Finitary Coloring

Alexander E Holroyd Oded Schramm David B Wilson

(Proper) q-coloring of graph G: labelling of vertices with colors 1,...,q giving adjacent vertices different colors

E.g. Z^2

(Proper) q-coloring of graph G: labelling of vertices with colors 1,...,q giving adjacent vertices different colors

E.g. Z²

Can we color with no "central authority" each vertex is an identical "independent agent"?

2-colouring

Random stationary colorings?

I.i.d. colors clearly impossible. Approximate independence? Trivial tails? Decay of correlations? Mixing?

<u>Definition</u>: a process $X=(X_v)_{v\in Z^d}$ is a <u>finitary factor of an iid process</u> (ffiid) if:

1. X=f(U) for $U=(U_v)$ an iid process on Z^d 2. f is translation-equivariant:

f(Tu) = T f(u) for any translation T
3. f is finitary:

 X_0 is determined by U on [-R,R]^d for some random R < ∞ , (the coding radius)

> I.e.: $\exists r=r(u) s.t.$ $u=u' \text{ on } [-r,r]^d \Rightarrow f(u)_0=f(u')_{0.}$ R:=r(U)

Question: does there exist an ffiid coloring? If so, how small can we make coding radius R?

Not with q=2 colors on Z^d . Not with R=0 (i.i.d.!).

Application: Network of machines. Colors represent updating schedules/ communication frequencies (neighbors must not conflict). Can the machines choose colors locally, in distributed fashion? How locally? E.g. \exists an ffiid 4-coloring of Z^2 with $P(R>r) \leq e^{-cr}$:

Label each vertex black/white indep. w.p. $\frac{1}{2}$

Percolation theory:

 $\frac{1}{2} < p_c^{site}(Z^2) \Rightarrow black/white clusters finite$ and diam(cluster at 0) has exp tails

Checkerboard (starting white clusters in red/blue from NE black clusters in green/yellow corner)

\exists an ffiid 4-coloring of Z^2 with $P(R>r) \leq e^{-cr}$:

```
Label each vertex black/white indep. w.p. \frac{1}{2}
```


Percolation theory:

- $\frac{1}{2} < p_c^{site}(Z^2) \Rightarrow black/white clusters finite$ and diam(cluster at 0) has exp tails
- Checkerboard (isometry-equivariant version: white clusters in red/blue use argmax of iid black clusters in green/yellow U[0,1] rvs)

\exists an ffiid 4-coluring of Z^2 with $P(R>r) \leq e^{-cr}$:

Can we do better? R bounded?

Other d?

Other numbers of colors?

<u>Theorem</u>: For Z^d , $d \ge 2$: d=1 \exists ffiid 3-coloring with P(R>r) < r (power law) Any ffiid 3-coloring has $E(R^2) = \infty$ \exists ffiid 4-coloring with P(R>r) < $1/e^{e^{-\frac{1}{2}}}$ cr Any ffiid q-coloring has $P(R>r) > 1 / e^{-\frac{r}{2}} Cr$ (tower law)

 $(a,c,C \in (0,\infty)$ depending on d,q)

Proofs...

<u>3-coloring Z² with power law tails:</u>

Draw / or $\ w.p. \frac{1}{2}$ in each square

<u>3-coloring Z² with power law tails:</u>

Draw / or $\ w.p. \frac{1}{2}$ in each square

On even sub-lattice, see critical bond percolation (clusters finite, power law tails)

On odd sub-lattice, see dual perc. config.

Each cluster is surrounded by a cluster and vice versa. We'll give each cluster a color.

<u>3-coloring Z^d with power law tails:</u>

Hierarchical construction of partition of Z^d with tree structure, power tails

Color each cell with a checkerboard: Each "special" cell chooses a checkerboard colouring, tries to force descendants to use it <u>Proof of lower bound $E(R^2) = \infty$ </u> for 3-coloring on Z^2 :

in fact, any stationary 3-coloring has slowly decaying (power law) correlations.

height change around contour must be 0

height change around contour must be 0

tail triviality \Rightarrow Var(change along side) large

(Lemma: $(Y_i)_{i \in \mathbb{Z}} \pm 1$ -valued, stationary, right-tail-trivial, not deterministic $\Rightarrow \text{ limsup}_{n \to \infty} \text{ Var } \sum_{i=1}^{n} Y_i = \infty \text{ a.s.}$)

fast decay of correlations \Rightarrow changes along sides approx independent \Rightarrow contradiction. Tower colouring on Z with *some* # of colors:

6

2

Reduction 2ⁿ-labelling → (2n+1)-labelling (essentially Cole, Vishkin, 1986)

5

4

binar 1st diff. digit (>,2) (<,1) (>,2) * * Get a color-clash only where original sequence had one. Doing this k times, starting from i.i.d., get $P(clash) < 1/tower(ck), 6+1 colors, R \leq [k/2].$

"Stitch together" these almost-colorings for different k to get ffiid 6-coloring of Z

\Rightarrow 6^d-coloring on Z^d

Reduce # colors to degree+1 by elimination:

Reduction to 4 colors on Z^d:

long-range colorings, maximal indep sets, local modifications \Rightarrow

tower-ffiid 2-labelling with bounded clusters

checkerboard

Proof of lower bound P(R>r) > 1/tower(Cr)

Key step: (essentially M. Naor 1991; arguably Ramsey 1930)

For (U_i) i.i.d., $f: \mathbb{R}^r \to \{1, \dots, q\}$,

 $\mathbb{P}[f(U_1, \dots, U_r) = f(U_2, \dots, U_{r+1})] > \frac{1}{2^{2^2}}$ height r

(essentially tight!)

Proof that for (U_i) i.i.d. and $f: \mathbb{R}^r \to \{1, \dots, q\}$,

$$P[f(U_1, ..., U_r) = f(U_2, ..., U_{r+1})] > 0:$$

Induction on r. r = 1 easy (i.i.d.).
r ≥ 2:
 $S(u_1, ..., u_{r-1}): = \{a: f(u_1, ..., u_{r-1}, U_r) = a \text{ wpp}\}.$
S takes $\leq 2^q$ values;
induction $\Rightarrow S(U_1, ..., U_{r-1}) = S(U_2, ..., U_r)$ wpp.
So $\exists a, A \text{ s.t. wpp:}$
 $S(U_1, ..., U_{r-1}) = A = S(U_2, ..., U_r)$
 $\bigcup U_1, ..., U_r) = a = f(U_2, ..., U_{r+1})$

A shift of finite type is a subset of $\{1,...,q\}^{Z^d}$ determined by insisting that all k-boxes lie in some given $A \subset \{1,...,q\}^{[0,k]^d}$

E.g.: q-coloring on Z: $A=\{(x,y):x\neq y\}$

<u>Theorem</u>: For d=1 and any shift of finite type S, either:

there is no ffiid process in S
 ("periodicity" obstruction) (e.g. 2-colouring)

2. ∃ ffiid process in S with P(R>r) < 1/tower(cr) any ffiid process in S has P(R>r) > 1/tower(Cr) (e.g. 3-colouring)

or

3. some constant sequence lies in S (so ffiid with "R=0") (e.g. q=1, S={1}^Z) For a shift of finite type in $d \ge 2$, can have:

- No ffiid process (e.g. 2-col)
- Power law ffiid process (e.g. 3-col)
- Tower law ffiid process (e.g. 4-col)
- Constant (R=0) process possible (e.g. "no restriction") Q: Is any other behaviour possible?

Beyond finitary factors: Process $X=(X_i)_{i\in Z}$ X is a k-block factor if $X_i=g(U_{i+1},...,U_{i+k})$, (U_i) iid (Ffiid process with $R \le k \Leftrightarrow (2k+1)$ -block factor) Theorem \Rightarrow no block factor colourings.

Stationary process X is k-dependent if $(...,X_{-2},X_{-1}) \stackrel{I\!\!I}{=} (X_k,X_{k+1},...)$

k-block factor ⇒ stationary, (k-1)-dependent
⇔? (Ibragimov, Linnik, 1965)
No! (Aaronson, Gilat, Keane, de Valk, 1989)
Longstanding Q: "Natural" counterexample?
Coloring leads to an answer!
Thm (H., Liggett): ∃ 1-dependent 4-coloring!