## Multi-State Perfect Phylogeny Mixture Deconvolution and Applications to Cancer Sequencing

Mohammed El-Kebir





# Tumor Evolution as a Two-State Perfect Phylogeny



# Tumor Evolution as a Two-State Perfect Phylogeny



<sup>2</sup> 

# Tumor Evolution as a Two-State Perfect Phylogeny



# Tumor Evolution as a Multi-State Phylogeny



- Problem Statement
- Combinatorial Characterization of Solutions
- Application to Cancer Sequencing



#### **Two-State Perfect Phylogeny:**

Infinite sites assumption: a character changes state once



#### Two-State Perfect Phylogeny:

Infinite sites assumption: a character changes state once



#### Two-State Perfect Phylogeny:

Infinite sites assumption: a character changes state once



#### **Two-State Perfect Phylogeny:**

Infinite sites assumption: a character changes state once



#### **Multi-State Perfect Phylogeny:**

Infinite alleles assumption: a character changes to a state once



Complete Multi-State Perfect Phylogeny A / T

#### Two-State Perfect Phylogeny:

Infinite sites assumption: a character changes state once



#### Multi-State Perfect Phylogeny:

Infinite alleles assumption: a character changes to a state once



### Two-State Perfect Phylogeny:

- A character changes state once
  - Once a mutation happens it persists



### Two-State Perfect Phylogeny:

- A character changes state once
  - Once a mutation happens it persists



### Two-State Perfect Phylogeny:

- A character changes state once
  - Once a mutation happens it persists
- Thus  $T_{(c,1)} = \overline{T}_{(c,1)}$  subtree rooted at  $V_{(c,1)}$



Sum Condition (SC)

$$f_{p,(c,1)} \ge \sum_{(d,1)\in\delta(c,1)} f_{p,(d,1)}$$

### Multi-State Perfect Phylogeny:

A character changes to a state once • Thus,  $T_{(c,i)} \neq T_{(c,i)}$ Instead:  $T_{(c,l)}$  $\overline{T}_{(c,i)} = \bigcup$  $\overline{T}_{(c,1)}$  $T_{(c,1)}$  $l \in D_{(c,i)}$  $V_{(c,1)}$ *T*<sub>(*c*,2)</sub>  $V_{(c,2)}$  $V_{(d,1)}$ •••  $T_{(c,1)} \neq T_{(c,1)}$ **Descendant set**  $\overline{T}_{(c,1)} = T_{(c,1)} \cup T_{(c,2)}$  $D_{(c,1)} = \{1,2\}$ 

### Two-State Perfect Phylogeny:

- A character changes state once
  - Once a mutation happens it persists
- Thus  $T_{(c,1)} = \overline{T}_{(c,1)}$  subtree rooted at  $V_{(c,1)}$

subtree of vertices with state 1 for c  $V_{(c,1)}$   $V_{(d,1)}$ 

V<sub>(b,1)</sub>

V<sub>(e,1)</sub>

Sum Condition (SC)

•••

$$f_{p,(c,1)} \ge \sum_{(d,1)\in\delta(c,1)} f_{p,(d,1)}$$

### Multi-State Perfect Phylogeny:

A character changes to a state once • Thus,  $T_{(c,i)} \neq \overline{T}_{(c,i)}$ Instead:  $\overline{T}_{(c,i)} = \bigcup T_{(c,l)}$  $\overline{T}_{(c,1)}$  $T_{(c,1)}$  $l \in D_{(c,i)}$  $(V_{(c,1)})$ *T*<sub>(*c*,2)</sub>  $V_{(c,2)}$  $V_{(d,1)}$ •••  $T_{(c,1)} \neq T_{(c,1)}$ **Descendant set**  $\overline{T}_{(c,1)} = T_{(c,1)} \cup T_{(c,2)}$  $D_{(c,1)} = \{1,2\}$ Multi-State Sum Condition (MSSC) [El-Kebir et al., 2016] cumulative  $f_p^+(D_{(c,i)}) \ge \sum_{(l,i) \in S(-i)} f_p^+(D_{(d,j)})$ 

 $(d,j) \in \delta(c,i)$ 

### Spanning Trees in Ancestry Graph

#### Two-State Perfect Phylogeny:



**Theorem 1** [El-Kebir, Oesper et al., 2015; Popic et al., 2015] Solutions are spanning trees that satisfy (SC)

**Theorem 2** [El-Kebir, Oesper et al., 2015] VAFFP is NP-complete for m = O(n)



**Theorem 1** [El-Kebir, Oesper et al., 2015; Popic et al., 2015] Solutions are spanning trees that satisfy (SC)

**Theorem 2** [El-Kebir, Oesper et al., 2015] VAFFP is NP-complete for m = O(n)





- Directed multi-graph
- Vertices are character-state pairs
- Edges are labeled by valid descendant set pairs

6

**Theorem 1** [El-Kebir et al., 2016] Solutions are *threaded* spanning trees satisfying (MSSC)

**Theorem 2** [El-Kebir et al., 2016] PPMDP is NP-complete even for m = 2 and k = 2

# Application to Cancer Sequencing

### <u>Input</u>

- Read-depth ratio
- B-allele frequencies
- Variant allele frequencies

### <u>Model</u>

- Character is a genomic position (SNV)
- State is a triple (x, y, z) where
  - *x* is # maternal copies
  - y is # paternal copies
  - *z* is # mutated copies
- Cladistic characters



# Application to Cancer Sequencing

### <u>Input</u>

- Read-depth ratio
- B-allele frequencies
- Variant allele frequencies

### <u>Model</u>

- Character is a genomic position (SNV)
- State is a triple (x, y, z) where
  - *x* is # maternal copies
  - y is # paternal copies
  - *z* is # mutated copies
- Cladistic characters



# Application to Cancer Sequencing

### <u>Input</u>

- Read-depth ratio
- B-allele frequencies
- Variant allele frequencies

### <u>Model</u>

- Character is a genomic position (SNV)
- State is a triple (x, y, z) where
  - x is # maternal copies
  - y is # paternal copies
  - z is # mutated copies
- Cladistic characters



# Conclusions

- Generalization of infinite sites model for SNVs is infinite alleles model for SNVs + CNAs
- Introduced Perfect Phylogeny Mixture Deconvolution Problem (PPMDP) for multi-state characters
- Combinatorial characterization of solutions
- PPMDP is NP-complete for *k* = 2 and *m* = 2
- Application to cancer sequencing
  - Metagenomics, somatic hypermutations, mtDNA, ...



# Acknowledgements

**Research Group** *Benjamin J. Raphael Gryte Satas Layla Oesper* Dora Erdos Matthew Reyna Ashley Conard Cyrus Cousins Rebecca Elyanow Hsin-Ta Wu



CCMB

### Funding





### Preprint will be available soon on arXiv