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Lattice triangulations: basic facts
Definition
A triangulation of a m × n rectangle in Z2 is a maximal set of
non-crossing edges, each of which connects exactly two points of
the rectangle and passes through no other point.
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• Ω(m, n) the set of all triangulations of Rm,n

• m = 1: #Ω(1, n) =
(2n
n

)
. Equivalence with lattice

paths

(a) A one dimensional lattice
triangulation

(b) The associated lattice path
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An important difference w.r.t. spin systems

• The middle point of each (random) edge is a given
(deterministic) point in the half-integer lattice;

• Assigning an edge σx ⇔ assigning a “spin sx”.

• For a spin system on a graph interaction is local: the law of
sx is determined given the neighbors.

• An edge σx has 4 neighboring edges whose midpoints can
be, however, very far from x .

• Lack of locality/geometry.
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Sampling lattice triangulations
Flip moves: an edge is flippable if it is the diagonal of a
parallelogram.

In this case:

Flip graph on Ω(m, n) is connected.

Markov chain reversible w.r.t. uniform distribution:
• pick a midpoint x u.a.r.
• flip σx with Prob =1/2 if flippable.
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Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on Ω(m, n)

µ(σ) =
λ|σ|

Z
, |σ| =

∑
x∈Λm,n

|σx |

where |σx | = ‖σx‖1.

Glauber chain: pick u.a.r. a midpoint x ∈ Λm,n. If the edge σx is
flippable to edge σ′x then flip it with probability

µ(σ′)

µ(σ′) + µ(σ)
=

λ|σ
′
x |

λ|σ′
x | + λ|σx |

.

Reversible w.r.t. µ.
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Weighted triangulations and Glauber dynamics

Simulations suggest a phase transition (here n = m = 50):

λ = 1 λ = 1.1 λ = 0.9

Conjecture

• λ < 1: Tmix = O(mn(n + m))

• λ > 1: Tmix = exp(Ω(mn(n + m)))

• λ = 1: Tmix = poly(m, n).
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Main results for any m, n

Theorem (Rapid mixing for small λ)
There exists λ0 > 0 such that, for all λ < λ0 and any possible set
of constraint edges, Tmix = O(mn(m + n)).

Theorem (Slow mixing for λ > 1)
For all λ > 1 and without constraint edges
Tmix > exp (c(m + n)).
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Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric
[inspired by S. Greenberg, A. Pascoe, D. Randall ’09].

Exponential metric: Fix α > 1, and for σ, τ differing only at x set

∆(σ, τ) =

{
α2 − 1 if |σx | = |τx | = 2 (unit diagonals)∣∣α|σx | − α|τx |∣∣ otherwise.

Lemma
For λ < λ0 = 1/8, α = 8, there is a coupling such that

Eσ,τ [∆(σ′, τ ′)] 6 ∆(σ, τ)
(

1− 1
2|Λn,m|

)
.
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Torpid mixing for λ > 1

Definition (Exponential Bottleneck)
A set A ⊂ Ω(m, n) such that µ(A) 6 1/2 and

µ(∂A)

µ(A)
6 e−c(m+n).

Here ∂A = {(σ, σ′) : σ ∈ A, σ′ /∈ A, σ ↔ σ′}.

Lemma
Exponential bottleneck⇒

Tmix = Ω
(
exp[c(n + m)]

)
, c > 0.
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The Herringbone bottleneck

• A is the set of all Herringbone triangulations.
• Orientation in 1D layers oscillates +/−.

• σ ∈ ∂A iff an internal edge is vertical.
• For λ > 1, σ ∈ ∂A is exponentially unlikely (in max(n,m))

given A.
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Optimal bounds on Tmix for m = 1

Theorem

• λ < 1: Tmix = Θ(n2) (path coupling + exponential metric)

• λ > 1: Tmix = exp(Ω(n2)) (1 layer bottleneck)

• λ = 1: Tmix ∼ n3 log n (e.g. coupling, D.B. Wilson ’01)
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Optimal bounds for thin rectangles (m = const, n� 1)

Theorem

• λ < 1: Tmix = Θ(n2)

• λ > 1: Tmix = exp(Ω(n2/m))

A poly(n) bound on Tmix for λ = 1 is still missing

• Lower bound for λ > 1: (slightly) improved version of the
Herringbone Bottleneck.

• Upper bound for λ < 1:

• In time O(n2) the chain enters the set Ω̃ of “short” (O(log n))
triangulations. Main tool: Lyapunov function (A. Stauffer
’15).

• Mixing time bounds O(n(1+o(1)) of restricted chain in Ω̃ via
Log-Sobolev bounds + improved canonical paths
arguments.
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Exponential tails of edge length (m fixed).

Lemma (No constraint edges)
Fix λ < 1. There exist c1, c2 such that, for any t ≥ c1n

2 and any
` ≥ 1,

sup
σ

sup
x∈Λn,m

Pσ(|σx(t)| ≥ `) ≤ c1 exp(−c2`)

Lemma (Constraint edges τ)
Fix λ < 1. Let σ̄x the ground state of σx in the presence of
constraint edges τ . There exist c1, c2 such that, for any t ≥ c1n

2,
any ` ≥ 1 and any x ,

sup
σ

P (∪y{σy (t) ∩ σ̄x 6= ∅} ∩ {|σy (t)| ≥ |σ̄x |+ `}) ≤ c1 exp(−c2`)
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Coupling in presence of constraint edges

constraint edges constraint edgesvertical crossing

RR

• Let R be a k ×m rectangle inside Rn,m.
• Let τ, τ ′ be constraint edges not intersecting R.

Lemma
Fix λ < 1 and m. There exists c and k0 together with a coupling of
µτ , µτ

′
such that, if k ≥ k0, with probability at least 1− exp[−ck]

there exist εk common vertical crossings of unit edges in R.
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Back to thin rectangles: Tmix = O(n2) for any λ < 1

Step 1: Burn-in phase.

For some T = c(λ)n2, uniformly in the initial condition and
w.h.p.

σ(t) ∈ Ω̃ , t ∈ [T ,T + n10].

Ω̃ is the set of triangulations with at most O(log n) edges.

• The restricted chain to Ω̃ is irreducible with reversible
measure µ̃ := µ(· | Ω̃).

• Because of structural properties µ̃, µ well coupled.

• Sufficient to prove T̃mix = o(n2).
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Step 2: spatial mixing in Ω̃
Γr \ JιΓ` \ Jι Jι

v1v2v3v4

v1v2v3v4

v0

Lemma (Spatial mixing)
The relative density of the marginals on the left block (light gray)
of µ̃ conditioned on two arbitrary (short) triangulations in the
right block (dark gray) is exponentially (in |Jc | ) close to one if
|Jc | = Ω(polylog(n)).
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Step 3: Log-Sobolev constant in Ω̃

Figure: The rectangle Λ decomposed into two almost-halves Λ1,Λ2

with Λ1 ∩ Λ2 ≡ Ω(log n)×m rectangle.

Spatial mixing implies quasi-factorization of the entropy:

EntΛ(f 2) 6 (1 + n−ε)µ̃
[
EntΛ1(f 2|Λ \ Λ1) + EntΛ2(f 2|Λ \ Λ2)

]
.

⇓

Multiscale analysis of the Log-Sobolev constant.
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Notation
• Dirichlet form:

E(f , f ) =
1

2n

∑
σ,σ′∈Ω̃

µ̃(σ)p(σ, σ′)(f (σ)− f (σ′))2.

• Entropy:
Ent(f 2) = µ̃[f 2 log(f 2/µ̃[f 2])].

• Logarithmic Sobolev constant

cS(n) := sup
f

Ent(f 2)

E(f , f )
, .

• T̃mix 6 C log n × cS(n).

Theorem
cS(n) 6 n1+o(1) ⇒ T̃mix = O(n1+o(1)).
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High level overview

• Quasi-factorization of the entropy⇒
cS(2n) ≤ (1 + n−ε)× 2× cS(n/2)

• The factor 2 comes from double counting the flips in the
overlapping region.

• A random averaging of the location of the overlap block
reduces it to (1 + 1/ log2 n).

• Sloppy notation: boundary edges are there !

⇒ cS(n) ≤ const× cS(polylog(n)).
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Bounds on cS on scale Ln = polylog(n)

• Exponential bound cS(Ln) = O(exp(cLn)) not difficult but
not sufficient.

• Important feature: on each scale Lj = 2−jn the Log-Sobolev
problem involves constraint edges inherited from the
conditioning on scale Lj−1, . . . , L0.

• Straightforward “bootstrapping” i.e.

cS(n) ≤ O(cS(Ln)) = O(exp(cLn))

⇓
cS(Ln) = O(exp(O(polylog(Ln)))

not feasible.
• Need e.g. a O(poly(Ln)) bound on cS(Ln) by different

means.

Lattice Triangulations 21 / 26



Bounds on cS on scale Ln = polylog(n)

• Exponential bound cS(Ln) = O(exp(cLn)) not difficult but
not sufficient.

• Important feature: on each scale Lj = 2−jn the Log-Sobolev
problem involves constraint edges inherited from the
conditioning on scale Lj−1, . . . , L0.

• Straightforward “bootstrapping” i.e.

cS(n) ≤ O(cS(Ln)) = O(exp(cLn))

⇓
cS(Ln) = O(exp(O(polylog(Ln)))

not feasible.
• Need e.g. a O(poly(Ln)) bound on cS(Ln) by different

means.

Lattice Triangulations 21 / 26



Bounds on cS on scale Ln = polylog(n)

• Exponential bound cS(Ln) = O(exp(cLn)) not difficult but
not sufficient.

• Important feature: on each scale Lj = 2−jn the Log-Sobolev
problem involves constraint edges inherited from the
conditioning on scale Lj−1, . . . , L0.

• Straightforward “bootstrapping” i.e.

cS(n) ≤ O(cS(Ln)) = O(exp(cLn))

⇓
cS(Ln) = O(exp(O(polylog(Ln)))

not feasible.

• Need e.g. a O(poly(Ln)) bound on cS(Ln) by different
means.

Lattice Triangulations 21 / 26



Bounds on cS on scale Ln = polylog(n)

• Exponential bound cS(Ln) = O(exp(cLn)) not difficult but
not sufficient.

• Important feature: on each scale Lj = 2−jn the Log-Sobolev
problem involves constraint edges inherited from the
conditioning on scale Lj−1, . . . , L0.

• Straightforward “bootstrapping” i.e.

cS(n) ≤ O(cS(Ln)) = O(exp(cLn))

⇓
cS(Ln) = O(exp(O(polylog(Ln)))

not feasible.
• Need e.g. a O(poly(Ln)) bound on cS(Ln) by different

means.

Lattice Triangulations 21 / 26



A poly(Ln) upper bound on cS(Ln)

• cS(Ln) = O(n × Trel(Ln))

• Trel(Ln) ≤ C (congestion rate)

C := max
η∼η′

∑
σ,σ′:

Γσ,σ′3(η,η′)

µ(σ)µ(σ′)

µ(η)p(η, η′)
|Γσ,σ′ |

where, for any σ, σ′ ∈ Ω̃, Γσ,σ′ is a path in Ω̃ from σ to σ′.

• Typically C = O(exp(cLn)). We need O(poly(Ln)).
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An improved canonical paths argument

• Reversible ergodic Markov chain Xt on X .

• X ′ ⊂ X be such that for any pair x , y ∈ X ′ it is possible to
define a canonical path Γx ,y entirely contained in X ′. Let
C(X ′) be the associated congestion rate.

• Fix time T and let

ρ = min
x∈X

Px(XT ∈ X ′)

Lemma (Canonical paths with burn-in time)

Trel ≤
6T 2

ρ
+

3C(X ′)
ρ2
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Back to thin rectangles

Theorem
Consider the original triangulation chain on n ×m rectangle with
(possibly) boundary edges sticking in but not longer than n/4.
Then

Trel = O(poly(n)).

Corollary (The needed poly(Ln) bound)
For the restricted chain on Ω̃ on Ln ×m rectangle
Trel(Ln) = O(poly(Ln)) = O(polylog(n)).
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Sketch of proof

Define Ω′ ⊂ Ω as follows:

• any edge does not exceed by more than O(log n) its
minimal allowed (by the boundary edges) length.

• for any x 6= y , if σy crosses the ground state edge σ̄x at x
then |σy | ≤ |σ̄x |+ O(log n).

Lemma
Fix T = cn2m. Then Ω′ satisfies the hypotheses of the “canonical
paths with burn-in lemma” with

ρ = min
σ

P(σ(T ) ∈ Ω′) ≥ 1/2

and congestion rate C′ = O(poly(n)) for a suitable choice of
canonical paths in Ω′.
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Key feature of the set Ω′

• Pb: Given σ, η construct path between them.

• In principle, to flip σx to ηx one may need to reshuffle
edges in σ with midpoints very far from x .

• If σ, η ∈ Ω′ “very far” is not more than O(log n).

C log n

• It is possible to construct the path by processing the slabs
left-to-right without never changing more than 2 slabs at a
time.
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