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Random-cluster model (Fortuin & Kasteleyn, 1969)

» Probability distribution over the subgraphs of a graph G = (V, E).

+ Given parameters p € [0,1] and q > 0, for each subgraph (V,A C E):

b (A) oc plAT (1 —p)F\A el

[c(A): # of cmpts in (V,A)]

p(1—p)*q® p(1-p)3q p'q
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nG(A) o plAl (1 —p)EVAT ge(A)

Unifying framework for studying several important distributions:
« When q =1, bond percolation model. [G = K,,, G(n, p) model]
« For integer q > 2, “dual” to ferromagnetic Ising/Potts model.

« When q — 0, the set of (weak) limits that arises includes:

ug — UST(G), ung — USF(G), or ug — UCS(G)
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Random-cluster model in infinite graphs

Infinite measure: If {Gn} — G, then pg := lim ug,
n—o0

Example: L = (Z% E)

Then, {L} — L and yg, := Ii_)m UL,
n o0
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Phase transition

Phase transition: 3 p¢(q) such that w.h.p.,
+ p<pclq) = all components are finite;

* P >pclq) = thereis at least one infinite component.

In Z2:

pelq) = N ES [Beffara, Duminil-Copin 2012]

Finite setting: corresponds to the emergence of a giant component.
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Our focus: Markov chains on the random-cluster configurations of a graph
G with stationary distribution ..

Mixing time: Number of steps Tix until total variation distance from g
is small (< 1/4), starting from any initial configuration.

Motivation:

» Connection between phase transitions and mixing times.
+ Algorithms for sampling configurations (MCMC).
+ Random-cluster dynamics challenge current techniques.
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Heat-bath (HB) dynamics

Given a random-cluster configuration A C E:
1. pick an edge e € E u.a.r;

2. replace A by A U{e} with probability

ug(Auf{e}) ,
ne(AU{el) + ug(A\{e})’

3. else replace A by A\ {e}.
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Heat-bath (HB) dynamics (cont.)

P if e is not a cut-edge;
Ha(A U{e) _
ne(AU{e}) + ng(A\{e}) P
p+4q(l—p)

otherwise.
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Heat-bath (HB) dynamics (cont.)
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Chayes-Machta (CM) dynamics

Given a random-cluster configuration A C E:
1. Activate each component of A independently with prob. 1/q;

2. Add each active edge with prob. p; remove it otherwise.

» Straightforward to check that (i is the stationary measure.

+ It is well-defined for any q > 1.
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CM dynamics: example

G=Lg p=1/2 q=2
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Local and Global dynamics

» The HB dynamics is a local Markov chain, while the CM is global.

+ In spin systems, global Markov chains mix fast in regimes where local
dynamics are slow.

Tmix(CM)
O([EP)

< Tmix(HB) < O(IEIZ)Tmlx(CM)

Proof idea. Follows by generalizing a technique of [Ullrich 2013].
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Part |: Chayes-Machta dynamics in the mean-field [G = K,,]

Part 1I: Heat-bath dynamics in Z?
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Mean-field theory

Mean-field: G =Ky, [useful non-trivial starting point]

Phase transition: If p =A/n, then 3 A:(q) such that w.h.p.:
+ A< A:(q) = all components have size O(logn).
+ A>Ac.(q) = thereis a component of size ~ 6,n.

Critical value:

q if 0 < q<2,

}\c(q) =
2 (2—_;) log(q—1) ifq>2.

[Bollobas, Grimmett, Janson 1996] [Luczak, tuczak 2006]
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Mean-field mixing: Previous work

Previous work on mixing times:

+ Most previous results are for Swendsen-Wang (SW) dynamics.
[similar to CM dynamics, but only for integer q]

+ Mixing time of SW dynamics for q = 2 fully understood.
[Cooper,Dyer,Frieze,Rue 2006]
[Long,Nachmias,Ning,Peres 2011]

+ Until recently, only partial results for integer q > 3.
[Gore,Jerrum 1996], [Huber 2003]

+ Independently, mixing time of SW dynamics for integer q > 3 also
fully understood. [Galanis, Stefankovig, Vigoda 2015]
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Mean-field mixing: Our results

If g €(1,2]:

Tmix(CM) = O(logn) for A # Ac
If g >2:
exp(Q(vn))  for A € (AL, AR)
Thix(CM) =< O(logn) for A & [AL, AR)

en'3) for A = AL

[}\L < 7\c < )\R]

15/39



Mean-field mixing: Interpretation of results

Second order phase transition for 1 < q < 2

A<Ac A>Ac
I P"I Pr
L1
O(logn) e(n2/3) o, Ly

First order phase transition for q > 2:

A<AL AL<A<Ac Ac <A<AR A>AR
L \__ s I/\A I/\A | |
O (logn) L1 L 0rm Bl
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Mean-field mixing: Proof ideas

Technique:

« Couple two copies {Xt}, {Y¢} of the CM dynamics, starting from
arbitrary initial configurations Xg, Yo.

o If PriXy #* Y] < 1/4 then T < T.

Coupling has two main phases:

1. Run {Xt¢} and {Y;} independently until the sizes of largest components
are close to expectation. [BO(logn) if A < Ac, and ~0,n if A > A]

2. Coupled the evolution of {Xi}, {Y¢} until X1 = Y7.
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Phase 1: Independent evolution

Observation: If A¢ is the set of active vertices at time t, the configuration
in Ay is replaced by a G(A¢,p) random graph.

Phase 1a: After O(logn) steps {Xt} has at most one large component.

Phase 1b: Analyze the expected change in size of the largest component.

[£(X¢) largest component of X, and L1(X¢) =: 0¢n]

o If £L(X¢) is inactive: L(X¢11) = £(X¢) w.h.p.

1—
If £(X¢) is active: # of active vertices ~ 0¢n + ﬂ =M

E[L;(Xeq1) | £(X¢) active] =~ L1(G(M,p)) = &(0¢)n.

« Drift given by the function f(0) := &(0) — 0.
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Phase 1: Drift function (1 < q < 2)

f(6) £(0) = p(0) —0

9\ 0
A > Ac

A=Ac

A< Ac

The drift function f has the desired sign.
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Phase 1: Drift function (q > 2)

f(0)

\ 0
A>AR

A=AR > A¢
A<AL

When A < AL and A > Ag drift always has desired sign.
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Phase 1: Drift function (q > 2)

f(0)

/ \7\>7\Re

A=AR > A¢
A<AL

When AL <A< AR, drift does not always have desired sign.
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Phase 1: Drift function (q > 2)

f(0)

A=AR > Ac
A=AL < Ac

When A = A or A = AR, drift can be 0.
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Proofs: Phase 2 - Coupled evolution

Phase 2a: Coupling to achieve the same component structure.
[Assuming L;1(Xo) =~ L1(Yo)]

1. Couple the activation of components in a way such that both active
subgraphs have the same size w.h.p.

2. Couple edge resampling using arbitrary bijection between active edges.

Observations:

« If activation coupling succeeds, the activated subgraphs will have the
same component structure after step 2.

« After T = O(logn) consecutive successes of the activation coupling
Xt and YT have the same component structure w.h.p.

Phase 2b: If Xg and Yy have the same component structure, {Xi}, {Y¢} can
be coupled such that X1 = Yt for some T = O(logn) w.h.p.
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Proofs: Phase 2 - Activation coupling

AX DX IX
..“".... ‘..‘Q. ©oo00000000

L1(Y) Q@ @000ccces] OOOOO@@| covosccon
Ay Dy Iy
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Proofs: Phase 2 - Activation coupling

AX DX IX
0.0..O0.0. ‘..‘Q. ©oo00000000

L1(Y) QO @0000000ce] (@OO@O @@ @®| cocosccon
Ay Dy Iy
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Proofs: Phase 2 - Activation coupling

Ax Dx Ix
L1 (X) O @ 000 coeoe .“‘oo cococcose
L1(Y) QO @000ccece] @OOO @@ @ | cocosccon

Ay Dy Iy
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Proofs: Phase 2 - Activation coupling

Ax Dx Ix
L1 (X) O @ 000 coeoe .O"OO eccsscoso
L1(Y) O @ 0@ @ ooeoco 0000 @0 @| ooccscons
Ay Dy Iy

« First part of activation creates a discrepancy D = O(y/1).
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Proofs: Phase 2 - Activation coupling

Ax Dx Ix
L1 (X) O @ o000@ 00000 .O..oo .........
L1(Y) O @ o0@@ocoeod 00@O®O@®| ococcsococoo
Ay Dy Iy

« First part of activation creates a discrepancy D = O(y/1).

« Correct D using coupling of binomial distributions on Ix and Iy.
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Part II: Random-cluster dynamics in Z?
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Heat-bath dynamics in L,

Given a random-cluster configuration A C E;, of L,:

1. pick an edge e € E u.a.r;

ng(AUu{e})

2. replace A by A U{e} with probabilit ;
i ’ P Y We(AUTeD + na(A\{e]

3. else replace A by A\ {e}.
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Heat-bath dynamics in L,;: Mixing times

Previous work: [Ullrich 2014]

Tmix(HB) = O(n®log®n), for all integer qg=>1andall p#pc(q).

Holds only for integer ¢, produces weak bounds, and the proof is indirect.

Tmix(HB) = ©(n?logn), for all ¢ > 1 and all p # pc(q).
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Boundary conditions

s e

Boundary condition: A partition of the vertices in 0LL,, that encodes the
connectivities from LS, .
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Boundary conditions: examples

. . . . . . . . . . . . .
. . . . . . . . .

wired free

A boundary condition 1 is side-homogeneous if:

1. all wired vertices in 1 belong to the same component of LS ; and

2. M is either free or wired along each side of L,

. . . . . . . . . .
. . . . .
. . . . . .

. . . . . . . . . . . . . . . .

not side-homogeneous!
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Spatial Mixing (SM)

Let B(e, ) be a square box of radius r around e:

Be, 1), :

SM holds if for all e and all pairs of configurations A{, A5 on B(e, 1):

luf (e=1]Af) — uf! (e=1]A5)| < e @
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Spatial Mixing (cont.)

Exponential decay of connectivities (EDC): [Beffara, Duminil-Copin 2012]
For p <pel(q), g >1andall u,v e Z?,

up (1 4 v) < e 4wy

Previous work on SM: [Alexander 2004]

« EDC holds in finite volumes with arbitrary boundary conditions.

» SM holds for certain restricted class of boundary conditions, for all
P <7Ppcl(q) and all integer q > 1.

Lemma 1. SM holds for side-homogeneous boundary conditions,
for all p < pc(q) and all g > 1.
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Proof of Lemma 1 (SM)

Case 1: 0L, NB(e, 1) =0

TP PE— « Influence on e from B€(e, r) iff there are

5 : paths from 0B to e.

""""""""""" « EDC ensures that influence decays
exponentially with r.

Case 2: 0L, NB(e, 1) #0

+ Influence on e also from the boundary
condition on L.

B(e, 1)

o]
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Proof of Lemma 1 (SM)

Case 1: 0L, NB(e, 1) =0

Ble,r) o « Influence on e from B€(e, r) iff there are
5 3 paths from 0B to e.
"""""""""""""" « EDC ensures that influence decays
exponentially with r.

+ Influence on e also from the boundary
condition on L.

« Far regions could affect the state of e.

« Side-homogeneous boundaries avoid this!
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Outline of proof of Theorem 3

Tmix(HB) = ©(n?logn), for all p # pc and all g > 1.

Proof Sketch.
Lemma 2. SM implies that Tmix = O(n?logn (loglogn)?).
Lemma 3. If Tyix = O (n?"¢), then Tmix = O(n?logn).

Therefore, Tmix = O(n?logn) for all P <pcandall qg>1.

Lemma 4. If Tyix < M for p < pe, then Trix = O(M) for p > pe.

Lemma 5. Tmix = Q(n?logn).
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Proof of Lemma 2: SM implies fast mixing

On spin systems: [Martinelli, Olivieri, Schonmann 1994]
[Dyer, Sinclair, Vigoda, Weitz 2004]
[Mossel, Sly 2013]

Proof idea.

« Couple two copies {X¢}, {Yt} of the heat-bath Markov chain, starting
from arbitrary initial configurations.

o If PriXy #* Yol < 1/4 then T < T.

Identity Coupling: Use same random edge e and same uniform random
number to decide if add/remove e.

Monotonicity: If Yy C X¢ , then Yii1 C X1,

Therefore, it is sufficient to consider the starting states Yy = (), Xo = E,,.
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Proof of Lemma 2: SM implies fast mixing (cont.)

« A union bound implies:

PriXe # Vi < ) PriXe(e) # Ye(e)]

« Consider {Z;}, {Z{} such that:
@ZZEZYQQX():ZS_:E“

o (X} {Yeh, {Z0 ) {Z} are coupled via the identity coupling.

« {Z}, {Z} ignore updates in B¢ = B¢(e, 1) for a suitable .

— ] -+ 5] HHH
- L o= J:||_| Ho 5
S < L |1 g-‘:q_f‘-\jjcgz-f‘-\jff

= = HHE

4 A

Z; Y, X, z
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Proof of Lemma 2: SM implies fast mixing (cont.)

PriXc(e) # Yi(e)] < PrlZi(e) # Z{ (e)]

Stationary measures:

(Z7) > ul (1B =0) PN
| L O HH

{Z{y = (-1BC=1) T
Z z

For sufficiently large T:
Zr() ~ (]S =0)
Z1() ~ uf, (+[BC=1)
SM with r = O(logn):

i (e=1[B°=1)—pn] (e=1|B*=0) <e M =0(n"?
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Proof of Lemma 2: SM implies fast mixing (cont.)

PriXc(e) # Yi(e)] < PrlZi(e) # Z{ (e)]

Stationary measures:
{Z} — W (B =0)
Z5) - (Be=1)

For sufficiently large T:
Zr() ~ (]S =0)
Z7 () = pf (-1BC=1)

SM with r = O(logn):

o
I
ot

T should be large enough s.t.
{Z7}, {Z7) are well mixed. J

i (e=1[B°=1)—pn] (e=1|B*=0) <e M =0(n"?
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Proof of Lemma 2: SM implies fast mixing (cont.)

« {Z;}and {Z}} are "lazy” heat-bath dynamics in B(e, ) with
side-homogeneous boundary conditions:

i | o]

« IfFo(n) < e’ [crude bound], then: F4(n) = O(n?logn(loglogn)?)
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Proof of Lemma 3

Lemma 3. If Tyix = O (n?"¢), then Tmix = O(n?logn).
Proof Sketch. Establish recurrence for max.-¢ Pr[X((e) # Yi(e)]

Main new ingredient: Bound the speed of propagation of disagreements.

_|_L L L—
0 L 0 L
_|_?LJ—| ‘E_|_FL_|:|E
1 1 ! I |_
Xt Yi

If X¢(B(e, 1)) = Y¢(B(e, 1)), how many steps until Xt(e) # Yr(e)?

Lemma 6. If Xo(B(e, 7)) = Yo(B(e, 1)) and Yo ~ pf , then:

PriXn2(e) # Yine(e)] < e 20 [for k< +1/9
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Speed of propagation of disagreements: Proof
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Speed of propagation of disagreements: Proof

Key observation: X¢(T¢) = Y ()
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Key observation: X¢(T¢) = Y ()
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Speed of propagation of disagreements: Proof

1. If €t g art, then Ft+1 = Ft;

« Since Yy ~ ' , EDC only small clusters in B(e, 7).
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Speed of propagation of disagreements: Proof

If €t g art, then Ft+1 = Ft;

« Since Yy ~ ' , EDC only small clusters in B(e, 7).

» Hence, many updates to 0I} are required to reach e.
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Open problems

Mean-field:

» Better upper bounds for the mixing time of local dynamics.
[Should be O(n?), instead of O(n4)]

72
+ Mixing time of the heat-bath at the critical point A = A.(q).
[Conjecture: polynomial for q < 4, exponential for q > 4]

[Duminil-Copin, Sidoravicius, Tassion 2015]
[Laanait, Messager, Miracle-Solé, Ruiz, Shlosman 1991]

General Graphs:
« Dynamics for q € (0,1)?

» Analysis of dynamics in other graphs.
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Thanks!



