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2-state spin system
Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
β,γ > 0

λ > 0

Instance: G = (V, E)

Partition function:

w A;G(σ) =
∏
w∈V

λ|σ
−1(0)|

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

interaction
between two
spins
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Example: “Hard-core lattice gas” (Independent Sets)

A =

(
0 1
1 1

)

G
u v

w

1 1

1

w A;G(σ) = 1

1 0

1

w A;G(σ) = λ

×3

0 0

1

w A;G(σ) = 0

×3

0 0

0

w A;G(σ) = 0

Z A;G = 1 + 3λ
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βγ < 1 anti-ferromagnetic

to avoid trivi-
alities: γ > 0

underlying
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of random
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The Gibbs measure µA;G(σ) = w A;G(σ)/Z A;G

A Gibbs measure on an infinite graph is a measure such that
the induced measure on any finite piece G is given by µA;G(σ)

(conditioned on boundary)

Usually (compactness) there is at least one Gibbs measure, but
there can be more than one (or, for some models, infinitely
many)

Back
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Anti-ferromagnetic 2-spin. ∆ > 3.
Amazing fact: If infinite
∆-regular tree has
multiple Gibbs measures
(non-uniqueness) ∃c > 1
such that it is NP-hard to
approximate Z A;G within
a factor of cn on
∆-regular graphs. If
∀d 6 ∆ the infinite
d-regular tree has a
unique Gibbs measure ∃
FPTAS for Z A;G on
graphs with degree 6 ∆.

Sly, Sun 2012 (Sly 2010; Galanis, Štefankovič, Vigoda 2012)
Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012
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a factor of cn on
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unique Gibbs measure ∃
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graphs with degree 6 ∆.

Sly, Sun 2012 (Sly 2010; Galanis, Štefankovič, Vigoda 2012)
Weitz 2006; Sinclair, Srivastava, Thurley 2011; Li, Lu, Yin 2012

ignore the boundary of
uniqueness region
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So when are β, γ and λ in the uniqueness regime?

0 0.5 1 1.5 2 2.5 3
b

0

0.5

1

1.5

2

2.5

3

g

λ = 1.

• 0 6 β < 1 and 0 < γ 6 1:
non-uniqueness on the infinite
∆-regular tree for all sufficiently
large ∆.
• 0 6 β < 1 and γ > 1:
uniqueness holds on the infinite
∆-regular tree for all sufficiently
large ∆.

β

γ

the curve for a given
∆ sort of as drawn
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Easy to tell when parameters are in the uniqueness
regime

f (x) = λ
(
βx+1
x+γ

)∆−1

Uniqueness: f ◦ f has unique positive fixed point.
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Easy to tell when parameters are in the uniqueness
regime

f (x) = λ
(
βx+1
x+γ

)∆−1

Uniqueness: f ◦ f has unique positive fixed point.

Recall A =

(
β 1
1 γ

)

ind set on 3-regular tree: Nodes “in”
with probability x/(1 + x) ∼ 0.32.

6-regular: Nodes “in” with probability 0.06 and 0.42 alternate layers
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What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
Instance: G = (V, E)

Partition function:
w A;G(σ) =

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

8



What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
Instance: G = (V, E)

Partition function:
w A;G(σ) =

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

Symmetric arity-k Boolean function f : {0, 1}k → R>0

8



What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
Instance: G = (V, E)

Partition function:
w A;G(σ) =

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

Symmetric arity-k Boolean function f : {0, 1}k → R>0

k-uniform hypergraph H = (V,F) with max degree
6 ∆ (each vertex in 6 ∆ hyperedges)

8



What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
Instance: G = (V, E)

Partition function:
w A;G(σ) =

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

Symmetric arity-k Boolean function f : {0, 1}k → R>0

k-uniform hypergraph H = (V,F) with max degree
6 ∆ (each vertex in 6 ∆ hyperedges)

w f ;H(σ) =
∏

{v1,...,vk}∈F

f (σ(v1), . . . ,σ(vk))

Z f ;H(σ) =
∑

σ:V→{0,1}

w f ;H(σ)

8



What about increased arity?

Recall: 2-state spin system (without external field)

Spins: {0, 1}

Symmetric Interaction matrix: A =

(
β 1
1 γ

)
Instance: G = (V, E)

Partition function:
w A;G(σ) =

∏
{u,v}∈E

aσ(u),σ(v)

Z A;G =
∑

σ:V→{0,1}

w A;G(σ)

Symmetric arity-k Boolean function f : {0, 1}k → R>0

k-uniform hypergraph H = (V,F) with max degree
6 ∆ (each vertex in 6 ∆ hyperedges)

w f ;H(σ) =
∏

{v1,...,vk}∈F

f (σ(v1), . . . ,σ(vk))

Z f ;H(σ) =
∑

σ:V→{0,1}

w f ;H(σ)

Often f : {0, 1}k → {0, 1}

8



Complications with larger arity!

There may be no computational threshold, or if there is, it might
not coincide with the uniqueness threshold

Example: strong independent sets

(Liu, Lin 2015, Yin, Zhao 2015)

f (s1, . . . , sk) = 1 iff at most one of s1, . . . , sk is 0.

1 1

1

1 0

1
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Strong Independent Set. k = 3. ∆ = 5.

f

v

f4

w4,2w4,1

f3

w3,2w3,1

f2

w2,2w2,1

f1

w1,2w1,1

ffff
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Strong Independent Set. k = 3.

Uniqueness only for ∆ 6 3
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For “natural” functions f

Uniqueness on the ∆-uniform hypertree iff ∆ 6 3

∆ 6 3: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly)
establish strong spatial mixing which leads to
approximation scheme

∆ = 4, 5: Strong spatial mixing fails (due to
non-uniqueness)

∆ > 6: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show
hardness for 4, 5 so these cases remain open
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FPRAS should exist up to SSM threshold, which is (in general)
below the uniqueness threshold
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For “natural” functions f

Uniqueness on the ∆-uniform hypertree iff ∆ 6 3

∆ 6 3: (Liu, Lin 2015, Yin, Zhao 2015) (implicitly)
establish strong spatial mixing which leads to
approximation scheme

∆ = 4, 5: Strong spatial mixing fails (due to
non-uniqueness)

∆ > 6: Non-uniqueness leads to intractability

Yin, Zhao natural gadgets cannot be used to show
hardness for 4, 5 so these cases remain open

Not clear in general whether there exists a computational
threshold or, if this exists, whether it coincides with the unique-
ness threshold
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Our result

Definition. For k > 2, let EASY(k) be the set containing the
following seven functions.

f (k)
zero(x1, . . . , xk) = 0, f (k)

one(x1, . . . , xk) = 1, f (k)
allzero(x1, . . . , xk) = 1{x1 = . . . = xk = 0},

f (k)
allone(x1, . . . , xk) = 1{x1 = . . . = xk = 1}, f (k)

EQ (x1, . . . , xk) = 1{x1 = . . . = xk},

f (k)
even(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 0}, f (k)

odd(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 1}.

Observation. If f ∈ EASY(k). Then it is easy to compute Z f ;H.

Theorem. For any other symmetric Boolean function
f : {0, 1}k → {0, 1}, ∃∆0 such that ∀∆ > ∆0, ∃c > 1 such that it is
NP-hard to approximate Z f ;H within a factor of cn on k-uniform
hypergraphs with degree 6 ∆.
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Connection to counting Constraint Satisfaction
Problems (#CSPs)

Γ : Set of Boolean functions (constraint langauage)
Each arity k function in Γ is of the form f : {0, 1}k → {0, 1}.

CSP instance I: Set V of variables. Each constraint f (v1, . . . , vk)

applies a k-ary function f ∈ Γ to a tuple of (not necessarily
distinct) variables.

Name #CSP∆,c(Γ).
Instance n-variable instance I of a CSP(Γ). Each variable is
used at most ∆ times.
Output number Ẑ such that c−nZΓ ;I 6 Ẑ 6 cnZΓ ;I,
ZΓ ,I: number of satisfying assignments of I.

14



Counting CSP Corollary

Corollary. Let k > 2 and let f : {0, 1}k → {0, 1} be a symmetric
Boolean function such that f /∈ EASY(k). Then, there exists ∆0

such that for all ∆ > ∆0, there exists c > 1 such that
#CSP∆,c({f }) is NP-hard.
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What is known about bounded-degree Boolean #CSPs

• Adding a degree bound ∆ = 3 makes no difference to the
difficulty of exact counting CSPs
(Creignou and Hermann 1996, Cai, Lu, Xia 2009).
If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP3(Γ) is
#P-complete.

• This restriction also leaves the complexity unchanged for
decision CSPs (Dalmau and Ford 2003 in the special case
where Γ includes the two unary pinning functions.

• δ0(0) = 1 and δ0(1) = 0.

• δ1(0) = 0 and δ1(1) = 1.
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Γ is affine if every function is f (k)
even or f (k)

odd for some k.
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bounded-degree decision
has not been considered
without pinning
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What is known about bounded-degree Boolean #CSPs

• Adding a degree bound ∆ = 3 makes no difference to the
difficulty of exact counting CSPs
(Creignou and Hermann 1996, Cai, Lu, Xia 2009).
If Γ is affine then #CSP(Γ) is in FP. Otherwise #CSP3(Γ) is
#P-complete.

• This restriction also leaves the complexity unchanged for
decision CSPs (Dalmau and Ford 2003 in the special case
where Γ includes the two unary pinning functions.

• δ0(0) = 1 and δ0(1) = 0.

• δ1(0) = 0 and δ1(1) = 1.
∆ = 2 is holant. Not fully classified for counting or decision.
Decision is as hard as the general case if the relation is not a
“Delta-matroid”. Feder 2001
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Approximate counting

Dyer, Goldberg, Jalsenius, Richerby 2012 For every ∆ > 6 and
k > 3 and every symmetric k-ary Boolean function f 6∈ EASY(k),
there is no FPRAS for #CSP({f , δ0, δ1}) unless NP = RP.

Not true for our setting!

Example: weak independent sets

f (s1, . . . , sk) = 1 iff at least one of s1, . . . , sk is 1.

Not in EASY(k) for any k > 2.

Bordewich, Dyer, Karpinski 2008: For every ∆ 6 (k − 1)/2,
there is an FPRAS for the partition function Z f ;H on the class of
k-uniform hypergraphs H with maximum degree at most ∆. (so
not hard for every ∆ > 6 as above)
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Back to the result

Name #Hyper2Spin(f ,∆, c).
Instance An n-vertex k-uniform hypergraph H with maximum
degree at most ∆.
Output A number Ẑ such that c−nZ f ;H 6 Ẑ 6 cnZ f ;H.

Theorem. Let k > 2 and let f : {0, 1}k → {0, 1} be a symmetric
Boolean function such that f /∈ EASY(k). Then there exists ∆0

such that for all ∆ > ∆0, there exists c > 1 such that
#Hyper2Spin(f ,∆, c) is NP-hard.
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