooling (smoothing)

Second set of convolutional maps

Learning from <u>multiple 1D functional</u> <u>data</u> (e.g. DNase, MNase)

Learning from raw DNA sequence

THE CHROMPUTER

Integrating multiple inputs (1D, 2D signals, sequence) to simulatenously **predict multiple outputs**

Chromatin architecture can predict <u>chromatin state</u> in held out chromosome (same cell type)

Model + Input data types	8-class chromatin state accuracy (%)
Majority class (baseline)	42%
Gene proximity	59%
Random Forest: ATAC-seq (150M reads)	61%
Chromputer: DNase (60M reads)	68.1%
Chromputer: Mnase (1.5B reads)	69.3%
Chromputer: ATAC-seq (150M reads)	75.9%
Chromputer: DNase + MNase	81.6%
Chromputer: ATAC-seq + sequence	83.5%
Chromputer: DNase + MNase + sequence	86.2%
Label accuracy across replicates (upper bound)	88%

High cross cell-type chromatin state prediction

- Learn model on **DNase and MNase only**
- Learn on GM12878, predict on K562 (and vice versa)
- **<u>Requires local normalization</u>** to make signal comparable

8 class chromatin state accuracy			
Train \downarrow / Test \rightarrow	GM12878	K562	
GM12878	0.816	0.818	
K562	0.769	0.844	

Predicting individual histone marks from ATAC/DNase/MNase/Sequence

Chromputer trained on TF ChIP-seq predicts cross cell-type in-vivo TF binding with high accuracy

DeepLIFT: Scoring predictive power of features in Deep Neural Networks

- LIFT: Linear Importance Feature Tracker, or LIFTing the top off the black box.
- Provides a **predictive 'importance score'** for
 - any raw input feature (e.g. pixels in V-Plot images, each nucleotide in sequence)
 - intermediate learned features (e.g. convolutional filters)
- Linear breakdown of contribution of each input to immediate outputs
 - Recursively apply to get contribution of any input to any output
 - Can be <u>computed efficiently</u> with a single backpropagation (unlike insilico mutagenesis)
 - Less susceptible to buffering effects than in-silico mutagenesis
- Technical details:
 - ReLU networks: equivalent to Taylor approximation of change in softmax/sigmoid logit if input eliminated.
 - i.e. gradient (w.r.t logit) * input

What architecture properties of the ATAC-seq Vplots predict different chromatin states?

CTCF state: centered binding, symmetric phased nucleosomes

Enhancer state: localized signal, heterogeneity

Promoter state: broad regions of accessible chromatin

what is the change in classification probability relative to an unbiased classifier if we ***only*** consider the contributions from each pixel

Architectural heterogeneity of accessible elements in different chromatin states

Top scoring MNase filters and activating input patterns for <u>CTCF state</u>

Top scoring MNase filters and activating input patterns for <u>promoter state</u>

What useful patterns can we extract from raw DNA sequence models?

Which nucleotides in input sequence are contributing to binding!

Top sequence filters for CTCF state

Canonical motif

High resolution <u>point binding events</u> and <u>sequence grammars</u> at CTCF peaks

Nuc. level importance (height of letter) shows coordination of multiple point binding events

Context-specific reuse of regulatory sequence in chromatin accessibility changes during hematopoiesis

Deep learning sequence determinants of chromatin accessibility

Output: Accessible (+1) vs. not accessible (0)

Input: Raw DNA sequence

	ATAC-seq	No peak
	SPI1 ChIP-seq	No peak
μ Ξ ν	GATA1 ChIP-seq	Not expressed
E		

Peyton Greenside

ATAC-seq

...and much, much more

YY1 & GATA

Summary and ongoing work

- New predictive deep learning framework (Chromputer) for integrative genomics
- New interpretation engine for deep learning models. We can extract predictive features (motifs, grammars, footprints, architecture features) from the deep neural networks
- Local chromatin architecture is predictive of chromatin state and histone marks within and across cell types
- We can predict in-vivo binding profiles of TFs in new cell types from sequence + shape + DNase/ATAC-seq with high accuracy
- Context-specific reuse of sequence grammars in accessible sites
- Extensions: From binary to continuous signal prediction
- Extensions: Functional variant (QTL, GWAS, rare variant) prediction from raw sequence models

Acknowledgements

Kundaje Lab members

Chuan Sheng

Foo

Avanti

Shrikumar

Armstrong

Johnny Israeli

Rahul Mohan

Nathan Boley

Peyton Greenside

Will Greenleaf

Funding

U01HG007919-02 (GGR) U41-HG007000-04S1 ENCODE R01ES02500902

Conflict of Interest: Deep Genomics (SAB), Epinomics (SAB)

Guess the element from the V-plot Al vs. human

What is this regulatory element? Pure CTCF, Promoter, or Enhancer?

Its an enhancer!

