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Tumor	Evolution	as	a	Two-State	Perfect	Phylogeny
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no two-state	perfect	phylogeny
[Gusfield,	1991]
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States:
0	:	non-mutated

1	:	mutated

Assumptions:
• No	copy	number	aberrations
• Infinite	sites	assumption



Tumor	Evolution	as	a	Two-State	Perfect	Phylogeny
Two-State Perfect	Phylogeny	 Tree	TTumor	snapshot

Bulk
sequencing

Find:
Two-state perfect	phylogeny tree	T
Mixing	proportions	U

0.4	0.0	0.0	0.0	0.3	0.2	
0.3	0.3	0.0	0.3	0.0	0.0
0.4	0.4	0.4	0.0	0.0	0.0

mutationsGiven:

VAFs F =	

sam
ples

S1

S3
S2

S1

S3

S2

0.8 0.6 0.2 0.2 0.4S3 S2 S1U

Seq.	method Mixing Inferring T

single-
cell

no two-state	perfect	phylogeny	
[Gusfield, 1991]
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Variant	Allele	Frequency	(VAF):	
Fraction of	reads	covering	position	 of	
single-nucleotide	 variant	(SNV)	that	
contain	variant allele
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States:
0	:	non-mutated

1	:	mutated

2	:	CN	loss-of-heterozygosity

3	: amplification

rescale	VAFs	to	CCFs

… ....
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Tumor	Evolution	as	a	Multi-State	Phylogeny

States:
0	:	non-mutated

1	:	mutated

2	:	CN	loss-of-heterozygosity

3	: amplification

more	than	>	2	states

… ....
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• Problem	Statement

• Combinatorial	Characterization	of	Solutions

• Application	to	Cancer	Sequencing
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VAF	Factorization	Problem	
(VAFFP):	[El-Kebir,	Oesper et	al.,	2015]

Given	F,	find	U	and	B
such	that	F =	U	B

Two-State	Perfect	Phylogeny:
Infinite	sites	assumption:	a	character	changes	state	once



Problem	Statement

4

VAF	Factorization	Problem	
(VAFFP):	[El-Kebir,	Oesper et	al.,	2015]

Given	F,	find	U	and	B
such	that	F =	U	B

[0,0]

[0,1]

[2,0] [1,1] [0,1] [0,2]

V(*,0)

V(c,2) V(c,1) V(d,1) V(d,2)

[0,0]

V(*,0)

(c,2)

(c,1)

(d,1)

(d,2)

Complete	Multi-State Perfect	Phylogeny	A	/	T

1-*

0.8 0.6 0.2 0.2 0.4

S1 S2 S3

U=[upj] is	a	usage	matrix iff

upj � 0 and
X

j

upj  1

F =	

1-1

mutations

taxa

Usage	Matrix	U

0

@
0.0 0.0 0.8 0.0 0.0 0.0
0.0 0.0 0.0 0.6 0.0 0.0
0.2 0.0 0.0 0.0 0.2 0.4

1

A

0

BBBBBB@

1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 1

1

CCCCCCA

Complete	Two-State
Perfect	Phylogeny	B	/	T

taxa

sa
m
pl
es

n mutations
0

@
0.8 0.8 0.8 0.0 0.0 0.0
0.6 0.6 0.0 0.6 0.0 0.0
0.8 0.0 0.0 0.0 0.6 0.4

1

A

m
sam

ples

=	
0

BBBB@

1 1
0 0
0 1
1 0
1 0

1

CCCCA

| {z }
A0

0

BBBB@

0 0
1 1
0 0
0 1
0 0

1

CCCCA

| {z }
A1

0

BBBB@

0 0
0 0
1 0
0 0
0 1

1

CCCCA

| {z }
A2

Multi-State	Perfect	Phylogeny:
Infinite	alleles	assumption:	a	character	changes	to	a	state once

Frequency	
Tensor	F

✓
0.1 0.8
0.7 0.0

◆

| {z }
F0

✓
0.7 0.0
0.0 0.6

◆

| {z }
F2

characters sam
ples

0.7 0.0

0.0 0.6

0.2 0.2

0.40.3

Characters	c

0.1 0.8

0.7 0.0

c d 0

1

2

S1

S2

m
sa
m
pl
es

n characters

Two-State	Perfect	Phylogeny:
Infinite	sites	assumption:	a	character	changes	state	once

✓
0.2 0.2
0.3 0.4

◆

| {z }
F1

=

✓
0.1 0.2 0.7 0.0 0.0
0.0 0.0 0.3 0.1 0.6

◆

| {z }
U

0

BBBB@

0 0
0 1
0 0
1 1
0 0

1

CCCCA

| {z }
A1



✓
0.2 0.2
0.3 0.4

◆

| {z }
F1

=

✓
0.1 0.2 0.7 0.0 0.0
0.0 0.3 0.0 0.1 0.6

◆

| {z }
U

0

BBBB@

0 0
1 1
0 0
0 1
0 0

1

CCCCA

| {z }
A1

Perfect	Phylogeny	Mixture	Deconvolution	Problem	(PPMDP)	
[El-Kebir	 et	al.,	2016]:	Given	F,	find	U	and	A

such	that	Fi =	U	Ai for	all	states	i
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Combinatorial	Characterization
Two-State	Perfect	Phylogeny:

…

…

V(c,1)

V(d,1)

V(b,1) V(e,1)

• A	character	changes	state	once
• Once	a	mutation	happens	it	persists

• Thus	T(c,1) =	T(c,1)

subtree	of	vertices	
with	state	1	for	c

subtree	rooted	at	V(c,1)
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Combinatorial	Characterization
Two-State	Perfect	Phylogeny:

Multi-State	Perfect	Phylogeny:
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Descendant	set	
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Two-State	Perfect	Phylogeny:
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Spanning	Trees	in	Ancestry	Graph
Two-State	Perfect	Phylogeny:

mutations
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Theorem	1 [El-Kebir,	Oesper et	al.,	2015;	Popic et	al.,	2015]
Solutions	are	spanning	trees	that	satisfy	(SC)

• Simple	directed	
graph	(DAG)

• Vertices	are	
characters

• Edges	are	
potential	
ancestral	
relationships

sam
ples

Theorem	2 [El-Kebir,	Oesper et	al.,	2015]
VAFFP	is	NP-complete	for	m	= O(n) 6



Theorem	2	[El-Kebir	et	al.,	2016]
PPMDP	is	NP-complete	even	for	m	=	2	and	k	=	2

Theorem	1	[El-Kebir	et	al.,	2016]
Solutions	are	threaded spanning	trees	satisfying	(MSSC)	

Spanning	Trees	in	Ancestry	Graph
Two-State	Perfect	Phylogeny:

Multi-State	Perfect	Phylogeny:
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• Simple	directed	
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Application	to	Cancer	Sequencing

Input
• Read-depth	ratio
• B-allele	frequencies
• Variant	allele	frequencies

Model
• Character	is	a	genomic	
position	(SNV)
• State	is	a	triple	(x,	y,	z)	where

• x is	#	maternal	copies
• y is	#	paternal	copies
• z is	#	mutated	copies

• Cladistic characters
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Conclusions
• Generalization	of	infinite	sites	model	for	SNVs	is	infinite	alleles	model	for	SNVs	+	CNAs

• Introduced	Perfect	Phylogeny	Mixture	Deconvolution	Problem	(PPMDP)	
for	multi-state	characters

• Combinatorial	characterization	of	solutions

• PPMDP	is	NP-complete	for	k =	2	and	m =	2

• Application	to	cancer	sequencing
• Metagenomics,	somatic	hypermutations,	mtDNA,	…
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