Glauber Dynamics of Lattice Triangulations on Thin Rectangles

Fabio Martinelli

in collaboration with P. Caputo, A. Sinclair, and A. Stauffer

Universita' Roma Tre

Lattice Triangulations

Definition

Definition

Definition

Definition

• $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$

• $\Omega(m, n)$ the set of all triangulations of $R_{m,n}$

• m = 1: $\#\Omega(1, n) = \binom{2n}{n}$. Equivalence with lattice paths

(a) A one dimensional lattice triangulation

(b) The associated lattice path

An important difference w.r.t. spin systems

- The middle point of each (random) edge is a given (deterministic) point in the half-integer lattice;
- Assigning an edge $\sigma_x \Leftrightarrow$ assigning a "spin s_x ".
- For a spin system on a graph interaction is local: the law of *s_x* is determined given the neighbors.
- An edge σ_x has 4 neighboring edges whose midpoints can be, however, very far from x.
- Lack of locality/geometry.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram. In this case:

Flip graph on $\Omega(m, n)$ is connected.

Sampling lattice triangulations

Flip moves: an edge is flippable if it is the diagonal of a parallelogram. In this case:

Flip graph on $\Omega(m, n)$ is connected.

Markov chain reversible w.r.t. uniform distribution:

- pick a midpoint *x* u.a.r.
- flip σ_x with Prob = 1/2 if flippable.

Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$\mu(\sigma) = rac{\lambda^{|\sigma|}}{Z}, \qquad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|$$

where $|\sigma_x| = \|\sigma_x\|_1$.

Weighted triangulations and Glauber dynamics

Consider the Gibbs distribution on $\Omega(m, n)$

$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{Z}, \qquad |\sigma| = \sum_{x \in \Lambda_{m,n}} |\sigma_x|$$

where $|\sigma_x| = \|\sigma_x\|_1$.

Glauber chain: pick u.a.r. a midpoint $x \in \Lambda_{m,n}$. If the edge σ_x is flippable to edge σ'_x then flip it with probability

$$\frac{\mu(\sigma')}{\mu(\sigma') + \mu(\sigma)} = \frac{\lambda^{|\sigma'_x|}}{\lambda^{|\sigma'_x|} + \lambda^{|\sigma_x|}}$$

Reversible w.r.t. μ .

Weighted triangulations and Glauber dynamics Simulations suggest a phase transition (here n = m = 50):

 $\lambda = 1.1$

 $\lambda = 0.9$

Weighted triangulations and Glauber dynamics Simulations suggest a phase transition (here n = m = 50):

 $\lambda = 1.1$

 $\lambda = 0.9$

Conjecture

- $\lambda < 1$: $T_{\text{mix}} = O(mn(n+m))$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(mn(n+m)))$
- $\lambda = 1$: $T_{\text{mix}} = poly(m, n)$.

Main results for any m, n

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ such that, for all $\lambda < \lambda_0$ and any possible set of constraint edges, $T_{\min} = O(mn(m+n))$.

Main results for any *m*, *n*

Theorem (Rapid mixing for small λ)

There exists $\lambda_0 > 0$ such that, for all $\lambda < \lambda_0$ and any possible set of constraint edges, $T_{mix} = O(mn(m+n))$.

Theorem (Slow mixing for $\lambda > 1$) For all $\lambda > 1$ and without constraint edges $T_{\text{mix}} \ge \exp(c(m+n))$.

Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall '09].

Exponential metric: Fix $\alpha > 1$, and for σ, τ differing only at *x* set

$$\Delta(\sigma,\tau) = \begin{cases} \alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)} \\ |\alpha^{|\sigma_x|} - \alpha^{|\tau_x|}| & \text{otherwise.} \end{cases}$$

Rapid mixing for small λ

Path coupling (Bubley-Dyer 1997) + exponential metric [inspired by S. Greenberg, A. Pascoe, D. Randall '09].

Exponential metric: Fix $\alpha > 1$, and for σ, τ differing only at *x* set

$$\Delta(\sigma,\tau) = \begin{cases} \alpha^2 - 1 & \text{if } |\sigma_x| = |\tau_x| = 2 \text{ (unit diagonals)} \\ |\alpha^{|\sigma_x|} - \alpha^{|\tau_x|}| & \text{otherwise.} \end{cases}$$

Lemma

For $\lambda < \lambda_0 = 1/8$, $\alpha = 8$, there is a coupling such that

$$\mathbb{E}_{\sigma, au}[\Delta(\sigma', au')] \ \leqslant \ \Delta(\sigma, au) \left(1-rac{1}{2|\Lambda_{n,m}|}
ight).$$

Torpid mixing for $\lambda > 1$

Definition (Exponential Bottleneck) A set $A \subset \Omega(m, n)$ such that $\mu(A) \leq 1/2$ and

$$\frac{\mu(\partial A)}{\mu(A)} \leqslant e^{-c(m+n)}.$$

Here
$$\partial A = \{(\sigma, \sigma'): \sigma \in A, \sigma' \notin A, \sigma \leftrightarrow \sigma'\}.$$

Lemma Exponential bottleneck \Rightarrow

$$T_{\min} = \Omega(\exp[c(n+m)]), \qquad c > 0.$$

The Herringbone bottleneck

- A is the set of all Herringbone triangulations.
- Orientation in 1D layers oscillates +/-.

- $\sigma \in \partial A$ iff an internal edge is vertical.
- For λ > 1, σ ∈ ∂A is exponentially unlikely (in max(n, m)) given A.

Optimal bounds on T_{mix} for m = 1

Theorem

- $\lambda < 1$: $T_{mix} = \Theta(n^2)$ (path coupling + exponential metric)
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2))$ (1 layer bottleneck)
- $\lambda = 1$: $T_{\text{mix}} \sim n^3 \log n$ (e.g. coupling, D.B. Wilson '01)

Theorem

- $\lambda < 1$: $T_{\rm mix} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

Theorem

•
$$\lambda < 1$$
: $T_{\min} = \Theta(n^2)$

•
$$\lambda > 1$$
: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A poly(n) bound on T_{mix} for $\lambda = 1$ is still missing

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A *poly*(*n*) bound on T_{mix} for $\lambda = 1$ is still missing

• Lower bound for *λ* > 1: (slightly) improved version of the Herringbone Bottleneck.

Theorem

- $\lambda < 1$: $T_{\text{mix}} = \Theta(n^2)$
- $\lambda > 1$: $T_{\text{mix}} = \exp(\Omega(n^2/m))$

A poly(n) bound on T_{mix} for $\lambda = 1$ is still missing

- Lower bound for *λ* > 1: (slightly) improved version of the Herringbone Bottleneck.
- **Upper bound** for $\lambda < 1$:
 - In time $O(n^2)$ the chain enters the set $\widetilde{\Omega}$ of "short" ($O(\log n)$) triangulations. Main tool: Lyapunov function (A. Stauffer '15).
 - Mixing time bounds O(n^{(1+o(1))} of restricted chain in Ω via Log-Sobolev bounds + improved canonical paths arguments.

Exponential tails of edge length (*m* fixed).

Lemma (No constraint edges) Fix $\lambda < 1$. There exist c_1, c_2 such that, for any $t \ge c_1 n^2$ and any $\ell \ge 1$, $\mathbb{P}_{\lambda}(|t_1-t_2|| \ge \ell) \le (t_1 - t_2)$

$$\sup_{\sigma} \sup_{x \in \Lambda_{n,m}} \mathbb{P}_{\sigma}(|\sigma_x(t)| \geq \ell) \leq c_1 \exp(-c_2 \ell)$$

Lemma (Constraint edges τ)

Fix $\lambda < 1$. Let $\bar{\sigma}_{\times}$ the ground state of σ_{\times} in the presence of constraint edges τ . There exist c_1, c_2 such that, for any $t \ge c_1 n^2$, any $\ell \ge 1$ and any x,

$$\sup_{\sigma} \mathbb{P}\left(\cup_{y} \{\sigma_{y}(t) \cap \bar{\sigma}_{x} \neq \emptyset\} \cap \{|\sigma_{y}(t)| \geq |\bar{\sigma}_{x}| + \ell\}\right) \leq c_{1} \exp(-c_{2}\ell)$$

Coupling in presence of constraint edges

- Let *R* be a $k \times m$ rectangle inside $R_{n,m}$.
- Let τ, τ' be constraint edges *not* intersecting *R*.

Lemma

Fix $\lambda < 1$ and m. There exists c and k_0 together with a coupling of μ^{τ} , $\mu^{\tau'}$ such that, if $k \ge k_0$, with probability at least $1 - \exp[-ck]$ there exist ϵk common vertical crossings of unit edges in R.

Back to thin rectangles: $T_{mix} = O(n^2)$ for any $\lambda < 1$

Step 1: Burn-in phase.

For some $T = c(\lambda)n^2$, uniformly in the initial condition and w.h.p.

$$\sigma(t) \in \widetilde{\Omega}, \qquad t \in [T, T + n^{10}].$$

 $\widetilde{\Omega}$ is the set of triangulations with at most $O(\log n)$ edges.

- The restricted chain to Ω is irreducible with reversible measure μ̃ := μ(· | Ω̃).
- Because of structural properties $\tilde{\mu}, \mu$ well coupled.
- Sufficient to prove $\widetilde{T}_{\min} = o(n^2)$.

Step 2: spatial mixing in $\widetilde{\Omega}$

Lemma (Spatial mixing)

The relative density of the marginals on the left block (light gray) of $\tilde{\mu}$ conditioned on two arbitrary (short) triangulations in the right block (dark gray) is exponentially (in $|J_c|$) close to one if $|J_c| = \Omega(\text{polylog}(n))$.

Step 3: Log-Sobolev constant in $\hat{\Omega}$

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies quasi-factorization of the entropy:

Step 3: Log-Sobolev constant in $\hat{\Omega}$

Figure: The rectangle Λ decomposed into two almost-halves Λ_1, Λ_2 with $\Lambda_1 \cap \Lambda_2 \equiv \Omega(\log n) \times m$ rectangle.

Spatial mixing implies quasi-factorization of the entropy:

Multiscale analysis of the Log-Sobolev constant.

• Dirichlet form:

$$\mathcal{E}(f,f) = rac{1}{2n} \sum_{\sigma,\sigma' \in \widetilde{\Omega}} \widetilde{\mu}(\sigma) p(\sigma,\sigma') (f(\sigma) - f(\sigma'))^2.$$

• Dirichlet form:

$$\mathcal{E}(f,f) = \frac{1}{2n} \sum_{\sigma,\sigma'\in\widetilde{\Omega}} \widetilde{\mu}(\sigma) p(\sigma,\sigma') (f(\sigma) - f(\sigma'))^2.$$

• Entropy:

$$\operatorname{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].$$

• Dirichlet form:

$$\mathcal{E}(f,f) = rac{1}{2n} \sum_{\sigma,\sigma' \in \widetilde{\Omega}} \widetilde{\mu}(\sigma) p(\sigma,\sigma') (f(\sigma) - f(\sigma'))^2.$$

• Entropy:

$$\operatorname{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].$$

• Logarithmic Sobolev constant

$$c_{\mathcal{S}}(n) := \sup_{f} \frac{\operatorname{Ent}(f^2)}{\mathcal{E}(f,f)},$$

•
$$\widetilde{T}_{\min} \leq C \log n \times c_S(n)$$
.

•

• Dirichlet form:

$$\mathcal{E}(f,f) = rac{1}{2n} \sum_{\sigma,\sigma'\in\widetilde{\Omega}} ilde{\mu}(\sigma) p(\sigma,\sigma') (f(\sigma) - f(\sigma'))^2.$$

• Entropy:

$$\operatorname{Ent}(f^2) = \tilde{\mu}[f^2 \log(f^2/\tilde{\mu}[f^2])].$$

• Logarithmic Sobolev constant

$$c_{\mathcal{S}}(n) := \sup_{f} \frac{\operatorname{Ent}(f^2)}{\mathcal{E}(f,f)},$$

•
$$\widetilde{T}_{\min} \leq C \log n \times c_S(n)$$
.

Theorem

$$c_{\mathcal{S}}(n) \leqslant n^{1+o(1)} \Rightarrow \widetilde{T}_{\min} = O(n^{1+o(1)}).$$

•

Lattice Triangulations

• Quasi-factorization of the entropy \Rightarrow

 $c_{S}(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_{S}(n/2)$

• Quasi-factorization of the entropy \Rightarrow

 $c_{\mathcal{S}}(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_{\mathcal{S}}(n/2)$

- The factor 2 comes from double counting the flips in the overlapping region.
- A random averaging of the location of the overlap block reduces it to $(1 + 1/\log^2 n)$.
- Sloppy notation: boundary edges are there !

• Quasi-factorization of the entropy \Rightarrow

 $c_{S}(2n) \leq (1+n^{-\epsilon}) \times 2 \times c_{S}(n/2)$

- The factor 2 comes from double counting the flips in the overlapping region.
- A random averaging of the location of the overlap block reduces it to $(1 + 1/\log^2 n)$.
- Sloppy notation: boundary edges are there !

 $\Rightarrow c_S(n) \leq \text{const} \times c_S(\text{polylog}(n)).$

• Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_j = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{j-1}, \ldots, L_0 .

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_j = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{j-1}, \ldots, L_0 .
- Straightforward "bootstrapping" i.e.

$$c_{S}(n) \leq O(c_{S}(L_{n})) = O(\exp(cL_{n}))$$
 \Downarrow
 $c_{S}(L_{n}) = O(\exp(O(polylog(L_{n})))$

not feasible.

- Exponential bound $c_S(L_n) = O(\exp(cL_n))$ not difficult but not sufficient.
- Important feature: on each scale $L_j = 2^{-j}n$ the Log-Sobolev problem involves *constraint edges* inherited from the conditioning on scale L_{j-1}, \ldots, L_0 .
- Straightforward "bootstrapping" i.e.

$$c_{S}(n) \leq O(c_{S}(L_{n})) = O(\exp(cL_{n}))$$
 \downarrow
 $c_{S}(L_{n}) = O(\exp(O(polylog(L_{n})))$

not feasible.

• Need e.g. a $O(poly(L_n))$ bound on $c_S(L_n)$ by different means.

A *poly*(L_n) upper bound on $c_S(L_n)$

•
$$c_S(L_n) = O(n \times T_{rel}(L_n))$$

•
$$T_{\rm rel}(L_n) \leq C$$
 (congestion rate)

$$\mathcal{C} := \max_{\eta \sim \eta'} \sum_{\substack{\sigma, \sigma':\\ \Gamma_{\sigma, \sigma'} \ni (\eta, \eta')}} \frac{\mu(\sigma)\mu(\sigma')}{\mu(\eta)p(\eta, \eta')} |\Gamma_{\sigma, \sigma'}|$$

where, for any $\sigma, \sigma' \in \widetilde{\Omega}$, $\Gamma_{\sigma,\sigma'}$ is a path in $\widetilde{\Omega}$ from σ to σ' .

• Typically $C = O(\exp(cL_n))$. We need $O(\operatorname{poly}(L_n))$.

• Reversible ergodic Markov chain X_t on \mathcal{X} .

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- X' ⊂ X be such that for any pair x, y ∈ X' it is possible to define a canonical path Γ_{x,y} entirely contained in X'. Let C(X') be the associated congestion rate.

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- X' ⊂ X be such that for any pair x, y ∈ X' it is possible to define a canonical path Γ_{x,y} entirely contained in X'. Let C(X') be the associated congestion rate.
- Fix time *T* and let

$$\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_T \in \mathcal{X}')$$

- Reversible ergodic Markov chain X_t on \mathcal{X} .
- X' ⊂ X be such that for any pair x, y ∈ X' it is possible to define a canonical path Γ_{x,y} entirely contained in X'. Let C(X') be the associated congestion rate.
- Fix time *T* and let

$$\rho = \min_{x \in \mathcal{X}} \mathbb{P}_x(X_T \in \mathcal{X}')$$

Lemma (Canonical paths with burn-in time)

$$T_{\mathrm{rel}} \leq rac{6T^2}{
ho} + rac{3\mathcal{C}(\mathcal{X}')}{
ho^2}$$

Theorem

Consider the original triangulation chain on $n \times m$ rectangle with (possibly) boundary edges sticking in but not longer than n/4. Then

 $T_{\rm rel} = O(poly(n)).$

Corollary (The needed poly(Ln) bound) For the restricted chain on $\tilde{\Omega}$ on $L_n \times m$ rectangle $T_{rel}(L_n) = O(poly(L_n)) = O(polylog(n)).$

Sketch of proof

Define $\Omega' \subset \Omega$ as follows:

- any edge does not exceed by more than O(log n) its minimal allowed (by the boundary edges) length.
- for any x ≠ y, if σ_y crosses the ground state edge σ̄_x at x then |σ_y| ≤ |σ̄_x| + O(log n).

Lemma

Fix $T = cn^2 m$. Then Ω' satisfies the hypotheses of the "canonical paths with burn-in lemma" with

$$\rho = \min_{\sigma} \mathbb{P}(\sigma(T) \in \Omega') \ge 1/2$$

and congestion rate C' = O(poly(n)) for a suitable choice of canonical paths in Ω' .

Key feature of the set Ω'

- Pb: Given σ , η construct path between them.
- In principle, to flip σ_x to η_x one may need to reshuffle edges in σ with midpoints very far from x.
- If $\sigma, \eta \in \Omega'$ "very far" is not more than $O(\log n)$.

• It is possible to construct the path by processing the slabs left-to-right without never changing more than 2 slabs at a time.