The complexity of approximately counting in 2-spin systems on *k*-uniform bounded-degree hypergraphs

Andreas Galanis and Leslie Ann Goldberg, University of Oxford

Workshop on Approximate Counting, Markov Chains and Phase Transitions, Feb. 22 – Feb. 26, 2016 Simons Institute for the Theory of Computing, Berkeley,

Spins: {0, 1}

Symmetric Interaction matrix:	\n $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ \n	\n interaction between two spins \n
-------------------------------	---	--

 $\lambda > 0$

Spins: {0, 1}

Symmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ \setminus $\beta, \gamma \geqslant 0$

 $\lambda > 0$

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u),\sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma:V \to \{0,1\}} w_{A;G}(\sigma)
$$

conjuguation<sup>"
of assigns
spins to
vertices</sup>

Spins: {0, 1} Symmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ \setminus $\beta, \gamma \geqslant 0$ $= 0, \, \gamma = 1$ "hard-core" independent sets

 $\lambda > 0$

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Example: "Hard-core lattice gas" (Independent Sets)

$$
A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
$$

\nG
\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

\

 $Z_{A;G} = 1 + 3\lambda$

Spins: {0, 1} Symmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ \setminus $\beta, \gamma \geqslant 0$ $= 0, \, \gamma = 1$ "hard-core" independent sets

 $\lambda > 0$

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Spins: {0, 1} Symmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ $\left| \right|$ $\beta, \gamma \geqslant 0$ $\beta = 0, \gamma = 1$ "hard-core" independent sets $\sqrt{\beta\gamma} < 1$ anti-ferromagnetic

 $\lambda > 0$

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Spins: {0, 1}

Symmetric Interaction matrix:
$$
A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}
$$
 $\begin{pmatrix} \frac{\beta - \gamma \text{ Ising}}{\gamma} \\ \frac{\beta \gamma}{\gamma} \end{pmatrix}$
 $\beta, \gamma \ge 0$ $\begin{pmatrix} \frac{\beta \gamma}{\gamma} & 1 \text{ anti-ferromagnetic} \\ \frac{\beta \gamma}{\gamma} & 1 \end{pmatrix}$

 $\lambda > 0$

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

2-state spin system Spins: {0, 1}

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

2-state spin system Spins: {0, 1}

$$
w_{A;G}(\sigma) = \prod_{w \in V} \lambda^{|\sigma^{-1}(0)|} \prod_{\{u,v\} \in E} a_{\sigma(u),\sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma:V \to \{0,1\}} w_{A;G}(\sigma) \qquad \text{underlying phase tran-stition: study of randomconfigs}.
$$

The Gibbs measure $\mu_{A,G}(\sigma) = w_{A,G}(\sigma)/Z_{A,G}$

A Gibbs measure on an infinite graph is a measure such that the induced measure on any finite piece *G* is given by $\mu_{A/G}(\sigma)$ (conditioned on boundary)

Usually (compactness) there is at least one Gibbs measure, but there can be more than one (or, for some models, infinitely many)

[Back](#page-0-0)

Anti-ferromagnetic 2-spin. $\Delta \geqslant 3$.

Amazing fact: If infinite ∆-regular tree has multiple Gibbs measures (non-uniqueness) ∃*c* > 1 such that it is NP-hard to approximate $Z_{A;G}$ within a factor of c^n on ∆-regular graphs. If $\forall d \leqslant \Delta$ the infinite *d*-regular tree has a unique Gibbs measure ∃ FPTAS for $Z_{A:G}$ on graphs with degree $\leq \Delta$.

Sly, Sun 2012 (Sly 2010; Galanis, Štefankovič, Vigoda 2012) Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012

Anti-ferromagnetic 2-spin. $\Delta \geqslant 3$.

Amazing fact: If infinite ∆-regular tree has multiple Gibbs measures (non-uniqueness) ∃*c* > 1 such that it is NP-hard to approximate $Z_{A;G}$ within a factor of c^n on ∆-regular graphs. If $\forall d \leq \Delta$ the infinite *d*-regular tree has a unique Gibbs measure ∃ FPTAS for *Z ^A*;*^G* on graphs with degree $\leq \Delta$.

Sly, Sun 2012 (Sly 2010; Galanis, Štefankovič, Vigoda 2012) Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012

So when are $β$, $γ$ and $λ$ in the uniqueness regime?

$$
\lambda = 1.
$$

• $0 \le \beta < 1$ and $0 < \gamma \le 1$: non-uniqueness on the infinite ∆-regular tree for all sufficiently large ∆.

• $0 \le \beta < 1$ and $\gamma > 1$:

uniqueness holds on the infinite ∆-regular tree for all sufficiently large ∆.

the curve for a given ∆ sort of as drawn

Easy to tell when parameters are in the uniqueness regime

$$
f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^{\Delta - 1}
$$

Uniqueness: *f* ◦ *f* has unique positive fixed point.

Easy to tell when parameters are in the uniqueness regime $f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma} \right)$ $\frac{3x+1}{x+\gamma}$ ^{$\Delta-1$} Recall $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ λ

Uniqueness: *f* ◦ *f* has unique positive fixed point.

Easy to tell when parameters are in the uniqueness regime $f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma} \right)$ $\frac{3x+1}{x+\gamma}$ ^{$\Delta-1$} Recall $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ λ

Uniqueness: *f* ◦ *f* has unique positive fixed point.

$$
n[1] = \text{EQS} = \{ y = \lambda ((\beta x + 1) / (x + \gamma)) ^ \ (\Delta - 1), x = \lambda ((\beta y + 1) / (y + \gamma)) ^ \ (\Delta - 1), x > 0, y > 0 \};
$$

NSolve EOS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 3\}$, $\{\alpha, \gamma\}$, Reals NSolve EQS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 4\}$, $\{x, y\}$, Reals NSolve [EQS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 5\}$, $\{x, y\}$, Reals] NSolve EOS /, $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 6\}$, $\{\gamma, \gamma\}$, Reals

Out $2l = \{ \{ x \rightarrow 0.465571, y \rightarrow 0.465571 \} \}$

Out $3 = \{ \{ x \rightarrow 0.380278, y \rightarrow 0.380278 \} \}$

Out[4]= $\{ \{ \mathbf{x} \rightarrow 0.324718, \mathbf{y} \rightarrow 0.324718 \} \}$

Out[5]= {{**x** → 0.06377, **y** → 0.73411}, {**x** → 0.285199, **y** → 0.285199}}

Easy to tell when parameters are in the uniqueness regime $f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma} \right)$ $\frac{3x+1}{x+\gamma}$ ^{$\Delta-1$} Recall $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ λ

Uniqueness: *f* ◦ *f* has unique positive fixed point.

$$
|\eta[1]| = \text{EQS} = \{y = 3 \ (\beta x + 1) / (x + \gamma) \land (\Delta - 1), x = 3 \ ((\beta y + 1) / (y + \gamma)) \land (\Delta - 1), x > 0, y > 0\};
$$

NSolve [EQS /. $\{\beta \to 0, \gamma \to 1, \lambda \to 1, \Delta \to 3\}$, $\{x, y\}$, Reals] NSolve EQS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 4\}$, $\{x, y\}$, Reals NSolve [EQS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 5\}$, $\{x, y\}$, Reals] NSolve [EQS /. $\{\beta \rightarrow 0, \gamma \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 6\}$, $\{x, y\}$, Reals]

Out[2]= $\{ \{ x \rightarrow 0.465571, y \rightarrow 0.465571 \} \}$

I ind set on 3-regular tree: Nodes "in" with probability $x/(1 + x) \sim 0.32$.

Outf3l= $\{ \{ \mathbf{x} \rightarrow 0.380278, \mathbf{y} \rightarrow 0.380278 \} \}$

Out[4]= $\{ \{ \mathbf{x} \rightarrow 0.324718, \mathbf{y} \rightarrow 0.324718 \} \}$

Out[5]= $\{x \to 0.06377, y \to 0.73411\}$, $\{x \to 0.285199, y \to 0.285199\}$

6-regular: Nodes "in" with probability 0.06 and 0.42 alternate layers

Recall: 2-state spin system (without external field) **Spins:** $\{0, 1\}$

Symmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$ 1 γ \setminus

Instance: $G = (V, E)$

$$
w_{A;G}(\sigma) = \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Symmetric arity-*k* Boolean function $f: \{0, 1\}^k \to \mathbb{R}_{\geqslant 0}$

Symmetric Interaction matrix:
$$
A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}
$$

Instance: $G = (V, E)$

Partition function:

Spins: {0, 1}

$$
w_{A;G}(\sigma) = \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Spins: {0, 1}
\n*Symmetric arity-k Boolean function
$$
f : \{0, 1\}^k \to \mathbb{R}_{\geqslant 0}
$$*

\nSymmetric Interaction matrix: $A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$

\nInstance: $G = (V, E) < \frac{k\text{-uniform hypergraph } H = (V, \mathcal{F}) \text{ with max degree } k\text{-factor in } \leqslant \Delta \text{ hyperedges.}$

$$
w_{A;G}(\sigma) = \prod_{\{u,v\} \in E} a_{\sigma(u), \sigma(v)}
$$

$$
Z_{A;G} = \sum_{\sigma: V \to \{0,1\}} w_{A;G}(\sigma)
$$

Spins: {0, 1}

\nSymmetric
$$
\text{interaction matrix: } A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}
$$

\nSymmetric $\text{Interaction matrix: } A = \begin{pmatrix} \beta & 1 \\ 1 & \gamma \end{pmatrix}$

\nInstance: $G = (V, E) \leq \frac{k\text{-uniform hypergraph } H = (V, \mathcal{F}) \text{ with max degree } k\text{ with sum } k\text{ with max degree } k\text{ with max degree } k\text{ with sum } k\text{ with$

Complications with larger arity!

There may be no computational threshold, or if there is, it might not coincide with the uniqueness threshold

Example: strong independent sets

(Liu, Lin 2015, Yin, Zhao 2015)

 $f(s_1, \ldots, s_k) = 1$ iff at most one of s_1, \ldots, s_k is 0.

Complications with larger arity!

There may be no computational threshold, or if there is, it might not coincide with the uniqueness threshold

Example: strong independent sets

(Liu, Lin 2015, Yin, Zhao 2015)

 $f(s_1, \ldots, s_k) = 1$ iff at most one of s_1, \ldots, s_k is 0.

Strong Independent Set. $k = 3$. $\Delta = 5$.

Strong Independent Set. $k = 3$.

```
Uniqueness only for \Delta \leq 3
```
 $ln[1] = k = 3$: EQS = { $y = \lambda ((\beta x + 1) / ((k - 1) x + \gamma))$ ^ ($\Delta - 1$), $x = \lambda ((By + 1) / ((k-1)y + \gamma)) (A-1) . x > 0. y > 0$ NSolve EOS / $\{ \beta \rightarrow 0, \ \gamma \rightarrow 1, \ \lambda \rightarrow 1, \ \Delta \rightarrow 3 \}$, $\{x, y\}$, Reals NSolve EOS / $\{B \rightarrow 0, x \rightarrow 1, \lambda \rightarrow 1, \Delta \rightarrow 4\}$, $\{x, y\}$, Reals Out[3]= $\{ \{ x \rightarrow 0.34781, y \rightarrow 0.34781 \} \}$ Out[4]= {{ $x \rightarrow 0.584659$, $y \rightarrow 0.0979558$ }, { $x \rightarrow 0.0979558$, $y \rightarrow 0.584659$ }, { $x \rightarrow 0.27$ Uniqueness on the Δ -uniform hypertree iff $\Delta \leq 3$

 $\Delta \leq 3$: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly) establish strong spatial mixing which leads to approximation scheme

 $\Delta = 4, 5$: [Strong spatial mixing](#page-0-0) fails (due to non-uniqueness)

 $\Delta \geq 6$: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show hardness for 4, 5 so these cases remain open

For "natural" functions *f*

Uniqueness on the Δ -uniform hypertree iff $\Delta \leq 3$

 $\Delta \leq 3$: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly) establish strong spatial mixing which leads to approximation scheme

 $\Delta = 4, 5$: [Strong spatial mixing](#page-0-0) fails (due to non-uniqueness)

 $\Delta \geq 6$: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show hardness for 4, 5 so these cases remain open

> FPRAS should exist up to SSM threshold, which is [\(in general\)](#page-0-0) below the uniqueness threshold

For "natural" functions *f*

Uniqueness on the Δ -uniform hypertree iff $\Delta \leq 3$

 $\Delta \leq 3$: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly) establish strong spatial mixing which leads to approximation scheme

 $\Delta = 4, 5$: [Strong spatial mixing](#page-0-0) fails (due to non-uniqueness)

 $\Delta \geq 6$: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show hardness for 4, 5 so these cases remain open

For "natural" functions *f*

Uniqueness on the Δ -uniform hypertree iff $\Delta \leq 3$

 $\Delta \leq 3$: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly) establish strong spatial mixing which leads to approximation scheme

 $\Delta = 4, 5$: [Strong spatial mixing](#page-0-0) fails (due to non-uniqueness)

 $\Delta \geq 6$: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show hardness for 4, 5 so these cases remain open

> Not clear in general whether there exists a computational threshold or, if this exists, whether it coincides with the uniqueness threshold

Our result

Definition. For $k \geq 2$, let EASY(k) be the set containing the following seven functions.

$$
f_{\text{zero}}^{(k)}(x_1,\ldots,x_k) = 0, \quad f_{\text{one}}^{(k)}(x_1,\ldots,x_k) = 1, \quad f_{\text{allzero}}^{(k)}(x_1,\ldots,x_k) = \mathbf{1}\{x_1 = \ldots = x_k = 0\},
$$

\n
$$
f_{\text{allone}}^{(k)}(x_1,\ldots,x_k) = \mathbf{1}\{x_1 = \ldots = x_k = 1\}, \quad f_{\text{EO}}^{(k)}(x_1,\ldots,x_k) = \mathbf{1}\{x_1 = \ldots = x_k\},
$$

\n
$$
f_{\text{even}}^{(k)}(x_1,\ldots,x_k) = \mathbf{1}\{x_1 \oplus \cdots \oplus x_k = 0\}, \quad f_{\text{odd}}^{(k)}(x_1,\ldots,x_k) = \mathbf{1}\{x_1 \oplus \cdots \oplus x_k = 1\}.
$$

Observation. If $f \in EASY(k)$. Then it is easy to compute $Z_{f:H}$.

Theorem. For any other symmetric Boolean function $f:\{0,1\}^k\rightarrow\{0,1\},$ $\exists \Delta_0$ such that $\forall \Delta\geqslant \Delta_0,$ $\exists c>1$ such that it is NP-hard to approximate $Z_{f;H}$ within a factor of c^n on k -uniform hypergraphs with degree $\leq \Delta$.

Connection to counting Constraint Satisfaction Problems (#CSPs)

Γ : Set of Boolean functions (constraint langauage) Each arity *k* function in Γ is of the form $f: \{0, 1\}^k \to \{0, 1\}.$

CSP instance *I*: Set *V* of variables. Each constraint $f(v_1, \ldots, v_k)$ applies a *k*-ary function $f \in \Gamma$ to a tuple of (not necessarily distinct) variables.

Name #CSP∆,*c*(Γ).

Instance *n*-variable instance *I* of a CSP(Γ). Each variable is used at most ∆ times.

 Output number \widehat{Z} such that $c^{-n}Z_{\Gamma;I} \leqslant \widehat{Z} \leqslant c^nZ_{\Gamma;I}$,

*Z*Γ,*^I* : number of satisfying assignments of *I*.

Counting CSP Corollary

Corollary. Let $k \ge 2$ and let $f : \{0, 1\}^k \to \{0, 1\}$ be a symmetric *Boolean function such that* $f \notin EASY(k)$ *. Then, there exists* Δ_0 *such that for all* $\Delta \ge \Delta_0$, there exists $c > 1$ *such that* #CSP∆,*c*({*f*}) *is* NP*-hard.*

• Adding a degree bound $\Delta = 3$ makes no difference to the difficulty of exact counting CSPs (Creignou and Hermann 1996, Cai, Lu, Xia 2009). If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP₃(Γ) is #P-complete.

• Adding a degree bound $\Delta = 3$ makes no difference to the difficulty of exact counting CSPs (Creignou and Hermann 1996, Cai, Lu, Xia 2009). If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP₃(Γ) is #P-complete.

Γ is affine if every function is $f_{\text{even}}^{(k)}$ or $f_{\text{odd}}^{(k)}$ for some k .

• Adding a degree bound $\Delta = 3$ makes no difference to the difficulty of exact counting CSPs (Creignou and Hermann 1996, Cai, Lu, Xia 2009). If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP₃(Γ) is #P-complete.

• This restriction also leaves the complexity unchanged for decision CSPs (Dalmau and Ford 2003 in the special case where Γ includes the two unary pinning functions.

- $\delta_0(0) = 1$ and $\delta_0(1) = 0$.
- $\delta_1(0) = 0$ and $\delta_1(1) = 1$.

• Adding a degree bound $\Delta = 3$ makes no difference to the difficulty of exact counting CSPs (Creignou and Hermann 1996, Cai, Lu, Xia 2009). If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP₃(Γ) is #P-complete.

• This restriction also leaves the complexity unchanged for decision CSPs (Dalmau and Ford 2003 in the special case where Γ includes the two unary pinning functions.

$$
\bullet \; \delta_0(0)=1 \text{ and } \delta_0(1)=0.
$$

•
$$
\delta_1(0) = 0
$$
 and $\delta_1(1) = 1$.

bounded-degree decision has not been considered without pinning

• Adding a degree bound $\Delta = 3$ makes no difference to the difficulty of exact counting CSPs (Creignou and Hermann 1996, Cai, Lu, Xia 2009). If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP₃(Γ) is #P-complete.

• This restriction also leaves the complexity unchanged for decision CSPs (Dalmau and Ford 2003 in the special case where Γ includes the two unary pinning functions.

•
$$
\delta_0(0) = 1
$$
 and $\delta_0(1) = 0$.

•
$$
\delta_1(0) = 0
$$
 and $\delta_1(1) = 1$.

 $\Delta = 2$ is holant. Not fully classified for counting or decision. Decision is as hard as the general case if the relation is not a "Delta-matroid". Feder 2001

Approximate counting

Dyer, Goldberg, Jalsenius, Richerby 2012 For every $\Delta \geq 6$ and $k ≥ 3$ and every symmetric k -ary Boolean function $f ∉ EASY(k)$, there is no FPRAS for $\#\text{CSP}(\{f, \delta_0, \delta_1\})$ unless NP = RP.

Not true for our setting!

Example: weak independent sets

 $f(s_1, \ldots, s_k) = 1$ iff at least one of s_1, \ldots, s_k is 1.

Not in EASY(k) for any $k \geq 2$.

Bordewich, Dyer, Karpinski 2008: For every $\Delta \leqslant (k-1)/2$, there is an FPRAS for the partition function $Z_{f:H}$ on the class of *k*-uniform hypergraphs *H* with maximum degree at most ∆. (so not hard for every $\Delta \geq 6$ as above)

Back to the result

Name #Hyper2Spin(*f* , ∆, *c*).

Instance An *n*-vertex *k*-uniform hypergraph *H* with maximum degree at most ∆. $\textsf{Output } \mathsf{A} \textsf{ number } \widehat{\mathsf{Z}} \textsf{ such that } c^{-n} \mathsf{Z}_{f;H} \leqslant \widehat{\mathsf{Z}} \leqslant c^n \mathsf{Z}_{f;H}.$

Theorem. Let $k \geq 2$ and let $f : \{0, 1\}^k \to \{0, 1\}$ be a symmetric Boolean function such that $f \notin EASY(k)$. Then there exists Δ_0 such that for all $\Delta \geq \Delta_0$, there exists $c > 1$ such that #Hyper2Spin(*f* , ∆, *c*) is NP-hard.