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1.  The causal revolution – from statistics to 

counterfactuals – from Babylon to Athens 

2.  The fundamental laws of causal inference 

3.  From counterfactuals to problem solving 

a)  policy evaluation  (ATE, ETT, …) 

b)  attribution  

c)  mediation  

d)  generalizability – external validity 

e)  latent heterogeneity 

f)  missing data 
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TURING  ON  MACHINE  LEARNING 
AND  EVOLUTION 

•  The survival of the fittest is a slow method for  
measuring advantages. 
 

•  The experimenter, by exercise of intelligence,  
should be able to speed it up. 
 

•  If he can trace a cause for some weakness he can  
probably think of the kind of mutation which will  
improve it.                                                        
    
                                                (A.M. Turing, 1950) 
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Causal Explanation 

“She handed me the fruit  
and I ate” 

“The serpent deceived me,  
and I ate” 



COUNTERFACTUALS  AND  OUR  
SENSE  OF  JUSTICE 

Abraham: 
Are you about to smite the  
righteous with the wicked?  
  

What if there were fifty  
righteous men in the city? 
  

 
And the Lord said, 
“If I find in the city of Sodom fifty 
good men, I will pardon the whole 
place for their sake.” 
                        Genesis 18:26 
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Y = 2X 

WHY  PHYSICS  IS  
COUNTERFACTUAL 

Had X been 3, Y would be 6. 
If we raise X to 3, Y would be 6. 
Must “wipe out” X = 1. 

X = 1  
Y = 2 

The solution Process information 

Y := 2X 

Correct notation: 

X = 1 

e.g., Length (Y) equals a constant (2) times the weight (X) 

Scientific Equations (e.g., Hooke’s Law) are non-algebraic 

X = 3 
X = ½ Y 
Y = X+1 
Alternative 

X = 3 



Y ⬅ 2X 
(or) 

Had X been 3, Y would be 6. 
If we raise X to 3, Y would be 6. 
Must “wipe out” X = 1. 

Correct notation: 
e.g., Length (Y) equals a constant (2) times the weight (X) 

Scientific Equations (e.g., Hooke’s Law) are non-algebraic 

WHY  PHYSICS  IS  
COUNTERFACTUAL 

X = 1  
Y = 2 

The solution Process information 
X = 1 X = 3 

X = ½ Y 
Y = X+1 
Alternative 

X = 3 
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WHAT  KIND  OF  QUESTIONS  
SHOULD  THE  ROBOT  ANSWER? 

•  Observational Questions: 
“What if I see A” 
  

•  Action Questions: 
“What if I do A?” 
  

•  Counterfactuals Questions: 
“What if I did things differently?” 
  

•  Options:  
“With what probability?” 
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TRADITIONAL STATISTICAL 
INFERENCE PARADIGM 

Data 

Inference 

Q(P) 
(Aspects of P) 

P 
Joint 

Distribution 

e.g., 
Infer whether customers who bought product A 
would also buy product B. 
Q = P(B | A) 



How does P change to P′?  New oracle 
e.g., Estimate P′(cancer) if we ban smoking.  

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

P′ 
Joint  

Distribution 

P 
Joint 

Distribution 

change 



e.g., Estimate the probability that a customer who 
bought A would buy B if we were to double the price. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

P′ 
Joint  

Distribution 

P 
Joint 

Distribution 

change 



Data 

Inference 

Q(M) 
(Aspects of M) 

Data  
Generating 

Model 

M – Invariant strategy (mechanism, recipe, law, 
protocol) by which Nature assigns values to 
variables in the analysis. 

 

Joint 
Distribution 

  

THE STRUCTURAL MODEL 
PARADIGM 

M 

“A painful de-crowning of a beloved oracle!” •   



WHAT  KIND  OF  QUESTIONS  
SHOULD  THE  ORACLE  ANSWER? 

•  Observational Questions: 
“What if we see A” 
  

•  Action Questions: 
“What if we do A?” 
  

•  Counterfactuals Questions: 
“What if we did things differently?” 
  

•  Options:  
“With what probability?” 

(What is?) 

(What if?) 

(Why?) 

THE CAUSAL HIERARCHY 

P(y | A) 

P(y | do(A) 

P(yA’ | A) 

- SYNTACTIC DISTINCTION 





STRUCTURAL  CAUSAL  MODELS: 
THE  WORLD  AS  A  COLLECTION   

OF  SPRINGS 

Definition: A structural causal model is a 4-tuple 
<V,U, F, P(u)>, where 
•    V = {V1,...,Vn} are endogenous variables 
•    U = {U1,...,Um} are background variables 
•    F = {f1,..., fn} are functions determining V, 

vi = fi(v, u) 
•    P(u) is a distribution over U 
P(u) and F induce a distribution P(v) over 
observable variables 

y = α +βx + uYe.g., Not regression!!!! 



Definition:    
The sentence: “Y would be y (in situation u), had X been x,”  
denoted Yx(u) = y, means: 
The solution for Y in a mutilated model Mx, (i.e., the equations  
for X replaced by X = x) with input U=u, is equal to y. 

Yx (u) = YMx (u)
The Fundamental Equation of Counterfactuals: 

COUNTERFACTUALS  ARE   
EMBARRASSINGLY  SIMPLE 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 



THE  TWO  FUNDAMENTAL  LAWS 
OF  CAUSAL  INFERENCE 

1.  The Law of Counterfactuals 
 
 
 
      (M generates and evaluates all counterfactuals.) 

2.  The Law of Conditional Independence (d-separation) 
 
 
 
      (Separation in the model ⇒ independence in the  
      distribution.) 
 

Yx (u) = YMx (u)

 (X  sep Y | Z )G(M )⇒ (X ⊥⊥ Y | Z )P(v)



THE  LAW  OF 
CONDITIONAL  INDEPENDENCE 

Each function summarizes millions of micro processes.  

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

U1 

U2 

U3 

U4 

C S 

Model (M) C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

Graph (G) 



  
 

Gift of the Gods 
  

If the U 's are independent, the observed distribution 
P(C,R,S,W) satisfies constraints that are: 
   (1)   independent of the f 's and of P(U), 
   (2)   readable from the graph. 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

THE  LAW  OF 
CONDITIONAL  INDEPENDENCE 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

Graph (G) Model (M) 

U1 

U2 

U3 

U4 

C S 



D-SEPARATION:  NATURE’S  LANGUAGE  
FOR  COMMUNICATING  ITS  STRUCTURE 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 
Every missing arrow advertises an independency, conditional 
on a separating set. 

Applications: 
1.  Model testing   
2.  Structure learning 
3.  Reducing "what if I do" questions to symbolic calculus 
4.  Reducing scientific questions to symbolic calculus 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

 e.g., C ⊥⊥ W | (S,R) S ⊥⊥ R |C

Graph (G) Model (M) 



SEEING  VS.  DOING 

Effect of turning the sprinkler ON (Truncated product) 

P(x1,..., xn ) = P(xi | pai )
i
∏

P(x1, x2, x3, x4, x5 ) = P(x1)P(x2 | x1)P(x3 | x1)P(x4 | x2, x3)P(x5 | x4 )

 PX3=ON(x1, x2, x4, x5 ) = P(x1)P(x2 | x1)P(x4 | x2,X3 = ON)P(x5 | x4 )

 ≠ P(x1, x2, x4,X5 | X3 = ON)



Q(D,A)

Q(P) - Identified 
estimands 

T(MA) - Testable 
implications 

A* - Logical 
implications of A 

g(T )

Causal inference 

Statistical inference 

A - CAUSAL 
ASSUMPTIONS 

Q Queries of 
interest 

Data (D) 

THE  LOGIC  OF  CAUSAL  ANALYSIS 

Goodness of fit 

Model testing Provisional claims 

Q - Estimates 
of Q(P)  

CAUSAL 
MODEL 

(MA) 



THE  MACHINERY  OF  CAUSAL  CALCULUS  

Rule 1:  Ignoring observations 
 P(y | do{x}, z, w) = P(y | do{x}, w) 

 
Rule 2:  Action/observation exchange 

  P(y | do{x}, do{z}, w) = P(y | do{x},z,w) 

Rule 3:  Ignoring actions 

  P(y | do{x}, do{z}, w) = P(y | do{x}, w)     

 
if  (Y ⊥⊥ Z | X,W )  GX

 
if  (Y ⊥⊥ Z | X,W )GXZ(W)

 
if  (Y ⊥⊥ Z | X,W )GXZ

Completeness Theorem (Shpitser, 2006) 



DERIVATION  IN  CAUSAL  CALCULUS 

Smoking Tar Cancer 

Probability Axioms 

Probability Axioms 

Rule 2 

Rule 2 

Rule 3 

Rule 3 

Rule 2 

Genotype  (Unobserved) 

P(c | do{s}) = P(c | do{s},t)P(t | do{s})t∑
= P(c | do{s},do{t})P(t | do{s})t∑
= P(c | do{s},do{t})P(t | s)t∑
= P(c | do{t}P(t | s)t∑
= P(c | do{t}, s ')P(s ' | do{t})P(t | s)t∑s '∑
= P(c | t, s ')P(s ' | do{t})P(t | s)t∑s '∑
= P(c | t, s ')P(s ')P(t | s)t∑s '∑



EFFECT  OF  WARM-UP  ON  INJURY  
(After Shrier & Platt, 2008) 

No, no! 

ATE =  ✔ 
ETT = ✔ 
PNC = ✔ 



MATHEMATICALLY  SOLVED 
PROBLEMS 

1.  Policy evaluation (ATE, ETT,…) 

2.  Attribution 

3.  Mediation (direct and indirect effects) 

4.  Selection Bias 

5.  Latent Heterogeneity 

6.  Transportability  

7.  Missing Data 



TRANSPORTABILITY  OF  KNOWLEDGE 
ACROSS  DOMAINS 
(with E. Bareinboim) 

   
1.  A Theory of causal transportability 

When can causal relations learned from experiments 
be transferred to a different environment in which no  
experiment can be conducted? 
  

2.  A Theory of statistical transportability 
When can statistical information learned in one domain 
be transferred to a different domain in which 

  

a.  only a subset of variables can be observed? Or, 
 

b.  only a few samples are available? 
  

 



MOVING  FROM  THE  LAB  TO  THE  
REAL  WORLD . . .  

Real world 

Everything is assumed  
to be the same,  
trivially transportable! 

Everything is assumed  
to be the different,  
not transportable! 

X Y 

Z 

W 

X Y 

Z 

W 

X Y 

Z 

W Lab 
H1 

H2 



MOTIVATION  
WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC? 

Experimental study in LA 
Measured: 
 
     
  

Needed: 

P(x, y, z)
P(y | do(x), z)

P*(y | do(x)) =   ?

Observational study in NYC 
Measured: P*(x, y, z)

P*(z) ≠ P(z)

X  
(Intervention) 

Y 
 (Outcome) 

Z  (Age) 

X 
(Observation) 

Y 
(Outcome) 

Z  (Age) 

= P(y | do(x), z)P*(z)
z
∑

Transport Formula (calibration): 

∏ *∏

F(P,Pdo,P*)



TRANSPORT  FORMULAS  DEPEND   
ON  THE  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

 
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

X Y 

Z 

(a) 

S 

P(y | do(x))?

S 

S           Factors 
producing differences 



X 

TRANSPORT  FORMULAS  DEPEND   
ON  THE  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

c)  Z represents a bio-marker  
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

(a) 
X Y 

(c) 
Z 

S 

P(y | do(x))

P(y | do(x), z)P*(z | x )
z
∑P*(y | do(x)) = ?

Y 

Z S 



U 

W 

GOAL:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 

S        Factors creating differences 

P*(y | do(x)) =
P *(y,v, z,w,t,u)]f [P(y,v, z,w,t,u | do(x));

S '



= P(y | do(x),w)P(w | s)
w
∑

= P(y | do(x),w)P*(w)
w
∑

= P(y | do(x), s,w)P(w | do(x), s)
w
∑

R *∏( )= P*(y | do(x)) = P(y | do(x), s)

TRANSPORTABILITY 
REDUCED  TO  CALCULUS 

Theorem 
A causal relation R is transportable from ∏ to ∏* if  and  
only if it is reducible, using the rules of do-calculus,  
to an expression in which S is separated from do( ).  

X Y 

Z 

S 

W 



U 

W 

RESULT:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 
5.  Completeness (Bareinboim, 2012) 

S        Factors creating differences 

P*(y | do(x)) =
P(y | do(x), z) P *(z |w)

w
∑

z
∑ P(w | do(w),t)P *(t)

t
∑

S '



FROM  META-ANALYSIS 
TO  META-SYNTHESIS 

The problem  
How to combine results of several experimental 
and observational studies, each conducted on a 
different population and under a different set of 
conditions, so as to construct an aggregate 
measure of effect size that is "better" than any 
one study in isolation.  
  



META-SYNTHESIS  AT  WORK 

X Y 

(f) Z 

W 

X Y 

(b) Z 

W X Y 

(c) Z 
S 

W X Y 

(a) Z 

W 

X Y 

(g) Z 

W 

X Y 

(e) Z 

W 

S S 

Target population                 R = P*(y | do(x)) 

X Y 

(h) Z 

W X Y 

(i) Z 
S 

W 

S 

X Y 

(d) Z 

W 

∏*



META-SYNTHESIS  REDUCED   
TO  CALCULUS 

Theorem  
{∏1, ∏2,…,∏K} – a set of studies.  
{D1, D2,…, DK} – selection diagrams (relative to ∏*).  
A relation R(∏*) is "meta estimable" if it can be 
decomposed into terms of the form: 
 
 
such that each Qk is transportable from Dk. 

Qk = P(Vk | do(Wk ),Zk )



MISSING  DATA:   
A SEEMINGLY  STATISTICAL  PROBLEM  

(Mohan, Pearl & Tian 2012) 

•  Pervasive in every experimental science. 
   

•  Huge literature, powerful software industry, 
deeply entrenched culture. 

 

•  Current practices are based on statistical 
characterization (Rubin, 1976) of a problem 
that is inherently causal. 

 

•  Needed:  (1) theoretical guidance,                 
(2) performance guarantees, and (3) tests of 
assumptions. 



WHAT  CAN  CAUSAL  THEORY 
DO  FOR  MISSING  DATA? 

 
Q-1. What should the world be like, for a given 
statistical procedure to produce the expected result? 
  

Q-2. Can we tell from the postulated world whether any 
method can produce a bias-free result?  How? 
  

Q-3. Can we tell from data if the world does not 
work as postulated? 
 

•  To answer these questions, we need models of the 
world,  i.e., process models. 

•  Statistical characterization of the problem is too 
crude, e.g., MCAR, MAR, MNAR. 



 
X* =    

X  if RX = 0
m if RX = 1

GOAL:  ESTIMATE  P(X,Y,Z) 

Sam- Observations Missingness 
ple # X* Y* Z* Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
3 1 m m 0 1 1 
4 0 1 m 0 0 1 
5 m 1 m 1 0 1 
6 m 0 1 1 0 0 
7 m m 0 1 1 0 
8 0 1 m 0 0 1 
9 0 0 m 0 0 1 

10 1 0 m 0 0 1 
11 1 0 1 0 0 0 
- 

X * 

X RX 

Missingness graph 

{ 



 

P(X,Y ,Z )
   = P(X,Y ,Z | Rx = 0,Ry = 0,Rz = 0)

Row 
# 

X Y Z Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
11 1 0 1 0 0 0 
- 

•  Line deletion estimate is 
generally biased. 

NAIVE  ESTIMATE  OF  P(X,Y,Z) 
Complete Cases 

Sam- Observations Missingness 
ple # X* Y* Z* Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
3 1 m m 0 1 1 
4 0 1 m 0 0 1 
5 m 1 m 1 0 1 
6 m 0 1 1 0 0 
7 m m 0 1 1 0 
8 0 1 m 0 0 1 
9 0 0 m 0 0 1 

10 1 0 m 0 0 1 
11 1 0 1 0 0 0 
- Rz Ry Rx 

X Y Z 

MCAR 

 

P(X,Y ,Z )
   ≠ P(X,Y ,Z | Rx = 0,Ry = 0,Rz = 0)



 

P(X,Y ,Z )
   ≠ P(X,Y ,Z | Rx = 0,Ry = 0,Rz = 0)

Row 
# 

X Y Z Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
11 1 0 1 0 0 0 
- 

•  Line deletion estimate is 
generally biased. 

NAIVE  ESTIMATE  OF  P(X,Y,Z) 
Complete Cases 

Sam- Observations Missingness 
ple # X* Y* Z* Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
3 1 m m 0 1 1 
4 0 1 m 0 0 1 
5 m 1 m 1 0 1 
6 m 0 1 1 0 0 
7 m m 0 1 1 0 
8 0 1 m 0 0 1 
9 0 0 m 0 0 1 

10 1 0 m 0 0 1 
11 1 0 1 0 0 0 
- Rz Rx 

X Y Z 

MAR 



 

P(X,Y ,Z )
   ≠ P(X,Y ,Z | Rx = 0,Ry = 0,Rz = 0)

Row 
# 

X Y Z Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
11 1 0 1 0 0 0 
- 

•  Line deletion estimate is 
generally biased. 

NAIVE  ESTIMATE  OF  P(X,Y,Z) 
Complete Cases 

Sam- Observations Missingness 
ple # X* Y* Z* Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
3 1 m m 0 1 1 
4 0 1 m 0 0 1 
5 m 1 m 1 0 1 
6 m 0 1 1 0 0 
7 m m 0 1 1 0 
8 0 1 m 0 0 1 
9 0 0 m 0 0 1 

10 1 0 m 0 0 1 
11 1 0 1 0 0 0 
- Rz Rx 

X Y Z 

MNAR 
Ry 



SMART  ESTIMATE  OF  P(X,Y,Z) 

P(X,Y ,Z ) = P(Z | X,Y )P(X |Y )P(Y )

P(Y ) = P(Y | Ry = 0)

P(X |Y ) = P(X |Y ,Rx = 0,Ry = 0)

P(Z | X,Y ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

Rz 

Ry 

Rx 

Z X Y 

Sam- Observations Missingness 
ple # X* Y* Z* Rx Ry Rz 

1 1 0 0 0 0 0 
2 1 0 1 0 0 0 
3 1 m m 0 1 1 
4 0 1 m 0 0 1 
5 m 1 m 1 0 1 
6 m 0 1 1 0 0 
7 m m 0 1 1 0 
8 0 1 m 0 0 1 
9 0 0 m 0 0 1 

10 1 0 m 0 0 1 
11 1 0 1 0 0 0 
- 

 

P(X,Y ,Z )
   ≠ P(X,Y ,Z | Rx = 0,Ry = 0,Rz = 0)



 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)
Sam-
ple # 

X* Y* Z* 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

SMART  ESTIMATE  OF  P(X,Y,Z) 



 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)
Compute  
P(Y|Ry=0) 

Sam-
ple # 

X* Y* Z* 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Row 
# 

Y* 

1 0 
2 0 
4 1 
5 1 
6 0 
8 1 
9 0 

10 0 
11 0 
- 

SMART  ESTIMATE  OF  P(X,Y,Z) 



 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)
Compute  
P(X|Y,Rx=0,Ry=0) 

Compute  
P(Y|Ry=0) 

Sam-
ple # 

X* Y* Z* 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Row 
# 

Y* 

1 0 
2 0 
4 1 
5 1 
6 0 
8 1 
9 0 

10 0 
11 0 
- 

Row 
# 

X* Y* 

1 1 0 
2 1 0 
4 0 1 
8 0 1 
9 0 0 

10 1 0 
11 1 0 
- 

SMART  ESTIMATE  OF  P(X,Y,Z) 



 

P(X,Y ,Z ) = P(Z | X,Y ,Rx = 0,Ry = 0,Rz = 0)

               P(X |Y ,Rx = 0,Ry = 0) 

                               P(Y | Ry = 0)

Compute  
P(Z|X,Y,Rx=0,Ry=0,Rz=0)  

Compute  
P(X|Y,Rx=0,Ry=0) 

Compute  
P(Y|Ry=0) 

Sam-
ple # 

X* Y* Z* 

1 1 0 0 
2 1 0 1 
3 1 m m 
4 0 1 m 
5 m 1 m 
6 m 0 1 
7 m m 0 
8 0 1 m 
9 0 0 m 

10 1 0 m 
11 1 0 1 
- 

Row 
# 

Y* 

1 0 
2 0 
4 1 
5 1 
6 0 
8 1 
9 0 

10 0 
11 0 
- 

Row 
# 

X* Y* 

1 1 0 
2 1 0 
4 0 1 
8 0 1 
9 0 0 

10 1 0 
11 1 0 
- 

Row 
# 

X* Y* Z* 

1 1 0 0 
2 1 0 1 
11 1 0 1 
- 

SMART  ESTIMATE  OF  P(X,Y,Z) 



Definition: 
Given a missingness model M, a probabilistic 
quantity Q is said to be recoverable if there exists 
an algorithm that produces a consistent estimate 
of Q for every dataset generated by M.  
 
 

                            
 
That is, in the limit of large sample, Q is estimable 
as if no data were missing. 

RECOVERABILITY  FROM  MISSING  DATA 



Theorem: 
If the missingness-graph is Markovian (i.e., no latent 
variables) then a necessary and sufficient condition for 
recoverability of P(V) is that no variable X be adjacent to its 
missingness mechanism Rx.	

	

e.g., 
     

RECOVERABILITY  IN   
MARKOVIAN  MODELS 

Z X Y 

Ry Rz Rx 



Theorem: 
Q is recoverable iff it is decomposable into terms of the 
form Qj = P(Sj | Tj) such that Tj contains the missingness 
mechanism Rv of every partially observed variable V that 
appears in Q. 
	

	

e.g., 
     

DECIDING  RECOVERABILITY 

Rx X Y 

(a) Accident Injury 

Missing (X)	

Q1 = P(X,Y ) = P(Y )P(X |Y )

= P(Y )P(X |Y ,Rx )
Q2 = P(X) = P(X,Y )y∑

recoverable 

recoverable 



Theorem: 
Q is recoverable iff it is decomposable into terms of the 
form Qj = P(Sj | Tj) such that Tj contains the missingness 
mechanism Rv of every partially observed variable V that 
appears in Q. 
	

	

e.g., 
     

Rx Y X 

(b) 

Q1 = P(X,Y )

Q2 = P(X)

nonrecoverable 

recoverable 

≠ P(Y )P(X |Y ,Rx )

= P(X | Rx )

Injury Treatment 
Education  (latent)   

Missing (X)	


DECIDING  RECOVERABILITY 



•  Two statistically indistinguishable models, yet 
P(X,Y) is recoverable in (a) and not in (b).       

   

•  No universal algorithm exists that decides 
recoverability (or guarantees unbiased 
results) without looking at the model. 

AN  IMPOSSIBILITY  THEOREM 
FOR  MISSING  DATA 

Rx X Y 

(a) (b) 

Rx Y X 

Accident Injury Injury Treatment 

Missing (X)	


Education 
       (latent) 

Missing (X)	




•  Two statistically indistinguishable models, P(X) is 
recoverable in both, but through two different methods: 

•  No universal algorithm exists that produces an unbiased 
estimate whenever such exists. 

A  STRONGER  IMPOSSIBILITY  
THEOREM 

Rx X Y 

(a) (b) 

Rx Y X 

 

In (a):  P(X) = P(Y )P(X |Y ,Rx = 0),   whiley∑
in (b):  P(X) = P(X | Rx = 0)



CONCLUSIONS 

Deduction is indispensible in causal inference, as it is in 
science and machine learning. 
 

1.  Think nature, not data 

2.  Counterfactuals, the building blocks of scientific and 

moral thinking can be algorithmitized. 

3.  Identifiability, testability, recoverability and 

transportability are computational tasks with formal 

solutions.  

4.  Think Nature, not data. 

, not even experiment. 



Thank you 


