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Example: “Hard-core lattice gas” (Independent Sets)
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2-state spin system
Spins: {0, 1}

Symmetric Interaction matrix: A = ([15 i/)
B,y > 0<£[5y < 1 anti-ferromagnetic ]
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The Gibbs measure pa.g(0) =wa:g(0)/Zac

A Gibbs measure on an infinite graph is a measure such that
the induced measure on any finite piece G is given by pa.6(0o)
(conditioned on boundary)

Usually (compactness) there is at least one Gibbs measure, but
there can be more than one (or, for some models, infinitely
many)

Back



Anti-ferromagnetic 2-spin. A > 3.

Amazing fact: If infinite
A-regular tree has
multiple Gibbs measures
(non-uniqueness) dc > 1
such that it is NP-hard to
approximate Z4.¢ within
a factor of ¢ on
A-regular graphs. If

Vd < A the infinite
d-regular tree has a
unique Gibbs measure 3
FPTAS for Z4,c on
graphs with degree < A.

Sly, Sun 2012 (Sly 2010; Galanis, Stefankovi¢, Vigoda 2012)
Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012
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So when are 3, vy and A in the uniqueness regime?

T A=

e0<Pp<land0 <y < 1:

: non-unigueness on the infinite
A-regular tree for all sufficiently
large A.

e0<pB<landy > 1:
uniqueness holds on the infinite
A-regular tree for all sufficiently
large A.
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Easy to tell when parameters are in the uniqueness
regime

Fe) = (B

Uniqueness: f o f has unique positive fixed point.
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Easy to tell when parameters are in the uniqueness

regime %RecallA:G5 :/) ’
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i) = (Bt

Uniqueness: f o f has unique positive fixed point.

ni= EQS = {y == A ((Bx + 1)/ (x + ¥)) " (a-1),
x=A((By+1) / (y+¥))"(a-1),x>0, y>0};

NSolve[EQS /. {0, y»1, A>»1, A-» 3}, {x, v}, Reals]
NSolve[EQS /. {B»0, ¥y»1, A-»1, A-> 4}, {x, v}, Reals]
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ind set on 3-regular tree: Nodes “in”
uti2l= 0.465571, 0.465571 ) -
ot x> ¥ } }<[W|th probability x/(1 + x) ~ 0.32.

outigl= {{x—>0.380278, y - 0.380278}}
out4= {{x—>0.324718, y > 0.324718}}

ousl= {{x > 0.06377, y— 0.73411}, {x - 0.285199, y - 0.285199}}

[6-regular: Nodes “in” with probability 0.06 and 0.42 alternate layers ]




What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

, . . B 1
Symmetric Interaction matrix: A = 1y
Instance: G = (V,E)

Partition function:
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What about increased arity?

[Oftenf 0,1} — {0, 1} ]
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Complications with larger arity!

There may be no computational threshold, or if there is, it might
not coincide with the uniqueness threshold

Example: strong independent sets
(Liu, Lin 2015, Yin, Zhao 2015)

f(s1,...,5¢) = 1iff at most one of s1,...,s;is 0.

@
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Strong Independent Set. k =3. A =5.
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Strong Independent Set. k = 3.

Uniqueness only for A < 3

)= k = 3;
EQS = {y
x

A(Bx+ 1)/ ((k-1)x +¥))"(a-1),
A((By +1) / ((k-1)y +¥))"(a-1), x>0, ¥y>0};

NSolve[EQS /. {B-+0, ¥y=»1, A-»1, A~ 3}, {x, v}, Reals]
NSolve[EQS /. {20, vy»1, A1, A 4}, {x, v}, Reals]

oua= {{x » 0.34781, y » 0.34781}}

outi4= {{x > 0.584659, y - 0.0979558}, {x —+ 0.0979558, y » 0.584659}, {x > 0.27



Uniqueness on the A-uniform hypertree iff A <3

A < 3: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly)
establish strong spatial mixing which leads to
approximation scheme

A = 4,5: Strong spatial mixing fails (due to
non-uniqueness)

A > 6: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show
hardness for 4,5 so these cases remain open
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For “natural” functions f

Uniqueness on the A-uniform hypertree iff A <3

A < 3: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly)
establish strong spatial mixing which leads to
approximation scheme

A = 4,5: Strong spatial mixing fails (due to
non-uniqueness)

A > 6: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show
hardness for 4,5 so these cases remain open

Not clear in general whether there exists a computational
threshold or, if this exists, whether it coincides with the unique-
ness threshold




Our result

Definition. For k > 2, let EASY (k) be the set containing the
following seven functions.

Fho (it ) = 0, o) =1, fi oy x) = Ly = ... = x =0},

f;ﬁgne(xl ----- Xk) = l{xl ==X = 1}, fi;[g (Xl ----- Xk) = l{xl =...= Xk},
(k)

.ﬁe(\]/(e)n(xl ----- )= @ - Ox =0} fgulx,..., )= @ - &x =1}

Observation. If f € EASY(k). Then it is easy to compute Z;..

Theorem. For any other symmetric Boolean function

£ :{0, 1}* = {0, 1}, A such that VA > Ag, 3¢ > 1 such that it is
NP-hard to approximate Zy,; within a factor of ¢" on k-uniform
hypergraphs with degree < A.



Connection to counting Constraint Satisfaction
Problems (#CSPs)

I': Set of Boolean functions (constraint langauage)
Each arity & function in T is of the form £ : {0, 1}* — {0, 1}.

CSP instance I: Set V of variables. Each constraint f(vy,..., v)
applies a k-ary function f € T to a tuple of (not necessarily
distinct) variables.

Name #CSP4 ().

Instance n-variable instance I of a CSP(T"). Each variable is
used at most A times.

Output number Z such that ¢ "Zr,; < Z < ¢"Zr,

Zr ;- number of satisfying assignments of /.



Counting CSP Corollary

Corollary. Letk >?2 and let f :{0,1} — {0, 1} be a symmetric
Boolean function such thatf ¢ EASY (k). Then, there exists Ay
such that for all A > A, there exists ¢ > 1 such that

#CSPa .({f}) is NP-hard.



What is known about bounded-degree Boolean #CSPs

e Adding a degree bound A = 3 makes no difference to the
difficulty of exact counting CSPs

(Creignou and Hermann 1996, Cai, Lu, Xia 2009).

If I"is affine then #CSP(T") is in FP. Otherwise #CSP;(T") is
#P-complete.
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difficulty of exact counting CSPs

(Creignou and Hermann 1996, Cai, Lu, Xia 2009).

If I"is affine then #CSP(T") is in FP. Otherwise #CSP;(T") is
#P-complete.

¢ This restriction also leaves the complexity unchanged for
decision CSPs (Dalmau and Ford 2003 in the special case
where T includes the two unary pinning functions.

e 50(0) =1and §y(1) =0. {bounded-degree decision

has not been considered

e51(0)=0and & (1) =1. without pinning




What is known about bounded-degree Boolean #CSPs

e Adding a degree bound A = 3 makes no difference to the
difficulty of exact counting CSPs

(Creignou and Hermann 1996, Cai, Lu, Xia 2009).

If I"is affine then #CSP(T") is in FP. Otherwise #CSP;(T") is
#P-complete.

¢ This restriction also leaves the complexity unchanged for
decision CSPs (Dalmau and Ford 2003 in the special case
where T includes the two unary pinning functions.

e 50(0) =1and dp(1) =0.

] 61(0) =0 and 51(1) =1.

A = 2 is holant. Not fully classified for counting or decision.
Decision is as hard as the general case if the relation is not a
“Delta-matroid”. Feder 2001




Approximate counting

Dyer, Goldberg, Jalsenius, Richerby 2012 For every A > 6 and
k > 3 and every symmetric k-ary Boolean function f ¢ EASY (k),
there is no FPRAS for #CSP({f, 59, 6:}) unless NP = RP.

Not true for our setting!

Example: weak independent sets

f(s1,...,s¢) = Liff at least one of sq,...,s¢is 1.
Not in EASY (k) for any k > 2.

Bordewich, Dyer, Karpinski 2008: For every A < (k—1)/2,
there is an FPRAS for the partition function Z.;; on the class of
k-uniform hypergraphs H with maximum degree at most A. (so
not hard for every A > 6 as above)



Back to the result

Name #Hyper2Spin(f, A, ¢).

Instance An n-vertex k-uniform hypergraph H with maximum
degree at most A.

Output A number Z such that c"Zyy < Z < 'Zysp.

Theorem. Let k > 2 and let f: {0, 1}* — {0, 1} be a symmetric
Boolean function such that f ¢ EASY (k). Then there exists Ag
such that for all A > A, there exists ¢ > 1 such that
#Hyper2Spin(f, A, ¢) is NP-hard.



