The cutoff phenomenon for random walk on random directed graphs

Justin Salez

JOINT WORK WITH C. BORDENAVE AND P. CAPUTO

K ロ > K @ > K ミ > K ミ > - 트 - K O Q Q*

K ロ ▶ K (日) K (日)

1. The cutoff phenomenon for Markov chains

1. The cutoff phenomenon for Markov chains

(ロ) (日) (동) (동) (동) 등 990

2. Random walk on directed graphs

1. The cutoff phenomenon for Markov chains

(ロ) (日) (동) (동) (동) 동 | 9 Q Q

- 2. Random walk on directed graphs
- 3. Main results

1. The cutoff phenomenon for Markov chains

(ロ) (日) (동) (동) (동) 등 990

- 2. Random walk on directed graphs
- 3. Main results

 $\mathcal{A} \hspace{1mm} \Box \hspace{1mm} \mathbb{P} \hspace{1mm} \mathcal{A} \hspace{1mm} \overline{\Box} \hspace{1mm} \mathbb{P} \hspace{1mm} \mathbb{P} \hspace{1mm} \overline{\Diamond} \hspace{1mm} \overline$

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space $\mathcal X$ converges to its stationary law $\pi = \pi P$:

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space $\mathcal X$ converges to its stationary law $\pi = \pi P$:

$$
\forall (x,y)\in\mathcal{X}^2,\qquad P^t(x,y)\xrightarrow[t\to\infty]{}\pi(y).
$$

イロト イ団ト イミト イミト ニミー りんぐ

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space X converges to its stationary law $\pi = \pi P$:

$$
\forall (x,y) \in \mathcal{X}^2, \qquad P^t(x,y) \xrightarrow[t \to \infty]{} \pi(y).
$$

 \triangleright Distance to equilibrium at time t:

$$
D_{\text{TV}}(t) := \max_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi(\cdot)\|_{\text{TV}}
$$

Any Markov chain with irreducible, aperiodic transition matrix P on a finite state space X converges to its stationary law $\pi = \pi P$:

$$
\forall (x,y) \in \mathcal{X}^2, \qquad P^t(x,y) \xrightarrow[t \to \infty]{} \pi(y).
$$

 \triangleright Distance to equilibrium at time t:

$$
D_{\text{TV}}(t) := \max_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi(\cdot)\|_{\text{TV}}
$$

 \triangleright Mixing times $(0 < \varepsilon < 1)$:

 $t_{\text{MIX}}(\varepsilon) := \min\{t \geq 0: D_{\text{TV}}(t) \leq \varepsilon\}$

(ロ) (@) (동) (동) - 동 - 990

 $\mathcal{X} = \mathfrak{S}_n$

(ロ) (@) (동) (동) - 동 - 990

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle"

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

Theorem (Aldous-Diaconis '86). For any fixed $0 < \varepsilon < 1$,

$$
\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
$$

イロト イ団ト イミト イミト ニミー りんぐ

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

Theorem (Aldous-Diaconis '86). For any fixed $0 < \varepsilon < 1$,

$$
\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
$$

► at $t = 0.99$ n log n, the deck is not mixed at all $(D_{TV}(t) \approx 1)$

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

Theorem (Aldous-Diaconis '86). For any fixed $0 < \varepsilon < 1$,

$$
\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
$$

► at $t = 0.99$ n log n, the deck is not mixed at all $(D_{TV}(t) \approx 1)$

► at $t = 1.01$ n log n, the deck is completely mixed $(D_{TV}(t) \approx 0)$

KED KARD KED KED E VOOR

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

Theorem (Aldous-Diaconis '86). For any fixed $0 < \varepsilon < 1$,

$$
\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
$$

► at $t = 0.99$ n log n, the deck is not mixed at all $(D_{TV}(t) \approx 1)$

► at $t = 1.01$ n log n, the deck is completely mixed $(D_{TV}(t) \approx 0)$

Theorem (Diaconis-Fill-Pitman '90). For any fixed $\lambda \in \mathbb{R}$,

 $D_{TV}(n \log n + \lambda n + o(n))$

 $\mathcal{X} = \mathfrak{S}_n$; $P =$ "top-to-random shuffle" ; $\pi =$ uniform

Theorem (Aldous-Diaconis '86). For any fixed $0 < \varepsilon < 1$,

$$
\frac{t_{\text{MIX}}(\varepsilon)}{n \log n} \xrightarrow[n \to \infty]{} 1.
$$

► at $t = 0.99$ n log n, the deck is not mixed at all $(D_{TV}(t) \approx 1)$

► at $t = 1.01$ n log n, the deck is completely mixed $(D_{TV}(t) \approx 0)$

Theorem (Diaconis-Fill-Pitman '90). For any fixed $\lambda \in \mathbb{R}$,

$$
\mathrm{D}_{\mathrm{TV}}(n \log n + \lambda n + o(n)) \xrightarrow[n \to \infty]{} \Phi(\lambda)
$$

with Φ : $\mathbb{R} \to (0,1)$ decreasing from $\Phi(-\infty) = 1$ to $\Phi(+\infty) = 0$.

(ロ) (日) (동) (동) (동) 등 990

Cutoff has been shown to arise in various contexts, including

Cutoff has been shown to arise in various contexts, including

-
-
-
-
-
-
-
-
-
-
-

-

• Card shuffling (Aldous, Diaconis, Shahshahani...)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

-
-
-
-
-
-
-
-
-
-
-

-

• Random walks on sparse graphs

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)
	- ▶ Ramanujan graphs (Lubetzky, Peres '15)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)
	- ▶ Ramanujan graphs (Lubetzky, Peres '15)
	- Trees (Basu, Hermon, Peres '15)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)
	- \triangleright Ramanujan graphs (Lubetzky, Peres '15)
	- Trees (Basu, Hermon, Peres '15)
	- \triangleright Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly '15 and Ben-Hamou, S. '15)

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)
	- \triangleright Ramanujan graphs (Lubetzky, Peres '15)
	- Trees (Basu, Hermon, Peres '15)
	- \triangleright Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly '15 and Ben-Hamou, S. '15)

Still, this phenomenon is far from being completely understood.

Cutoff has been shown to arise in various contexts, including

- Card shuffling (Aldous, Diaconis, Shahshahani...)
- Birth-and-death chains (Diaconis, Saloff-Coste...)
- Random walks on finite groups (Chen, Saloff-Coste...)
- Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)
- Random walks on sparse graphs
	- \triangleright Random regular graphs (Lubetzky, Sly '10)
	- \triangleright Ramanujan graphs (Lubetzky, Peres '15)
	- Trees (Basu, Hermon, Peres '15)
	- \triangleright Random graphs with given degrees (Berestycki, Lubetzky, Peres, Sly '15 and Ben-Hamou, S. '15)

Still, this phenomenon is far from being completely understood. In particular, very few results outside the reversible world...

1. The cutoff phenomenon for Markov chains

(ロ) (日) (동) (동) (동) 등 990

- 2. Random walk on directed graphs
- 3. Main results

Random walk on a digraph

$$
\mathcal{X}=\{1,\ldots,6\}
$$

イロト イ部ト イミト イモト

 $\circlearrowright\circ \varphi$

 \equiv

Random walk on a digraph

$$
\mathcal{X} = \{1,\ldots,6\}
$$

K ロ > K (日) > K 등 > K 등 > 1 등 …

 $\circledcirc \circledcirc \circledcirc$

 \blacktriangleright How long does it take for the walk to mix?

Random walk on a digraph

 Ω

 Ω

K ロ > K @ > K ミ > K ミ > - 트 - K O Q Q*

- \blacktriangleright How long does it take for the walk to mix?
- \blacktriangleright What does the stationary distribution π look like?

Motivation: ranking algorithms (credit: the opte project)

 QQ \Box

イロト (母) (ミ) (ミ) (ミ) ミーのQ(V)

Goal: generate a random digraph G on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_{\mathsf{x}}^-\}_{\mathsf{x}\in\mathcal{X}}$ and out-degrees $\{d_{\mathsf{x}}^+\}_{\mathsf{x}\in\mathcal{X}}$ (equal sum $m)$

Goal: generate a random digraph *G* on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_{\mathsf{x}}^-\}_{\mathsf{x}\in\mathcal{X}}$ and out-degrees $\{d_{\mathsf{x}}^+\}_{\mathsf{x}\in\mathcal{X}}$ (equal sum $m)$

Goal: generate a random digraph G on $\mathcal{X} = \{1, \ldots, n\}$ with given in-degrees $\{d_{\mathsf{x}}^-\}_{\mathsf{x}\in\mathcal{X}}$ and out-degrees $\{d_{\mathsf{x}}^+\}_{\mathsf{x}\in\mathcal{X}}$ (equal sum $m)$

 4 ロ } 4 \overline{r} } 4 \overline{z} } OQ Simulation: $n = 3 \times 1000$, $(d^+, d^-) = (3, 2), (3, 4), (4, 4)$

(ロ) (@) (동) (동) - 동 - 990

Simulation: $n = 3 \times 1000$, $(d^+, d^-) = (3, 2), (3, 4), (4, 4)$

 $\rightarrow \quad \Xi \rightarrow$ OQ **≮ロト ⊀ 倒 ト ⊀ ミト** Ξ

(ロ) (日) (동) (동) (동) 등 990

 $4\ \Box\ \rightarrow\ \ 4\ \overline{r}\overline{r}\ \rightarrow\ \ 4\ \overline{r}$ OQ \equiv \rightarrow

A glimpse at the eigenvalues

 OQ \leftarrow \Box

1. The cutoff phenomenon for Markov chains

(ロ) (日) (동) (동) (동) 등 990

- 2. Random walk on directed graphs
- 3. Main results

K ロ ▶ K (日) K (日)

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

(ロ) (日) (동) (동) (동) 등 990

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

(ロ) (日) (동) (동) (동) 등 990

$$
\mu:=\frac{1}{m}\sum_{x\in\mathcal{X}}d_x^-\log d_x^+
$$

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

 $\mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \oplus$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu:=\frac{1}{m}\sum_{x\in\mathcal{X}}d_x^-\log d_x^+
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}(\lambda t_n + o(t_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.
$$

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \qquad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \left(\log d_x^+ - \mu \right)^2
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}(\lambda t_n + o(t_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.
$$

 $\mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \oplus$

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \qquad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \left(\log d_x^+ - \mu \right)^2
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}(\lambda t_n + o(t_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.
$$

-
-
-
-
-
-
-
-
-
-
-

-

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{n^3}}$ $\overline{\mu^3}$

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \qquad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \left(\log d_x^+ - \mu \right)^2
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}(\lambda t_n + o(t_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.
$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}}$ ($\gg \log \log n$).

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \qquad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \left(\log d_x^+ - \mu \right)^2
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}\left(\lambda t_n + o(t_n)\right) \xrightarrow[n \to \infty]{\mathbb{P}} \begin{cases} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{cases}
$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}}$ ($\gg \log \log n$).

$$
D_{\text{TV}}(t_n + \lambda w_n + o(w_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \Phi(\lambda)
$$

Sparse regime: $2 \le d_x^{\pm} \le \Delta$ with Δ fixed as $n \to \infty$

$$
\mu := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \log d_x^+, \qquad \sigma^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} d_x^- \left(\log d_x^+ - \mu \right)^2
$$

Theorem 1 (cutoff): set $t_n = \frac{\log n}{\mu}$ $\frac{g n}{\mu}$.

$$
D_{\text{TV}}(\lambda t_n + o(t_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \left\{ \begin{array}{ll} 1 & \text{if } \lambda < 1 \\ 0 & \text{if } \lambda > 1 \end{array} \right.
$$

Theorem 2 (profile): set $w_n = \sqrt{\frac{\sigma^2 \log n}{\mu^3}}$ ($\gg \log \log n$).

$$
D_{\text{TV}}(t_n + \lambda w_n + o(w_n)) \xrightarrow[n \to \infty]{\mathbb{P}} \Phi(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\lambda}^{\infty} e^{-\frac{u^2}{2}} du
$$

K ロ > K 레 > K 로 > K 로 > - 로 - K 이익(N

 \triangleright how does all this depend on the choice of the initial vertex?

 \triangleright how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

 $D_{\text{TV}}(t) := \min_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi\|_{\text{TV}}$

 \triangleright how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

$$
D_{\text{TV}}(t) := \min_{x \in \mathcal{X}} \|P^t(x,\cdot) - \pi\|_{\text{TV}}
$$

-
-
-
-
-
-
-
-
-
-
-

-

 \triangleright What about a more spread-out initial law, e.g. $\nu(x) := \frac{d_x^+}{m}$?

 \triangleright how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

$$
D_{\text{TV}}(t) := \min_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi\|_{\text{TV}}
$$

 \triangleright What about a more spread-out initial law, e.g. $\nu(x) := \frac{d_x^+}{m}$?

Theorem 4 (constant-time relaxation): for fixed $t > 0$,

$$
\|\nu \mathcal{P}^t - \pi\|_{\text{TV}} \ \leq \ \frac{\sqrt{\Delta}}{2} \varrho^t + o_\mathbb{P}(1) \ \ \text{with} \ \ \varrho^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} \frac{d_x^-}{d_x^+} \leq \ \frac{1}{2}
$$

 \triangleright how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

$$
D_{\text{TV}}(t) := \min_{x \in \mathcal{X}} \|P^t(x, \cdot) - \pi\|_{\text{TV}}
$$

 \triangleright What about a more spread-out initial law, e.g. $\nu(x) := \frac{d_x^+}{m}$?

Theorem 4 (constant-time relaxation): for fixed $t > 0$,

$$
||\nu P^t - \pi||_{TV} \le \frac{\sqrt{\Delta}}{2} \varrho^t + o_{\mathbb{P}}(1)
$$
 with $\varrho^2 := \frac{1}{m} \sum_{x \in \mathcal{X}} \frac{d_x^+}{d_x^+} \le \frac{1}{2}$

Corollary: $\pi(x)$ is determined by the local geometry around x only!

(ロ) (日) (동) (동) (동) 등 990

$$
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
$$

(ロ) (@) (동) (동) - 동 - 990

$$
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
$$

Theorem 5 (asymptotics for the equilibrium masses):

$$
d_{\mathcal{W}}\left(\frac{1}{n}\sum_{x}\delta_{n\pi(x)},\mathcal{L}\right)\xrightarrow[n\to\infty]{\mathbb{P}} 0.
$$

(ロ) (@) (혼) (혼) (혼) 2000

$$
d_{\mathcal{W}}(\mathcal{L}, \mathcal{L}') = \sup_{f \in \text{Lip}_1(\mathbb{R})} \left| \int_{\mathbb{R}} f \, d\mathcal{L} - \int_{\mathbb{R}} f \, d\mathcal{L}' \right|
$$

Theorem 5 (asymptotics for the equilibrium masses):

$$
d_{\mathcal{W}}\left(\frac{1}{n}\sum_{x}\delta_{n\pi(x)},\mathcal{L}\right)\xrightarrow[n\to\infty]{\mathbb{P}} 0.
$$

 $\mathcal{L} \in \mathcal{P}_1(\mathbb{R})$ determined by the **recursive distributional equation**

$$
\frac{1}{d_{\mathcal{I}}^+}\sum_{k=1}^{d_{\mathcal{I}}^-} \chi_k \stackrel{\text{law}}{=} X_1,
$$

in which $(X_k)_{k\geq 1}$ are i.i.d and independent of \mathcal{I} , $\mathbb{P}(\mathcal{I}=x)=\frac{d^+_x}{m}$.

Thank you!

 $\circlearrowright\circ \varphi$ $\leftarrow \Box \rightarrow \neg \leftarrow \Box \Box \rightarrow \neg \leftarrow \Xi$ \equiv È \mathbf{p} \mathbf{b} ϵ