Finitary Coloring

Alexander E Holroyd Oded Schramm David B Wilson

(Proper) q-coloring of graph G: labelling of vertices with colors 1,...,q giving adjacent vertices different colors

E.g. Z^2

(Proper) q-coloring of graph G: labelling of vertices with colors 1,...,q giving adjacent vertices different colors

E.g. Z^2

Can we color with no "central authority" each vertex is an identical "independent agent"?

2-colouring

Random stationary colorings?

I.i.d. colors clearly impossible. Approximate independence? Trivial tails? Decay of correlations? Mixing?

Definition: a process X=(X_v)_{vEZ}d is a finitary factor of an iid process (ffiid) if:

1. $X=f(U)$ for $U=(U_v)$ an iid process on Z^d 2. f is translation-equivariant:

 $f(T u) = T f(u)$ for any translation T 3. f is finitary:

> X_0 is determined by U on [-R,R]^d for some random $R \times \infty$, (the coding radius)

$$
\begin{aligned} \text{I.e.: } &\exists \text{ r=r(u) s.t.} \\ &\text{u=u' on } [-r,r]^d \Rightarrow f(u)_0 = f(u')_0. \\ &\text{R:=r(U)} \end{aligned}
$$

Question: does there exist an ffiid coloring? If so, how small can we make coding radius R?

- Not with $q=2$ colors on Z^d . Not with R≡0 (i.i.d.!).
- Application: Network of machines. Colors represent updating schedules/ communication frequencies (neighbors must not conflict). Can the machines choose colors **locally,** in **distributed** fashion? How locally?

E.g. \exists an ffiid 4-coloring of Z² with $P(R>r) \leq e^{-cr}$:

Label each vertex black/white indep. w.p. $\frac{1}{2}$

Percolation theory:

 $\frac{1}{2}$ < p_c^{site}(Z²) \Rightarrow black/white clusters finite and diam(cluster at 0) has exp tails

Checkerboard white clusters in red/blue black clusters in green/yellow (starting from NE corner)

\exists an ffiid 4-coloring of Z² with $P(R>r) \leq e^{-cr}$:

```
Label each vertex
black/white indep. w.p. \frac{1}{2}
```


Percolation theory:

- $\frac{1}{2}$ < p_c^{site}(Z²) \Rightarrow black/white clusters finite and diam(cluster at 0) has exp tails
- Checkerboard white clusters in red/blue black clusters in green/yellow (isometry-equivariant version: use argmax of iid U[0,1] rvs)

\exists an ffiid 4-coluring of Z² with $P(R>r) \leq e^{-cr}$:

Can we do better? R bounded?

Other d?

Other numbers of colors?

Theorem: For Z^d, <u>d</u>>2: d=1 3 9 ffiid 3-coloring with P(R>r) < r-a Any ffiid 3-coloring has $E(R^2) = \infty$ (power law) \exists ffiid 4-coloring with P(R>r) < 1/ $e^{e^{i\omega}}$ cr Any ffiid q-coloring has $P(R>r) > 1$ Cr (tower law)

 $(a, c, C \in (0, \infty))$ depending on d,q)

Proofs...

3-coloring Z² with power law tails:

Draw / or $\sqrt{w.p. \frac{1}{2}}$ in each square

3-coloring Z^2 with power law tails:

Draw / or $\sqrt{w.p. \frac{1}{2}}$ in each square

On even sub-lattice, see critical bond percolation (clusters finite, power law tails)

On odd sub-lattice, see dual perc. config.

Each cluster is surrounded by a cluster and vice versa. We'll give each cluster a color.

3-coloring Z^d with power law tails:

Hierarchical construction of partition of Z^d with tree structure, power tails

Color each cell with a checkerboard:

Each "special" cell chooses a checkerboard colouring, tries to force descendants to use it

Proof of lower bound $E(R^2) = \infty$ for 3-coloring on Z²:

in fact, any stationary 3-coloring has slowly decaying (power law) correlations.

- **0 2 1 2 0 1 6 5 4 5 6 7 5 4 3 4 5 6**
- **2 1 0 1 2 0 1 2 1 0 1 2 4 5 4 3 4 5**
	- **2 0 2 1 2 0 5 6 5 4 5 6** colouring height function

height change around contour must be 0

height change around contour must be 0

tail triviality \Rightarrow Var(change along side) large

(Lemma: $(Y_i)_{i\in\mathbb{Z}}$ ±1-valued, stationary, right-tail-trivial, not deterministic \Rightarrow limsup_{n→∞} Var $\sum_{i=1}^{n} Y_i = \infty$ **a.s.**)

fast decay of correlations \Rightarrow changes along sides approx independent \Rightarrow contradiction.

Tower colouring on Z with some # of colors:

2 1 6 5 5 5 4

Reduction 2^n -labelling \rightarrow (2n+1)-labelling (essentially Cole, Vishkin, 1986)

0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 Get a color-clash only where original sequence had one. Doing this k times, starting from i.i.d., get $P(\text{clash}) \cdot 1/\text{tower}(\text{ck})$, 6+1 colors, $R \leq \lceil k/2 \rceil$. $(\times,2)$ $(\times,1)$ $(\times,2)$ * * 1 st diff. digit binary

"Stitch together" these almost-colorings for different k to get ffiid 6-coloring of Z

\Rightarrow 6^d-coloring on Z^d

Reduce $#$ colors to degree+1 by elimination:

5 3 6 2 1 6 2 1 6 5 $\begin{array}{ccc} 5 & 3 & 1 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{array}$

Reduction to 4 colors on Zd:

long-range colorings, maximal indep sets, $local$ modifications \Rightarrow

tower-ffiid 2-labelling with bounded clusters

checkerboard

Proof of lower bound P(R>r) > 1/tower(Cr)

Key step: (essentially M. Naor 1991; arguably Ramsey 1930)

For (U_i) i.i.d., $f: R^r \to \{1, ..., q\}$,

 $\mathbb{P}[f(U_1, ..., U_r) = f(U_2, ..., U_{r+1})] >$ 1 $2^{2^{2}}$ ^(4q) height r

(essentially tight!)

Proof that for (U_i) i.i.d. and $f: R^r \to \{1, ..., q\}$,

$$
P[f(U_1, ..., U_r) = f(U_2, ..., U_{r+1})] > 0:
$$

Induction on r. r = 1 easy (i.i.d.).

$$
r \ge 2:
$$

$$
S(u_1, ..., u_{r-1}) = \{a : f(u_1, ..., u_{r-1}, U_r) = a \text{ wpp}\}.
$$

S takes $\le 2^q$ values;
induction $\Rightarrow S(U_1, ..., U_{r-1}) = S(U_2, ..., U_r)$ wpp.
So $\exists a, A \text{ s.t. wpp}:$

$$
S(U_1, ..., U_{r-1}) = A = S(U_2, ..., U_r)
$$

$$
f(U_1, ..., U_r) = a = f(U_2, ..., U_{r+1})
$$

A shift of finite type is a subset of $\{1, \ldots, q\}^{\mathsf{Z}}$ d determined by insisting that all k-boxes lie in some given $A \subset \{1,...,q\}^{[0,k]^d}$

E.g.: q-coloring on Z: $A = \{(x,y):x \neq y\}$

Theorem: For d=1 and any shift of finite type S, either:

1. there is no ffiid process in S ("periodicity" obstruction) (e.g. 2-colouring)

2. \exists ffiid process in S with $P(R>r) \cdot 1/tower (cr)$ any ffiid process in S has $P(R>r) > 1/tower(Cr)$ (e.g. 3-colouring)

or

3. some constant sequence lies in S (so ffiid with "R=0") $(e.g. q=1, S=\{1\}^Z)$

For a shift of finite type in $d \geq 2$, can have:

- No ffiid process (e.g. 2-col)
- Power law ffiid process (e.g. 3-col)
- Tower law ffiid process (e.g. 4-col)

Constant (R=0) process possible (e.g. "no restriction") Q: Is any other behaviour possible?

Beyond finitary factors: X is a k-block factor if X_i =g(U $_{i+1},...,$ U $_{i+k}$), (U $_i$) iid (Ffiid process with $R\leq k \Leftrightarrow$ (2k+1)-block factor) Theorem \Rightarrow no block factor colourings. Process $X = (X_i)_{i \in Z}$

Stationary process X is k-dependent if (X_k, X_{k+1}, \ldots) $\perp (X_k, X_{k+1}, \ldots)$

k-block factor \Rightarrow stationary, (k-1)-dependent **?** (Ibragimov, Linnik, 1965) **No!** (Aaronson, Gilat, Keane, de Valk, 1989) Longstanding Q: "Natural" counterexample? Coloring leads to an answer!

Thm (H., Liggett): 1-dependent 4-coloring!