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Markov chain mixing

Any Markov chain with irreducible, aperiodic transition matrix P
on a finite state space X converges to its stationary law π = πP:

∀(x , y) ∈ X 2, Pt(x , y) −−−→
t→∞

π(y).

B Distance to equilibrium at time t:

Dtv(t) := max
x∈X
‖Pt(x , ·)− π(·)‖tv

B Mixing times (0 < ε < 1):

tmix(ε) := min{t ≥ 0: Dtv(t) ≤ ε}
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Example: card shuffling

X = Sn ; P = “top-to-random shuffle” ; π = uniform

Theorem (Aldous-Diaconis ‘86). For any fixed 0 < ε < 1,

tmix(ε)
n log n −−−→n→∞

1.

I at t = 0.99 n log n, the deck is not mixed at all (Dtv(t) ≈ 1)

I at t = 1.01 n log n, the deck is completely mixed (Dtv(t) ≈ 0)

Theorem (Diaconis-Fill-Pitman ‘90). For any fixed λ ∈ R,

Dtv(n log n + λn + o(n))

−−−→
n→∞

Φ(λ)

with Φ: R→ (0, 1) decreasing from Φ(−∞) = 1 to Φ(+∞) = 0.
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Ubiquity of the cutoff phenomenon

Cutoff has been shown to arise in various contexts, including

• Card shuffling (Aldous, Diaconis, Shahshahani...)

• Birth-and-death chains (Diaconis, Saloff-Coste...)

• Random walks on finite groups (Chen, Saloff-Coste...)

• Glauber dynamics (Levin, Lubetzky, Luczak, Peres, Sly...)

• Random walks on sparse graphs

I Random regular graphs (Lubetzky, Sly ‘10)
I Ramanujan graphs (Lubetzky, Peres ‘15)
I Trees (Basu, Hermon, Peres ‘15)
I Random graphs with given degrees (Berestycki, Lubetzky,

Peres, Sly ‘15 and Ben-Hamou, S. ‘15)

Still, this phenomenon is far from being completely understood.

In particular, very few results outside the reversible world...
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Random walk on a digraph
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Motivation: ranking algorithms (credit: the opte project)



Random digraph with given degrees (Cooper-Frieze ’04)

Goal: generate a random digraph G on X = {1, . . . , n} with given
in-degrees {d−x }x∈X and out-degrees {d+

x }x∈X (equal sum m)
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Simulation: n = 3× 1000, (d+, d−) = (3, 2), (3, 4), (4, 4)
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Distribution of the stationary masses {nπ(x) : x ∈ X}



Distribution of the stationary masses {nπ(x) : x ∈ X}



A glimpse at the eigenvalues
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Cutoff and profile

Sparse regime: 2 ≤ d±x ≤ ∆ with ∆ fixed as n→∞

µ :=
1

m

∑
x∈X

d−x log d+
x

, σ2 :=
1

m

∑
x∈X

d−x
(
log d+

x − µ
)2

Theorem 1 (cutoff): set tn = log n
µ .

Dtv (λtn + o(tn))
P−−−→

n→∞

{
1 if λ < 1
0 if λ > 1

Theorem 2 (profile): set wn =
√

σ2 log n
µ3

(� log log n).

Dtv(tn + λwn + o(wn))
P−−−→

n→∞
Φ(λ) =

1√
2π

∫ ∞
λ

e−
u2

2 du
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Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Sensitivity to initial condition

B how does all this depend on the choice of the initial vertex?

Theorem 3 (vertex irrelevance): previous results unchanged if

Dtv(t) := min
x∈X
‖Pt(x , ·)− π‖tv

B What about a more spread-out initial law, e.g. ν(x) := d−x
m ?

Theorem 4 (constant-time relaxation): for fixed t ≥ 0,

‖νPt − π‖tv ≤
√

∆

2
%t + oP(1) with %2 :=

1

m

∑
x∈X

d−x
d+
x
≤ 1

2

Corollary: π(x) is determined by the local geometry around x only!



Distribution of the stationary masses {nπ(x) : x ∈ X}

dW(L,L′) = sup
f ∈Lip1(R)

∣∣∣∣∫
R
f dL −

∫
R
f dL′

∣∣∣∣
Theorem 5 (asymptotics for the equilibrium masses):

dW

(
1

n

∑
x

δnπ(x),L

)
P−−−→

n→∞
0.

L ∈ P1(R) determined by the recursive distributional equation

1

d+
I

d−I∑
k=1

Xk
law
= X1,

in which (Xk)k≥1 are i.i.d and independent of I, P(I = x) = d+
x
m .
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Thank you!
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