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Convergence diagnostics

I MCMC used in Bayesian inference, computational physics and chemistry,
image processing, phylogeny ...

I Eventually the chain will converge to the desired target distribution.

I May or may not have bounds on the mixing time. Bounds may not be
practical.

I How to tell whether the chain is close to converged?

I In practice many visual, statistical tests are used - convergence diagnostics.



Definitions

Probability measures µ and ν on finite Ω. The total variation distance
between µ and ν is

‖µ− ν‖tv := max
A⊂Ω
|µ(A)− ν(A)| =

1

2

∑
x∈Ω

|µ(x)− ν(x)|

Markov chain M on Ω with transition matrix P and stationary distribution π.

d(t) := max
x,y∈Ω

‖P t(x , ·)− P t(y , ·)‖tv .

The ε-mixing time is
τ(ε) := inf{t : d(t) ≤ ε}

The ε-mixing time started at x is

τx(ε) := inf{t : ‖P t(x , ·)− π‖tv ≤ ε}



Traceplot

SAS/STAT(R) 9.22 User’s Guide - Assesing Markov Chain Convergence



Statistical tests

SAS/STAT(R) 9.22 User’s Guide - Assesing Markov Chain Convergence

[Cowles-Carlin ’96] Review of 13 diagnostics and scenarios where each can fail.



Complexity theoretic framework for diagnostic algorithm

MC is a “rule” for determining next state.

Circuit C : {0, 1}n × {0, 1}m → {0, 1}n specifies P if

P(C(x , r) = y) = P(x , y)

Diagnostic algorithm D decides if at time t:

I Chain within 1/4 tv-distance of π: τ(1/4) ≤ t.

I Chain at least 1/4 tv-distance from π: τ(1/4) > t.

Exact distance at time t.
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Diagnostic algorithm D decides at time t:

I mixed: Chain within 1/8 in tv-distance of π: τ(1/8) ≤ t.

I not mixed: Chain at least 1/2 in tv-distance from π: τ(1/2) > t.

Allow a gap in approximation to tv-distance.



Complexity theoretic framework for diagnostic algorithm

MC is a “rule” for determining next state.

Circuit C : {0, 1}n × {0, 1}m → {0, 1}n specifies P if

P(C(x , r) = y) = P(x , y)

Diagnostic algorithm D decides:

I mixed: At time t, chain within 1/8 in tv-distance of π: τ(1/8) ≤ t.

I not mixed: At time ct, c ≥ 1, chain at least 1/2 in tv-distance from π:
τ(1/2) > ct.

Allow a gap in approximation to tv-distance as well as time.



Diagnostic algorithm formulations

TestConc,δ Input: C specifies P on Ω ⊂ {0, 1}n, x ∈ Ω, t ∈ N.
Promise: P is ergodic.

yes: τx(1/4− δ) ≤ t.
no: τx(1/4 + δ) > ct.

PolyTestConc,δ Input: (C , 1t , 1tmax ).
Promise: P is ergodic and τ(1/4) ≤ tmax .

yes: τ(1/4− δ) ≤ t.
no: τ(1/4 + δ) > ct.

PolyTestConInitc,δ Input: (C , x , 1t , 1tmax ).
Promise: P is ergodic and τ(1/4) ≤ tmax .

yes: τx(1/4− δ) ≤ t.
no: τx(1/4 + δ) > ct.



Testing convergence in a general case

TestConc,δ Input: C specifies P on Ω ⊂ {0, 1}n, x ∈ Ω, t ∈ N.
Promise: P is ergodic.

yes: τx(1/4− δ) ≤ t.
no: τx(1/4 + δ) > ct.

(PSPACE: set of all decision problems that can be solved by a Turing machine
using space polynomial in the input.)

Theorem 1 (B-Bogdanov-Mossel ’11). Let 1 ≤ c ≤ exp
(
nO(1)

)
. Then,

I For exp
(
−nO(1)

)
< δ ≤ 1/4, TestConc,δ is in PSPACE.

I For 0 ≤ δ < 1/4, TestConc,δ is PSPACE-hard.



TestConc,δ is PSPACE-hard

Reduction from a PSPACE complete problem A to TestConc,δ.

Computation graph G of Turing machine TA

−→

(reversible) MC on vertices of G

In the yes case, s and a are in the same component.



TestConc,δ is PSPACE-hard

Reduction from a PSPACE complete problem A to TestConc,δ.

Computation graph G of Turing machine TA

−→

(reversible) MC on vertices of G

In the no case, s and a are not in the same component.

Note: W must be chosen so that the reduction is polynomial in the input to A.



TestConc,δ is PSPACE-hard

Computation graph G of Turing machine TA

−→

(reversible) MC on vertices of G

yes case: Each state of MC has const. degree ≤ D.

π(x) =

∑
y∼x

wxy∑
e∈E

we

≥ 1

D2n
, Φ ≥ W

D2nW
=

1

D2n

τ(ε) ≤ 2

Φ2
log

(
2

πminε

)
≤ 10D323n

ε
.



TestConc,δ is PSPACE-hard

State diagram of Turing machine MA

−→

(reversible) MC on states of MA

no case: MCs Xt started at s, Yt started at a.

d(t) ≥ P(∀t′ ≤ t,Xt′ /∈ cmp(a))− P(∃t′ ≤ t s.t.Yt′ ∈ cmp(s)) ≥ 1− 2t

W

So,

τ(1/4 + δ) ≥ τ(1/2) ≥ W

4
.

Set W = 1000cD323n

1−4δ
, t = 10D323n

1−4δ
, x = s.



Testing convergence with polynomial mixing bound

PolyTestConc,δ Input: (C , 1t , 1tmax ).
Promise: P is ergodic and τ(1/4) ≤ tmax .

yes: τ(1/4− δ) ≤ t.
no: τ(1/4 + δ) > ct.

Theorem 2 (B-Bogdanov-Mossel ’11).

I For 0 ≤ δ < 1/4, c < 3/4−δ
2

√
tmax/t2n3, PolyTestConc,δ is coNP-hard.

I For 0 < δ ≤ 1/4, PolyTestConc,δ is in coAM.



co-NP hardness of PolyTestConc,δ

By reduction from UNSAT. Input is Ψ a CNF formula on n variables.

PolyTestConc,δ instance (C , 1t , 1tmax ):

τ(1/4 − δ) ≤ C(δ)n log(n) τ(1/4+δ) >
1

2
nd−1(3/4−δ) > cC(δ)n log(n)

By a lower bound on conductance, tmax ≤ 32n2d+1.

Set t = C(δ)n log(n).



Testing convergence given polynomial mixing and initial state

PolyTestConInitc,δ Input: (C , x , 1t , 1tmax ).
Promise: P is ergodic and τ(1/4) ≤ tmax .

yes: τx(1/4− δ) ≤ t.
no: τx(1/4 + δ) > ct.

Theorem 3 (B-Bogdanov-Mossel ’11).

I For 0.11602 < δ ≤ 1/4 and c ≥ 1, PolyTestConInitc,δ ∈ SZK.

I For 0 ≤ δ ≤ 1/4 and c ≤ 2
1+4δ

tmax/t, PTCSc,δ is SZK-hard.

I For 0 < δ ≤ 1/4, PTCSc,δ ∈ AM∩coAM.

(SZK : Statistical Zero Knowledge)



Proof Systems

Proof system for a language L ⊂ {0, 1}n and a verification algorithm V with

I Completeness: If x ∈ L, there is a proof π so V (x , π) = accept.

I Soundness: If x /∈ L, for all π∗, V (x , π∗) = reject.

I Efficiency: V (x , π) runs in time polynomial in |x |.

NP is defined this way.

How much knowledge does one gain from verifying a proof?



Zero knowledge proofs

[Goldwasser-Micali-Rackoff ’89] Prover P convinces verifier V of an assertion.
V learns nothing but the truth of the assertion.

Interaction (P,V )(x) between P and V with polynomial messages exchanged,
and private coin tosses.

I Completeness: If x ∈ L, V accepts in (P,V )(x) w. p. ≥ 2/3.

I Soundness: If x /∈ L, for “any” P∗, V accepts in (P∗,V )(x) w.p. ≤ 1/3.

I Efficiency: V runs in time polynomial in |x |.

Zero knowledge: The verifier could have simulated the entire interaction.



Statistical zero knowledge

“SZK”: Class of languages for which there is an interaction statistically
indistinguishable from the simulator with ZK.

Canonical hard problem:

StatDiffs,c Input: Circuits C ,C ′ : {0, 1}n → {0, 1}n of dist. µ1, µ2 on {0, 1}n.
yes: ‖µ1 − µ2‖tv ≥ c.
no: ‖µ1 − µ2‖tv < s.

[Sahai-Vadhan ’97] Let 0 ≤ c, s ≤ 1.

I For c2 > s, StatDiffs,c is in SZK.

I StatDiffs,c is SZK-hard.

SZK contains problems believed to be hard (e.g. GraphNonIso) , but cannot
contain NP-complete problems.



SZK-hardness for PolyTestConInitc,δ

By reduction from StatDiffs,c.

StatDiffs,c Input: Circuits C ,C ′ : {0, 1}n → {0, 1}n with µ1, µ2 on {0, 1}n.
yes: ‖µ1 − µ2‖tv ≥ c.
no: ‖µ1 − µ2‖tv < s.

(C ,C ′): instance of StatDiffs,c with c = 1, s = 1/4− δ.

Construct an instance of PolyTestConInitc,δ.

MC (Yt ,Zt) on [M]× {0, 1}n.
I Choose Zt+1:

I If Yt = 1, choose Zt+1 ∼ µ1.
I If Yt = 2, choose Zt+1 ∼ µ2.
I Otherwise, set Zt+1 = Zt .

I Choose Yt+1 uniformly from [M].

π = U[M] ×
µ1 + µ2

2



SZK-hardness for PolyTestConInitc,δ

Let x = (1, 0n)

‖P t(x , ·)− π‖tv =
1

2

(
m − 2

m

)t−1

‖µ1 − µ2‖tv

yes case: For t ≥ 1,M ≥ 3

‖P t(x , ·)− π‖tv <
1

2
s <

1

4
− δ

no case: If ct < M
4

ln
(

2
1+4δ

)
,

‖P t(x , ·)− π‖tv ≥
1

2

(
M − 2

M

)ct−1

c >
1

4
+ δ

In both cases τ(1/4) ≤ M.

Set tmax = M, t = 1.



Conclusions

I Efficient algorithms are not believed to exist for PSPACE-complete,
coNP-complete or SZK-complete problems.

I Diagnostic algorithms do not exist for large classes of MCMC algorithms,
unless there are efficient algorithms for PSPACE or coNP or SZK.

I (Woodard) Hardness for diagnosing convergence from a given state when
π is known upto a global constant?

I Hardness for Gibbs samplers (conditional distribution of each variable can
be sampled)?


