Glauber Dynamics of Lattice Triangulations on Thin Rectangles

Fabio Martinelli

in collaboration with P. Caputo, A. Sinclair, and A. Stauffer

Universita' Roma Tre

[Lattice Triangulations](#page-50-0) 1 / 26

Definition

Definition

Definition

Definition

• $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$

• $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$

• $m = 1$: $\#\Omega(1, n) = {2n \choose n}$ $\binom{2n}{n}$. Equivalence with lattice paths

(a) A one dimensional lattice triangulation

(b) The associated lattice path

An important difference w.r.t. spin systems

- The middle point of each (random) edge is a given (deterministic) point in the half-integer lattice;
- Assigning an edge $\sigma_x \Leftrightarrow$ assigning a "spin s_x ".
- For a spin system on a graph interaction is local: the law of s_x is determined given the neighbors.
- An edge σ_{x} has 4 neighboring edges whose midpoints can be, however, very far from x.
- Lack of locality/geometry.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram. In this case:

Flip graph on $Ω(m, n)$ is connected.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram. In this case:

Flip graph on $Ω(m, n)$ is connected.

Markov chain reversible w.r.t. uniform distribution:

- pick a midpoint \times u.a.r.
- flip σ_x with Prob =1/2 if flippable.

Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$
\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}, \qquad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|
$$

where $|\sigma_x| = ||\sigma_x||_1$.

Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$
\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}, \qquad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|
$$

where $|\sigma_{x}| = ||\sigma_{x}||_1$.

Glauber chain: pick u.a.r. a midpoint $x \in \Lambda_{m,n}$. If the edge σ_x is flippable to edge σ'_x then flip it with probability

$$
\frac{\mu(\sigma')}{\mu(\sigma') + \mu(\sigma)} = \frac{\lambda^{|\sigma_x'|}}{\lambda^{|\sigma_x'|} + \lambda^{|\sigma_x|}}.
$$

Reversible w.r.t. μ .

Weighted triangulations and Glauber dynamics Simulations suggest a phase transition (here $n = m = 50$):

 $\lambda = 1$ $\lambda = 1.1$ $\lambda = 0.9$

Weighted triangulations and Glauber dynamics Simulations suggest a phase transition (here $n = m = 50$):

Conjecture

- $\lambda < 1$: $T_{\text{mix}} = O(mn(n+m))$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(mn(n+m)))$
- $\lambda = 1$: $T_{\text{mix}} = \text{poly}(m, n)$.

Main results for any m, n

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ *such that, for all* $\lambda < \lambda_0$ *and any possible set of constraint edges,* $T_{\text{mix}} = O(mn(m + n)).$

Main results for any m, n

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ *such that, for all* $\lambda < \lambda_0$ *and any possible set of constraint edges,* $T_{\text{mix}} = O(mn(m + n)).$

Theorem (Slow mixing for $\lambda > 1$) *For all* λ > 1 *and without constraint edges* $\tau_{\text{mix}} \geqslant \exp(c(m+n)).$

Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall '09].

Exponential metric: Fix $\alpha > 1$, and for σ , τ differing only at x set

$$
\Delta(\sigma,\tau) = \begin{cases} \alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)}\\ |\alpha^{|\sigma_x|} - \alpha^{|\tau_x|}| & \text{otherwise.} \end{cases}
$$

Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall '09].

Exponential metric: Fix $\alpha > 1$, and for σ , τ differing only at x set

$$
\Delta(\sigma,\tau) = \begin{cases} \alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)}\\ |\alpha^{|\sigma_x|} - \alpha^{|\tau_x|}| & \text{otherwise.} \end{cases}
$$

Lemma

For $\lambda < \lambda_0 = 1/8$, $\alpha = 8$, there is a coupling such that

$$
\mathbb{E}_{\sigma, \tau}[\Delta(\sigma^\prime, \tau^\prime)] \; \leqslant \; \Delta(\sigma, \tau) \, \Big(1 - \textstyle \frac{1}{2 | \Lambda_{n,m} |} \Big).
$$

Torpid mixing for $\lambda > 1$

Definition (Exponential Bottleneck) A set $A \subset \Omega(m, n)$ such that $\mu(A) \leq 1/2$ and

$$
\frac{\mu(\partial A)}{\mu(A)} \leqslant e^{-c(m+n)}.
$$

Here
$$
\partial A = \{(\sigma, \sigma') : \sigma \in A, \sigma' \notin A, \sigma \leftrightarrow \sigma'\}.
$$

Lemma *Exponential bottleneck* ⇒

$$
T_{\text{mix}} = \Omega\big(\exp[c(n+m)]\big), \qquad c > 0.
$$

The Herringbone bottleneck

- A is the set of all Herringbone triangulations.
- Orientation in 1D layers oscillates $+/-$.

- $\sigma \in \partial A$ iff an internal edge is vertical.
- For $\lambda > 1$, $\sigma \in \partial A$ is exponentially unlikely (in max(n, m)) given A.

Optimal bounds on T_{mix} for $m = 1$

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$ (path coupling + exponential metric)
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2))$ (1 layer bottleneck)
- $\bullet \ \lambda = 1$: $T_{\text{mix}} \sim n^3 \log n$ (e.g. coupling, D.B. Wilson '01)

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

Theorem

• $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$

•
$$
\lambda > 1
$$
: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A *poly*(*n*) bound on T_{mix} for $\lambda = 1$ is still missing

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A *poly*(*n*) bound on T_{mix} for $\lambda = 1$ is still missing

• **Lower bound** for $\lambda > 1$: (slightly) improved version of the Herringbone Bottleneck.

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A poly(n) bound on T_{mix} for $\lambda = 1$ is still missing

- **Lower bound** for $\lambda > 1$: (slightly) improved version of the Herringbone Bottleneck.
- **Upper bound** for $\lambda < 1$:
	- In time $O(n^2)$ the chain enters the set Ω of "short" ($O(\log n)$) triangulations. Main tool: Lyapunov function (A. Stauffer '15).
	- Mixing time bounds $O(n^{(1+o(1))})$ of *restricted* chain in Ω via Log-Sobolev bounds + improved canonical paths arguments.

Exponential tails of edge length (*m* fixed).

Lemma (No constraint edges) *Fix* $\lambda < 1$ *. There exist* c_1 , c_2 *such that, for any* $t \ge c_1 n^2$ *and any* $\ell > 1$,

$$
\sup_{\sigma}\sup_{x\in\Lambda_{n,m}}\mathbb{P}_{\sigma}(|\sigma_x(t)|\geq \ell)\leq c_1\exp(-c_2\ell)
$$

Lemma (Constraint edges τ)

Fix λ < 1. Let $\bar{\sigma}_x$ *the ground state of* σ_x *in the presence of constraint edges* τ *. There exist* c_1 *,* c_2 *such that, for any* $t \ge c_1 n^2$ *, any* $\ell > 1$ *and any x*,

$$
\sup_{\sigma} \mathbb{P} \left(\cup_{y} \{ \sigma_y(t) \cap \bar{\sigma}_x \neq \emptyset \} \cap \{ |\sigma_y(t)| \geq |\bar{\sigma}_x| + \ell \} \right) \leq c_1 \exp(-c_2 \ell)
$$

Coupling in presence of constraint edges

- Let R be a $k \times m$ rectangle inside $R_{n,m}$.
- Let τ , τ' be constraint edges *not* intersecting R.

Lemma

Fix λ < 1 and m. There exists c and k_0 together with a coupling of $μ^τ$, $μ^{τ'}$ such that, if $k ≥ k₀$, with probability at least 1 − exp[−ck] *there exist* ϵk *common vertical crossings of unit edges in R.*

Back to thin rectangles: $\mathcal{T}_{\mathrm{mix}} = O(n^2)$ for any $\lambda < 1$

Step 1: Burn-in phase.

For some $\mathcal{T}=c(\lambda)n^2,$ uniformly in the initial condition and w.h.p.

$$
\sigma(t)\in\widetilde{\Omega}\,,\qquad t\in[\mathcal{T},\mathcal{T}+n^{10}].
$$

 Ω is the set of triangulations with at most $O(\log n)$ edges.

- The restricted chain to $\tilde{\Omega}$ is irreducible with reversible measure $\tilde{\mu} := \mu(\cdot | \tilde{\Omega})$.
- Because of structural properties $\tilde{\mu}$, μ well coupled.
- Sufficient to prove $\overline{T}_{\text{mix}} = o(n^2)$.

Step 2: spatial mixing in Ω

Lemma (Spatial mixing)

The relative density of the marginals on the left block (light gray) of µ˜ *conditioned on two arbitrary (short) triangulations in the right block (dark gray) is exponentially (in* $|J_c|$) *close to one if* $|J_c| = \Omega(\text{polylog}(n))$.

Step 3: Log-Sobolev constant in Ω

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies quasi-factorization of the entropy:

Step 3: Log-Sobolev constant in Ω

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies quasi-factorization of the entropy:

$$
\mathrm{Ent}_{\Lambda}(f^2) \, \leqslant \, \, (1 + n^{-\varepsilon}) \tilde{\mu} \left[\mathrm{Ent}_{\Lambda_1}(f^2 | \Lambda \setminus \Lambda_1) + \mathrm{Ent}_{\Lambda_2}(f^2 | \Lambda \setminus \Lambda_2) \right].
$$

Multiscale analysis of the Log-Sobolev constant.

• Dirichlet form:

$$
\mathcal{E}(f,f)=\frac{1}{2n}\sum_{\sigma,\sigma'\in\widetilde{\Omega}}\widetilde{\mu}(\sigma)p(\sigma,\sigma')(f(\sigma)-f(\sigma'))^2.
$$

• Dirichlet form:

$$
\mathcal{E}(f,f)=\frac{1}{2n}\sum_{\sigma,\sigma'\in\widetilde{\Omega}}\widetilde{\mu}(\sigma)p(\sigma,\sigma')(f(\sigma)-f(\sigma'))^2.
$$

• Entropy:

$$
\mathrm{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].
$$

• Dirichlet form:

$$
\mathcal{E}(f,f)=\frac{1}{2n}\sum_{\sigma,\sigma'\in\widetilde{\Omega}}\widetilde{\mu}(\sigma)p(\sigma,\sigma')(f(\sigma)-f(\sigma'))^2.
$$

• Entropy:

$$
\mathrm{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].
$$

• Logarithmic Sobolev constant

$$
c_S(n) := \sup_f \frac{\operatorname{Ent}(f^2)}{\mathcal{E}(f,f)},
$$

• $\widetilde{\mathcal{T}}_{\text{mix}} \leqslant C \log n \times c_{\mathcal{S}}(n).$

• Dirichlet form:

$$
\mathcal{E}(f,f)=\frac{1}{2n}\sum_{\sigma,\sigma'\in\widetilde{\Omega}}\widetilde{\mu}(\sigma)p(\sigma,\sigma')(f(\sigma)-f(\sigma'))^2.
$$

• Entropy:

$$
\mathrm{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].
$$

• Logarithmic Sobolev constant

$$
c_S(n) := \sup_f \frac{\operatorname{Ent}(f^2)}{\mathcal{E}(f,f)},
$$

•
$$
\widetilde{T}_{\text{mix}} \leq C \log n \times c_S(n)
$$
.

Theorem

$$
c_{\mathcal{S}}(n) \leqslant n^{1+o(1)} \Rightarrow \widetilde{T}_{\text{mix}} = O(n^{1+o(1)}).
$$

• Quasi-factorization of the entropy ⇒

 $c_S(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_S(n/2)$

• Quasi-factorization of the entropy \Rightarrow

 $c_S(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_S(n/2)$

- The factor 2 comes from double counting the flips in the overlapping region.
- A random averaging of the location of the overlap block reduces it to $(1 + 1/\log^2 n)$.
- Sloppy notation: boundary edges are there !

• Quasi-factorization of the entropy \Rightarrow

 $c_S(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_S(n/2)$

- The factor 2 comes from double counting the flips in the overlapping region.
- A random averaging of the location of the overlap block reduces it to $(1 + 1/\log^2 n)$.
- Sloppy notation: boundary edges are there !

 \Rightarrow c_S(n) \leq const \times c_S(polylog(n)).

Bounds on c_S on scale $L_n = polylog(n)$

• Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.

Bounds on c_5 on scale $L_n = polylog(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_i = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{i-1}, \ldots, L_0 .

Bounds on c_5 on scale $L_n = polylog(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_i = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{i-1}, \ldots, L_0 .
- Straightforward "bootstrapping" i.e.

$$
c_S(n) \leq O(c_S(L_n)) = O(\exp(cL_n))
$$

$$
\Downarrow
$$

$$
c_S(L_n) = O(\exp(O(\text{polylog}(L_n)))
$$

not feasible.

Bounds on c_5 on scale $L_n = polylog(n)$

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_i = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{i-1}, \ldots, L_0 .
- Straightforward "bootstrapping" i.e.

$$
c_S(n) \leq O(c_S(L_n)) = O(\exp(cL_n))
$$

$$
\Downarrow
$$

$$
c_S(L_n) = O(\exp(O(\text{polylog}(L_n)))
$$

not feasible.

• Need e.g. a $O(poly(L_n))$ bound on $c_S(L_n)$ by different means.

A *poly*(L_n) upper bound on $c_5(L_n)$

•
$$
c_S(L_n) = O(n \times T_{rel}(L_n))
$$

• $T_{rel}(L_n) \leq C$ (congestion rate)

$$
C := \max_{\eta \sim \eta'} \sum_{\substack{\sigma, \sigma': \\ \Gamma_{\sigma, \sigma'} \ni (\eta, \eta')}} \frac{\mu(\sigma) \mu(\sigma')}{\mu(\eta) p(\eta, \eta')} |\Gamma_{\sigma, \sigma'}|
$$

where, for any $\sigma, \sigma' \in \Omega$, $\Gamma_{\sigma,\sigma'}$ is a path in Ω from σ to σ' .

• Typically $C = O(\exp(cL_n))$. We need $O(poly(L_n))$.

• Reversible ergodic Markov chain X_t on X.

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}' . Let $\mathcal{C}(\mathcal{X}')$ be the associated congestion rate.

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}' . Let $\mathcal{C}(\mathcal{X}')$ be the associated congestion rate.
- Fix time T and let

$$
\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_{\mathcal{T}} \in \mathcal{X}')
$$

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- $\mathcal{X}' \subset \mathcal{X}$ be such that for any pair $x, y \in \mathcal{X}'$ it is possible to define a canonical path $\Gamma_{x,y}$ entirely contained in \mathcal{X}' . Let $\mathcal{C}(\mathcal{X}')$ be the associated congestion rate.
- Fix time T and let

$$
\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_{\mathcal{T}} \in \mathcal{X}')
$$

Lemma (Canonical paths with burn-in time)

$$
\mathcal{T}_{\mathrm{rel}} \leq \frac{6\,\mathcal{T}^2}{\rho} + \frac{3\mathcal{C}(\mathcal{X}')}{\rho^2}
$$

Theorem

Consider the original triangulation chain on n × m *rectangle with (possibly) boundary edges sticking in but not longer than* n/4*. Then*

 $T_{rel} = O(poly(n)).$

Corollary (The needed $poly(Ln)$ bound) *For the restricted chain on* $\tilde{\Omega}$ *on* $L_n \times m$ *rectangle* $T_{rel}(L_n) = O(\text{poly}(L_n)) = O(\text{polylog}(n)).$

Sketch of proof

Define $\Omega' \subset \Omega$ as follows:

- any edge does not exceed by more than $O(\log n)$ its minimal allowed (by the boundary edges) length.
- for any $x \neq y$, if σ_v crosses the ground state edge $\bar{\sigma}_x$ at x then $|\sigma_{v}| < |\bar{\sigma}_{x}| + O(\log n)$.

Lemma

Fix T = cn2m*. Then* Ω 0 *satisfies the hypotheses of the "canonical paths with burn-in lemma" with*

$$
\rho = \min_{\sigma} \mathbb{P}(\sigma(\mathcal{T}) \in \Omega') \geq 1/2
$$

and congestion rate $C' = O(\mathit{poly}(n))$ for a suitable choice of *canonical paths in Ω'.*

Key feature of the set Ω'

- Pb: Given σ , η construct path between them.
- In principle, to flip σ_x to η_x one may need to reshuffle edges in σ with midpoints very far from x.
- If $\sigma, \eta \in \Omega'$ "very far" is not more than $O(\log n)$.

• It is possible to construct the path by processing the slabs left-to-right without never changing more than 2 slabs at a time.