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Random-cluster model (Fortuin & Kasteleyn, 1969)

• Probability distribution over the subgraphs of a graph G = (V,E).

• Given parameters p ∈ [0, 1] and q > 0, for each subgraph (V,A ⊆ E):

µG (A) ∝ p|A| (1 − p)|E\A| qc(A)

[c(A): # of cmpts in (V ,A)]

p(1 − p)3q3 p2(1 − p)2q2 p4q
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Motivation

µG(A) ∝ p|A| (1 − p)|E\A| qc(A)

Unifying framework for studying several important distributions:

• When q = 1, bond percolation model. [G = Kn, G(n,p) model]

• For integer q > 2, “dual” to ferromagnetic Ising/Potts model.

• When q→ 0, the set of (weak) limits that arises includes:

µG → UST(G), µG → USF(G), or µG → UCS(G)
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Random-cluster model in infinite graphs

Infinite measure: If {Gn}→ G, then µG := lim
n→∞µGn

Example:

Ln

n

L = (Z2,E)

Then, {Ln}→ L and µL := lim
n→∞µLn
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Phase transition

Phase transition: ∃ pc(q) such that w.h.p.,

• p < pc(q) =⇒ all components are finite;

• p > pc(q) =⇒ there is at least one infinite component.

In Z2:

pc(q) =

√
q

√
q+ 1

[Beffara, Duminil-Copin 2012]

Finite setting: corresponds to the emergence of a giant component.
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Dynamics

Our focus: Markov chains on the random-cluster configurations of a graph
G with stationary distribution µG.

Mixing time: Number of steps Tmix until total variation distance from µG
is small (6 1/4), starting from any initial configuration.

Motivation:

• Connection between phase transitions and mixing times.

• Algorithms for sampling configurations (MCMC).

• Random-cluster dynamics challenge current techniques.
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Heat-bath (HB) dynamics

Given a random-cluster configuration A ⊆ E:

1. pick an edge e ∈ E u.a.r.;

2. replace A by A ∪ {e} with probability

µG(A ∪ {e})

µG(A ∪ {e}) + µG(A \ {e})
;

3. else replace A by A \ {e}.
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Heat-bath (HB) dynamics (cont.)

µG(A ∪ {e})

µG(A ∪ {e}) + µG(A \ {e})
=


p if e is not a cut-edge;

p

p+ q(1 − p)
otherwise.
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Chayes-Machta (CM) dynamics

Given a random-cluster configuration A ⊆ E:

1. Activate each component of A independently with prob. 1/q;

2. Add each active edge with prob. p; remove it otherwise.

• Straightforward to check that µG is the stationary measure.

• It is well-defined for any q > 1.
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CM dynamics: example

G = L6, p = 1/2, q = 2
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Local and Global dynamics

• The HB dynamics is a local Markov chain, while the CM is global.

• In spin systems, global Markov chains mix fast in regimes where local
dynamics are slow.

Theorem 1

Tmix(CM)

Õ(|E|2)
6 Tmix(HB) 6 Õ(|E|2) · Tmix(CM)

Proof idea. Follows by generalizing a technique of [Ullrich 2013].
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Part I: Chayes-Machta dynamics in the mean-field [G = Kn]

Part II: Heat-bath dynamics in Z2
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Mean-field theory

Mean-field: G = Kn [useful non-trivial starting point]

Phase transition: If p = λ/n, then ∃ λc(q) such that w.h.p.:

• λ < λc(q) =⇒ all components have size O(logn).

• λ > λc(q) =⇒ there is a component of size ∼ θrn.

Critical value:

λc(q) =


q if 0 < q 6 2,

2

(
q− 1

q− 2

)
log(q− 1) if q > 2.

[Bollobás, Grimmett, Janson 1996] [Luczak,  Luczak 2006]
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Mean-field mixing: Previous work

Previous work on mixing times:

• Most previous results are for Swendsen-Wang (SW) dynamics.
[similar to CM dynamics, but only for integer q]

• Mixing time of SW dynamics for q = 2 fully understood.
[Cooper,Dyer,Frieze,Rue 2006]
[Long,Nachmias,Ning,Peres 2011]

• Until recently, only partial results for integer q > 3.
[Gore,Jerrum 1996], [Huber 2003]

• Independently, mixing time of SW dynamics for integer q > 3 also
fully understood. [Galanis, Štefankovič, Vigoda 2015]
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Mean-field mixing: Our results

Theorem 2

If q ∈ (1, 2]:

Tmix(CM) = Θ(logn) for λ 6= λc

If q > 2:

Tmix(CM) =


exp(Ω(

√
n)) for λ ∈ (λL, λR)

Θ(logn) for λ 6∈ [λL, λR)

Θ(n1/3) for λ = λL

[λL < λc < λR]
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Mean-field mixing: Interpretation of results

Second order phase transition for 1 < q 6 2:

Θ(logn)
L1

Pr

L1

Pr

Θ(n2/3)
L1

Pr

L1

Pr

θrn
L1

Pr

First order phase transition for q > 2:

Θ(logn)
L1

Pr

θrn θrn
L1

Pr

θrn θrn
L1

Pr

θrn θrn
L1

Pr

θrn
L1

Pr
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Mean-field mixing: Proof ideas

Technique:

• Couple two copies {Xt}, {Yt} of the CM dynamics, starting from
arbitrary initial configurations X0, Y0.

• If Pr[XT 6= YT ] 6 1/4 then Tmix 6 T .

Coupling has two main phases:

1. Run {Xt} and {Yt} independently until the sizes of largest components
are close to expectation. [Θ(logn) if λ < λc, and ∼θrn if λ > λc]

2. Coupled the evolution of {Xt}, {Yt} until XT = YT .
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Phase 1: Independent evolution

Observation: If At is the set of active vertices at time t, the configuration
in At is replaced by a G(At,p) random graph.

Phase 1a: After O(logn) steps {Xt} has at most one large component.

Phase 1b: Analyze the expected change in size of the largest component.

[L(Xt) largest component of Xt, and L1(Xt) =: θtn]

• If L(Xt) is inactive: L(Xt+1) = L(Xt) w.h.p.

• If L(Xt) is active: # of active vertices ≈ θtn+
(1 − θt)n

q
=:M

E[L1(Xt+1) | L(Xt) active ] ≈ L1(G(M,p)) =: φ(θt)n.

• Drift given by the function f(θ) := φ(θ) − θ.
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Phase 1: Drift function (1 < q 6 2)

θr

λ > λc

λ = λc

λ < λc

f(θ) = φ(θ) − θ

θ

f(θ)

The drift function f has the desired sign.
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Phase 1: Drift function (q > 2)

f(θ) = φ(θ) − θ

θ

f(θ)

λ<λL

λ>λR

λ=λL < λc

λ=λR > λc

When λ < λL and λ > λR drift always has desired sign.
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f(θ) = φ(θ) − θ

θ

f(θ)

λ<λL

λ>λR
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Phase 1: Drift function (q > 2)

f(θ) = φ(θ) − θ

θ

f(θ)

λ=λL < λc

λ=λR > λc

When λ = λL or λ = λR, drift can be 0.
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Proofs: Phase 2 - Coupled evolution

Phase 2a: Coupling to achieve the same component structure.
[Assuming L1(X0) ≈ L1(Y0)]

1. Couple the activation of components in a way such that both active
subgraphs have the same size w.h.p.

2. Couple edge resampling using arbitrary bijection between active edges.

Observations:

• If activation coupling succeeds, the activated subgraphs will have the
same component structure after step 2.

• After T = O(logn) consecutive successes of the activation coupling
XT and YT have the same component structure w.h.p.

Phase 2b: If X0 and Y0 have the same component structure, {Xt}, {Yt} can
be coupled such that XT = YT for some T = O(logn) w.h.p.
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Proofs: Phase 2 - Activation coupling

L1(X)

L1(X)

L1(Y)

L1(Y)

AX

AY

DX

DY

IX

IY

• First part of activation creates a discrepancy D = O(
√
n).

• Correct D using coupling of binomial distributions on IX and IY .
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Part II: Random-cluster dynamics in Z2
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Heat-bath dynamics in Ln

Ln
n

Given a random-cluster configuration A ⊆ En of Ln:

1. pick an edge e ∈ E u.a.r.;

2. replace A by A ∪ {e} with probability
µG(A ∪ {e})

µG(A ∪ {e}) + µG(A \ {e})
;

3. else replace A by A \ {e}.
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Heat-bath dynamics in Ln: Mixing times

Previous work: [Ullrich 2014]

Tmix(HB) = O(n
6 log2 n), for all integer q > 1 and all p 6= pc(q).

Holds only for integer q, produces weak bounds, and the proof is indirect.

Theorem 3

Tmix(HB) = Θ(n
2 logn), for all q > 1 and all p 6= pc(q).
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Boundary conditions

Boundary condition: A partition of the vertices in ∂Ln that encodes the
connectivities from Lcn.
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Boundary conditions: examples

wired free

A boundary condition η is side-homogeneous if:

1. all wired vertices in η belong to the same component of Lcn; and

2. η is either free or wired along each side of Ln

not side-homogeneous!
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Spatial Mixing (SM)

Let B(e, r) be a square box of radius r around e:

e

2r+ 1

B(e, r)

Ln

SM holds if for all e and all pairs of configurations Ac1 ,Ac2 on Bc(e, r):

| µ
η
Ln( e = 1 | Ac1 ) − µ

η
Ln( e = 1 | Ac2 ) | 6 e−Ω(r)
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Spatial Mixing (cont.)

Exponential decay of connectivities (EDC): [Beffara, Duminil-Copin 2012]

For p < pc(q), q > 1 and all u, v ∈ Z2,

µL(u↔ v) 6 e−d(u,v)

Previous work on SM: [Alexander 2004]

• EDC holds in finite volumes with arbitrary boundary conditions.

• SM holds for certain restricted class of boundary conditions, for all
p < pc(q) and all integer q > 1.

Lemma 1. SM holds for side-homogeneous boundary conditions,
for all p < pc(q) and all q > 1.
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Proof of Lemma 1 (SM)

Case 1: ∂Ln ∩ B(e, r) = ∅

e

B(e, r) • Influence on e from Bc(e, r) iff there are
paths from ∂B to e.

• EDC ensures that influence decays
exponentially with r.

Case 2: ∂Ln ∩ B(e, r) 6= ∅

eB(e, r)

• Influence on e also from the boundary
condition on Ln.

• Far regions could affect the state of e.

• Side-homogeneous boundaries avoid this!
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Outline of proof of Theorem 3

Theorem 3

Tmix(HB) = Θ(n
2 logn), for all p 6= pc and all q > 1.

Proof Sketch.

Lemma 2. SM implies that Tmix = O(n
2 logn (log logn)2).

Lemma 3. If Tmix = O
(
n2+ε

)
, then Tmix = O(n

2 logn).

Therefore, Tmix = O(n
2 logn) for all p < pc and all q > 1.

Lemma 4. If Tmix 6M for p < pc, then Tmix = O(M) for p > pc.

Lemma 5. Tmix = Ω(n2 logn).
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Proof of Lemma 2: SM implies fast mixing

On spin systems: [Martinelli, Olivieri, Schonmann 1994]
[Dyer, Sinclair, Vigoda, Weitz 2004]
[Mossel, Sly 2013]

Proof idea.

• Couple two copies {Xt}, {Yt} of the heat-bath Markov chain, starting
from arbitrary initial configurations.

• If Pr[XT 6= YT ] 6 1/4 then Tmix 6 T .

Identity Coupling: Use same random edge e and same uniform random
number to decide if add/remove e.

Monotonicity: If Yt ⊆ Xt , then Yt+1 ⊆ Xt+1.

Therefore, it is sufficient to consider the starting states Y0 = ∅, X0 = En.
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Proof of Lemma 2: SM implies fast mixing (cont.)

• A union bound implies:

Pr[Xt 6= Yt] 6
∑

e∈E
Pr[Xt(e) 6= Yt(e)]

• Consider {Z−
t }, {Z

+
t } such that:

∅ = Z−
0 = Y0 ⊆ X0 = Z+

0 = En

• {Xt}, {Yt}, {Z
−
t }, {Z

+
t } are coupled via the identity coupling.

• {Z−
t }, {Z

+
t } ignore updates in Bc = Bc(e, r) for a suitable r.

e

Z−
t

⊆ e

Yt

⊆ e

Xt

⊆ e

Z+
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Proof of Lemma 2: SM implies fast mixing (cont.)

Pr[Xt(e) 6= Yt(e)] 6 Pr[Z−
t (e) 6= Z+

t (e)]

Stationary measures:

{Z−
t } → µ

η
Ln( · |B

c = 0 )

{Z+
t } → µ

η
Ln( · |B

c = 1 )

For sufficiently large T :

Z−
T (·) ≈ µ

η
Ln( · |B

c = 0 )

Z+
T (·) ≈ µ

η
Ln( · |B

c = 1 )

e

Z−
t

e

Z+
t

T should be large enough s.t.
{Z−
t }, {Z

+
t } are well mixed.

SM with r = O(logn):∣∣∣µηLn( e = 1 |Bc = 1 ) − µηLn( e = 1 |Bc = 0 )
∣∣∣ 6 e−Ω(r) = O(n−2)
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Proof of Lemma 2: SM implies fast mixing (cont.)

• {Z−
t } and {Z+

t } are “lazy” heat-bath dynamics in B(e, r) with
side-homogeneous boundary conditions:

• If Tmix(Ln) 6 F0(n) for all side-homogeneous boundaries, then:

T = F0(logn) logn · n2

log2 n
= F1(n)

• If F0(n) 6 e
n2

[crude bound], then: F4(n) = O(n
2 logn(log logn)2)
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Proof of Lemma 3

Lemma 3. If Tmix = O
(
n2+ε

)
, then Tmix = O(n

2 logn).

Proof Sketch. Establish recurrence for maxe∈E Pr[Xt(e) 6= Yt(e)]

Main new ingredient: Bound the speed of propagation of disagreements.

e

Xt

e

Yt

If Xt(B(e, r)) = Yt(B(e, r)), how many steps until XT (e) 6= YT (e)?

Lemma 6. If X0(B(e, r)) = Y0(B(e, r)) and Y0 ∼ µ
η
Ln , then:

Pr[Xkn2(e) 6= Ykn2(e)] 6 e−Ω(r1/4) [for k < r1/4]
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Speed of propagation of disagreements: Proof

e

B(e, r)

Γ0

1. If et 6∈ ∂Γt, then Γt+1 = Γt;

2. o.w., Γt+1 = Γt \ ct.

Key observation: Xt(Γt) = Yt(Γt)

• Since Yt ∼ µ
η
Ln , EDC only small clusters in B(e, r).

• Hence, many updates to ∂Γt are required to reach e.
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Open problems

Mean-field:

• Better upper bounds for the mixing time of local dynamics.

[Should be Õ(n2), instead of Õ(n4)]

Z2:

• Mixing time of the heat-bath at the critical point λ = λc(q).

[Conjecture: polynomial for q 6 4, exponential for q > 4]

[Duminil-Copin, Sidoravicius, Tassion 2015]
[Laanait, Messager, Miracle-Solé, Ruiz, Shlosman 1991]

General Graphs:

• Dynamics for q ∈ (0, 1)?

• Analysis of dynamics in other graphs.
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Thanks!
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