

Structure in TCS
Theoretical Computer Science
Avi Wigderson
IAS, Princeton

Computer Science

Mathematics

Statistics

Social

Science

Physics

SIMONS INSTITUTE

FORTHETHEORY OF COMPUTING

Calvin Hall

有 SIMONS INSTITUTE

FORTHETHEORY OF COMPUTING

Computer

 Science
Mathematics

Randomness

Statistics

Core TCS

Structure, Interconnectivity, Insights,...

Crypto aphy

Social Science

Biology

Physics

High level Structure in

Optimization problems
(9) Approximation problems
(:3) Cryptographic problems

(7) Probabilistic algorithms
. Lower bounds

Origins

Birth of TCS

[Turing 1936]: "On computable numbers, with an application to the entscheidungsproblem"

Formal definition of computer \& algorithm

The amazing power
 of a good theory

memory tape

- Seed of the computer revolution
- The power of computing: Church-Turing Thesis
- The limits on of algorithms

Technology Computer Revolution

Science Church-Turing Thesis

Turing machine can emulate any computation!
Computation: every process which is a sequence of simple, local steps. on
bits in computers neurons in the brain atoms in matter cells in living tissue individuals in populations

memory tape

Math Theory

A Turing machine is a formal model

- basic step
- basic memory unit

Can prove theorems:

- analyze algorithms
- prove limits

Limits of computation

 yusolvable.GS [Turing]: Given a computer program, does it glways halt? Legic[TUring]: Giveñ a statement, is it provable Math [Mattiasevich]: Given an equation, does: it have integer solutions? Biology [Conway]: Given]. "A rule for"an epidemic will it spread or die?

Computational

 Complexity Theory
Structure in decision,

search,optimization problems

+ crash course on complexity
\& Classical reductions

Easy and Hard Problems asymptotic complexity of functions

$2-\mathrm{COL}$
Shortest path

2-SAT $\left(x_{2} v x_{4}\right)\left(x_{5} v x_{n}\right) \ldots$
Multiplication $23 \times 67=$?
Asymptotics +
Worst case analysis

- Forward looking
- Reveal structure!
poly(n) steps algorithm
EASY P - Polynomial time

Robust

 to model variants
Easy and Hard Problems

 asymptotic complexity of functions2-COL
Shortest path Hamilton path

2-SAT $\left(\underline{x}_{2} v x_{4}\right)\left(x_{5} v x_{n}\right) \ldots$ 3-SAT $\left(\underline{x}_{1} v \underline{x}_{2} v x_{4}\right)\left(x_{5} v x_{3} v x_{n}\right) \ldots$
Multiplication $23 \times 67=$? Factoring $1541=? \times$?
poly (n) steps algorithm best known alg $\exp (n)$ steps
EASY P - Polynomial time HARD? we don't know!

P Polynomial - Possible, Practical, Pheasable E Exponential - Extremely hard, Eempossible

Easy and Hard Problems

 asymptotic complexity of functions$2-\mathrm{COL}$
Shortest path
Hamilton path
2-SAT $\left(x_{2} v x_{4}\right)\left(x_{5} v x_{n}\right) \ldots$ 3-SAT $\left(\underline{x}_{1} v \underline{x}_{2} v x_{4}\right)\left(x_{5} v x_{3} v x_{n}\right) \ldots$
Multiplication $23 \times 67=$? Factoring $1541=? \times ?$
poly (n) steps algorithm best known alg $\exp (n)$ steps
EASY P - Polynomial time HARD? we don't know!
Thm: If 3-COL is Easy then Factoring \& 3-SAT are Easy
Something unites all problems we have seen so far

Miracle! One problem captures whole class!
NP-complete problems
[Cook, Levin' 71] 3-SAT easy $\rightarrow P=N P$ [Karp'72] 3-COL easy \rightarrow 3-SAT easy 21 problems, network, logic, scheduling... ['00] Thousands across math \& sciences If one is easy, all are. If one is hard, all are.

A universal phenomena
Why prove NP-completeness results?
Programmers/CS - Hardness certificate
Mathematicians - Structural nastiness
Scientists - Model validation / sanity check

NP-complete problems that "nature solves"

Biology: Minimum energy Protein Folding

Possibilities:
model is wrong or inputs are special or $P=N P$

Add nature to laptop Random, Quantum,...

Why are there so many?

[Karp '72] If 3-COL easy then 3-SAT easy
efficient algorithm

formula \rightarrow graph

$x \vee y$

 satisfying \leftrightarrow legal assignment coloring Claim: In every legal 3 -coloring, $z=x \vee y$Many structures encode computation

Structure in

approximation

problems

(+ sophisticated reductions)

The mystery of approximation

1970s: Essentially all optimization problems are either in P or are NP-complete Hard problems don't go away... How well can we approximate the optimum? 3-SAT: $\leq 8 / 7$ Set Cover: $\leq \log n$ TSP: $\leq 3 / 2$ 3-COL: $\leq n^{.4}$ Vertex Cover: ≤ 2 Clique: $\leq n / \log ^{2} n$

Are these good? Do better? Theory??
[Hastad'01] 8/7- ε is NP-complete for 3-SAT
$2010 \quad 2000 \quad 1990 \quad 1980 \quad 1970$

Interconnectivity of core TCS

The last decade

[Khot]
Conjecture
Linear
equations
are hard

[Raghavendra '08]

A single, universal algorithm achieves optimal approx ratio By 2000s: Exact approx ratios for many problems $3-$ SAT $=8 / 7$ $3-X O R=2$ Set Cover $=\log n$ for all constraint satisfaction problems $\underset{8 / 7-\varepsilon \text { hard }}{\substack{3-S A T \\ \text { is }}}$ numbers come from?
\qquad
\qquad

3-SAT is
1.01 hard

Convex programming Analysis, Geometry
complete algorithm

Structure in
cryptographic
problems

Complexity-based Cryptography

Predated the Internet \& E-commerce
Enabled the Internet \& E-commerce

- Parties can only solve easy problems
- Factoring is hard

Asymptotic view allows setting parameters

Information Theory VS.
Complexity Theory

Secret communication Public-key encryption E-commerce security

Diffie-Hellman, Merkle '76 Rivest-Shamir-Adleman '77 Goldwasser-Micali '81

I want to purchase "War and Peace". My credit card number is

$$
E_{B}(1111222233334444)
$$

amazon.COM-

New reduction!

E_{C}
New standard
[DH,M,RSA fficient recovery of x rom $E_{B}(x)$ [GM] Efficien distinguishing $E_{B}(x)$ random \rightarrow Factoring is easy
Thm: Factoring hard \rightarrow secret communication

Ask the

 impossible
What else can be done?

- Digital signatures
- Secret exchange

Different settings \& privacy constraints

Different reductions to Factoring

- Digital cash
- Coin Flipping
[GMR '85] Zero-Knowledge proofs
- Everything!!

A unified reduction
(in 2 steps)

Eliminating bad guys

Elections for honest players

Yao '86 GMW '87

complete problem

Locality

Oblivious computation

 with secret inputs

Secret communication is universal in the complexity-theoretic model

[Yao '86, GMW '87]:
Every task can be performed* privately \& securely
${ }^{*}$ if at most $1 / 2$ of the players misbehave.

Secret communication is universal in the information-theoretic model

[BenOr-Goldwasser-Wigderson '90]: Every task can be performed* privately\&securely
$*_{\text {if }}$ at most $1 / 3$ of the players misbehave.

Structure in

 randomness
The power of randomness

- Primality=Jesting Agrawal-Kayal-Saxena'06
- Approximating the volume of convex bodies
- Computing large Fourier coefficients
- Testing polynomial identities
- Factoring polynomials over finite fields
- Approximating satisfiability of DNFs

Have probabilistic algorithms of polynomial time Best known deterministic algs are exponential

Is this power real??
Where is the perfect randomness coming from??

The Weakness of randomness

Approximating the volume
Computing large Fourier coefficients
Testing polynomial identities
Factoring polynomials over finite fields
Approximating satisfiability of DNFs

Have probabilistic algorithms of polynomial time

Best known deterministic algs are exponential

Is this power real??
Where is the perfect randomness coming from??
Only imperfect randomness in the world Thm[B,SV,NZ,......,GUV] Imperfect randomness suttices!

Randomness Extraction theory
The world is deterministic
Thm[BM,Y,......NW,IW] "P \neq NP" suffices!!
Hardness vs. Randomness

Lower bounds?

Introspection - why we fail

- To prove general lower bounds, e.g. $P \neq N P$

Open

P = NP? Can creativity be automated ?
$P=B P P ?$ Does randomness help ?
$P=B Q P ?$ Does quantumness help ?
Is factoring hard? Is Internet security real?
Is multiplication harder than addition?

TCS education challenges

Algorithms are the language of the future
K-12 education: major addition to math

- Efficiency is basic human instinct
- More fun - algorithmic problems in games, puzzles....
- Foster improvement \& encouragement
- Highlight conceptual and intellectual sides

Undergrad, Grad: increase numbers

- Growing draw on TCS experts outside the field
- Growing need at the core

General public: Make Turing a household name

Thanks!

