THE MATHEMATICS OF CAUSAL INFERENCE With reflections on machine learning and the logic of science

Judea Pearl

UCLA

OUTLINE

1. The causal revolution - from statistics to counterfactuals - from Babylon to Athens
2. The fundamental laws of causal inference
3. From counterfactuals to problem solving
(a) policy evaluation (ATE, ETT, ...)
Old $\left\{\begin{array}{l}\text { b) attribution } \\ \text { c) mediation }\end{array}\right.$
New $\left\{\begin{array}{l}\text { d) generalizability - external validity } \\ \text { e) latent heterogeneity } \\ \text { f) missing data }\end{array}\right.$

TURING ON MACHINE LEARNING AND EVOLUTION

- The survival of the fittest is a slow method for measuring advantages.
- The experimenter, by exercise of intelligence, should be able to speed it up.
- If he can trace a cause for some weakness he can probably think of the kind of mutation which will improve it.
(A.M. Turing, 1950)

THE UBIQUITY OF CAUSAL REASONING

THE UBIQUITY OF CAUSAL REASONING

Stock market
 Human
 Cognition and
 Ethics

Causal Explanation

"She handed me the fruit and I ate"

"The serpent deceived me, and I ate"

COUNTERFACTUALS AND OUR SENSE OF JUSTICE

Abraham:
Are you about to smite the righteous with the wicked?
What if there were fifty righteous men in the city?

And the Lord said,
"If I find in the city of Sodom fifty
good men, I will pardon the whole place for their sake."

Genesis 18:26

THE UBIQUITY OF CAUSAL REASONING

WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (Y) equals a constant (2) times the weight (X) Correct notation:

Process information

$$
\begin{aligned}
& X=1 \\
& Y=2
\end{aligned}
$$

The solution
$X=1 / 2 X \quad X=3$
$Y=X+1$
Alternative

Had X been 3, Y would be 6.
If we raise X to $3, Y$ would be 6 .
Must "wipe out" $X=1$.

WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic
egg., Length (Y) equals a constant (2) times the weight (X)
Correct notation:

$$
\begin{array}{ll}
X=1 & X=\frac{1}{2} Y \\
Y=2 & Y=X+1
\end{array}
$$

$x=3 \quad x=1$
Process information

The solution

Alternative

Had X been 3, Y would be 6.
If we raise X to $3, Y$ would be 6 .
Must "wipe out" $X=1$.

THE UBIQUITY OF CAUSAL REASONING

WHAT KIND OF QUESTIONS SHOULD THE ROBOT ANSWER?

- Observational Questions:
"What if I see A"
Action Questions: "What if I do A?"
- Counterfactuals Questions: "What if I did things differently?"
Options:
"With what probability?"

THE UBIQUITY OF CAUSAL REASONING

TRADITIONAL STATISTICAL INFERENCE PARADIGM

e.g.,

Infer whether customers who bought product A would also buy product B.
$Q=P(B \mid A)$

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

Inference

How does P change to P^{\prime} ? New oracle
e.g., Estimate P^{\prime} (cancer) if we ban smoking.

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES

Inference
e.g., Estimate the probability that a customer who bought A would buy B if we were to double the price.

THE STRUCTURAL MODEL PARADIGM

M - Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis.
"A painful de-crowning of a beloved oracle!"

WHAT KIND OF QUESTIONS SHOULD THE ORACLE ANSWER?

- Observational Questions: "What if we see A"
- Action Questions: "What if we do A?"
- Counterfactuals Questions: "What if we did things differently?" (Why?)
- Options:
"With what probability?"
THE CAUSAL HIERARCHY - SYNTACTIC DISTINCTION

STRUCTURAL CAUSAL MODELS: THE WORLD AS A COLLECTION OF SPRINGS

Definition: A structural causal model is a 4-tuple $<V, U, F, P(u)>$, where

- $V=\left\{V_{1}, \ldots, V_{n}\right\}$ are endogenous variables
- $U=\left\{U_{1}, \ldots, U_{m}\right\}$ are background variables
- $F=\left\{f_{1}, \ldots, f_{n}\right\}$ are functions determining V, $v_{i}=f_{i}(v, u)$ e.g., $y=\alpha+\beta x+u_{Y}$ Not regression!!!!
- $P(u)$ is a distribution over U
$P(u)$ and F induce a distribution $P(v)$ over observable variables

COUNTERFACTUALS ARE EMBARRASSINGLY SIMPLE

Definition:

The sentence: " Y would be y (in situation u), had X been x," denoted $Y_{x}(u)=y$, means:
The solution for Y in a mutilated model M_{x} (i.e., the equations for X replaced by $X=x$) with input $U=u$, is equal to y.

The Fundamental Equation of Counterfactuals:

$$
Y_{x}(u)=Y_{M_{x}}(u)
$$

THE TWO FUNDAMENTAL LAWS OF CAUSAL INFERENCE

1. The Law of Counterfactuals

$$
Y_{x}(u)=Y_{M_{x}}(u)
$$

(M generates and evaluates all counterfactuals.)
2. The Law of Conditional Independence (d-separation)

$$
(X \operatorname{sep} Y \mid Z)_{G(M)} \Rightarrow(X \Perp Y \mid Z)_{P(v)}
$$

(Separation in the model \Rightarrow independence in the distribution.)

THE LAW OF CONDITIONAL INDEPENDENCE

Model (M)

$$
\begin{aligned}
C & =f_{C}\left(U_{C}\right) \\
S & =f_{S}\left(C, U_{S}\right) \\
R & =f_{R}\left(C, U_{R}\right) \\
W & =f_{W}\left(S, R, U_{W}\right)
\end{aligned}
$$

Each function summarizes millions of micro processes.

THE LAW OF CONDITIONAL INDEPENDENCE

Model (M)

$$
\begin{aligned}
C & =f_{C}\left(U_{C}\right) \\
S & =f_{S}\left(C, U_{S}\right) \\
R & =f_{R}\left(C, U_{R}\right) \\
W & =f_{W}\left(S, R, U_{W}\right)
\end{aligned}
$$

Gift of the Gods
If the U 's are independent, th $U^{U_{3}}$ served distribution $P(C, R, S, W)$ satisites constraints that are:
(1) indefender. fo the f's and $\cap f(\rightarrow \longrightarrow C$
(2) readasle from the graph.

D-SEPARATION: NATURE' S LANGUAGE FOR COMMUNICATING ITS STRUCTURE

Graph (G) | C (Climate) | Model (M) |
| :--- | :--- |
| (Sprinkler) | $C=f_{C}\left(U_{C}\right)$ |
| S | $=f_{S}\left(C, U_{S}\right)$ |
| R | $=f_{R}\left(C, U_{R}\right)$ |
| | W |

Every missing arrow advertises an independency, conditional on a separating set.

$$
\text { e.g., } C \Perp W|(S, R) \quad S \Perp R| C
$$

Applications:

1. Model testing
2. Structure learning
3. Reducing "what if I do" questions to symbolic calculus
4. Reducing scientific questions to symbolic calculus

SEEING VS. DOING

(x_{1} SEASON

$P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid p a_{i}\right)$
$P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P D P\left(x_{4} \mid x_{2}, x_{3}\right) P\left(x_{5} \mid x_{4}\right)$
Effect of turning the sprinkler ON (Truncated product)

$$
\begin{aligned}
P_{X_{3}}=\mathrm{ON}\left(x_{1}, x_{2}, x_{4}, x_{5}\right) & =P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{4} \mid x_{2}, X_{3}=\mathrm{ON}\right) P\left(x_{5} \mid x_{4}\right) \\
& \neq P\left(x_{1}, x_{2}, x_{4}, X_{5} \mid X_{3}=\mathrm{ON}\right)
\end{aligned}
$$

THE LOGIC OF CAUSAL ANALYSIS

THE MACHINERY OF CAUSAL CALCULUS

Rule 1: Ignoring observations

$$
P(y \mid \operatorname{do}\{x\}, z, w)=P(y \mid \operatorname{do}\{x\}, w)
$$

$$
\text { if }(Y \Perp Z \mid X, W)_{G_{\bar{X}}}
$$

Rule 2: Action/observation exchange

$$
P(y \mid d o\{x\}, \operatorname{do}\{z\}, w)=P(y \mid d o\{x\}, z, w)
$$

$$
\text { if }(Y \Perp Z \mid X, W)_{G_{\bar{X} \underline{Z}}}
$$

Rule 3: Ignoring actions

$$
\begin{aligned}
\mathrm{P}(\mathrm{y} \mid \operatorname{do}\{\mathrm{x}\}, \mathrm{do}\{\mathrm{z}\}, \mathrm{w})= & \mathrm{P}(\mathrm{y} \mid \mathrm{yo}\{x\}, \mathrm{w}) \\
& \text { if }(Y \Perp Z \mid X, W)_{G_{\overline{X Z}(W)}}
\end{aligned}
$$

Completeness Theorem (Shpitser, 2006)

DERIVATION IN CAUSAL CALCULUS

$P(c \mid d o\{s\})=\sum_{t} P(c \mid d o\{s\}, t) P(t \mid d o\{s\}) \quad$ Probability Axioms

$$
=\sum_{t} P(c \mid d o\{s\}, d o\{t\}) P(t \mid d o\{s\})
$$

Rule 2
Rule 2
Rule 3

$=\sum_{s^{\prime}} \sum_{t} P\left(c \mid d o\{t\}, s^{\prime}\right) P\left(s^{\prime} \mid d o\{t\}\right) P(t \mid s)$ Probability Axioms
$=\sum_{s^{\prime}} \sum_{t} P\left(c \mid t, s^{\prime}\right) P\left(s^{\prime} \mid d o\{t\}\right) P(t \mid s)$
$=\sum_{s^{\prime}} \sum_{t} P\left(c \mid t, s^{\prime}\right) P\left(s^{\prime}\right) P(t \mid s)$
Rule 2
Rule 3

EFFECT OF WARM-UP ON INJURY (After Shrier \& Platt, 2008)

MATHEMATICALLY SOLVED PROBLEMS

1. Policy evaluation (ATE, ETT,...)
2. Attribution
3. Mediation (direct and indirect effects)
4. Selection Bias
5. Latent Heterogeneity
6. Transportability
7. Missing Data

TRANSPORTABILITY OF KNOWLEDGE ACROSS DOMAINS (with E. Bareinboim)

1. A Theory of causal transportability

When can causal relations learned from experiments be transferred to a different environment in which no experiment can be conducted?
2. A Theory of statistical transportability When can statistical information learned in one domain be transferred to a different domain in which
a. only a subset of variables can be observed? Or,
b. only a few samples are available?

MOVING FROM THE LAB TO THE REAL WORLD . . .

MOTIVATION

WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC?

(Outcome)

(Observation)
(Outcome)

Experimental study in LA Measured: $\quad P(x, y, z)$

$$
P(y \mid d o(x), z)
$$

Observational study in NYC Measured:

$$
\begin{aligned}
& P^{*}(x, y, z) \\
& P^{*}(z) \neq P(z)
\end{aligned}
$$

Needed: $\quad P^{*}(y \mid d o(x))=?=\sum_{z} P(y \mid d o(x), z) P^{*}(z)$
Transport Formula (calibration): $F\left(P, P_{d o}, P^{*}\right)$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$
P^{*}(y \mid d o(x))=\sum_{z} P(y \mid d o(x), z) P^{*}(z)
$$

b) Z represents language skill

$$
P *(y \mid d o(x))=P(y \mid d o(x))
$$

TRANSPORT FORMULAS DEPEND ON THE STORY

a) Z represents age

$$
P^{*}(y \mid d o(x))=\sum_{z} P(y \mid d o(x), z) P^{*}(z)
$$

b) Z represents language skill

$$
P^{*}(y \mid d o(x))=P(y \mid d o(x))
$$

c) Z represents a bio-marker

$$
P^{*}(y \mid d o(x))=? \sum_{z} P(y \mid d o(x), z) P^{*}(z \mid x)
$$

GOAL: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE

INPUT: Annotated Causal Graph
$S \longrightarrow$ Factors creating differences

OUTPUT:

1. Transportable or not?
2. Measurements to be taken in the experimental study
3. Measurements to be taken in the target population
4. A transport formula

$$
\begin{aligned}
& P^{*}(y \mid d o(x))= \\
& \quad f[P(y, v, z, w, t, u \mid d o(x)) ; P *(y, v, z, w, t, u)]
\end{aligned}
$$

TRANSPORTABILITY REDUCED TO CALCULUS

Theorem

A causal relation R is transportable from Π to \prod^{*} if and only if it is reducible, using the rules of $d o$-calculus, to an expression in which S is separated from $d o()$.

$$
\begin{aligned}
R(& \Pi *)=P *(y \mid d o(x))=P(y \mid d o(x), s) \\
& =\sum_{w} P(y \mid d o(x), s, w) P(w \mid d o(x), s) \\
& =\sum_{w}^{s} P(y \mid d o(x), w) P(w \mid s) \\
& =\sum_{w}^{w} P(y \mid d o(x), w) P *(w)
\end{aligned}
$$

RESULT: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE

INPUT: Annotated Causal Graph $S \mapsto$ Factors creating differences

OUTPUT:

1. Transportable or not?
2. Measurements to be taken in the experimental study
3. Measurements to be taken in the target population
4. A transport formula
$P^{*}(y \mid d o(x))=$
5. Completeness (Bareinboim, 2012)

$$
\sum_{z} P(y \mid d o(x), z) \sum_{w} P *(z \mid w) \sum_{t} P(w \mid d o(w), t) P *(t)
$$

FROM META-ANALYSIS TO META-SYNTHESIS

The problem
How to combine results of several experimental and observational studies, each conducted on a different population and under a different set of conditions, so as to construct an aggregate measure of effect size that is "better" than any one study in isolation.

META-SYNTHESIS AT WORK

Target population П

(d)

(i)

META-SYNTHESIS REDUCED TO CALCULUS

Theorem
$\left\{\prod_{1}, \Pi_{2}, \ldots, \prod_{K}\right\}$ - a set of studies.
$\left\{D_{1}, D_{2}, \ldots, D_{K}\right\}$ - selection diagrams (relative to \prod^{*}). A relation $R\left(\Pi^{*}\right)$ is "meta estimable" if it can be decomposed into terms of the form:

$$
Q_{k}=P\left(V_{k} \mid d o\left(W_{k}\right), Z_{k}\right)
$$

such that each Q_{k} is transportable from D_{k}.

MISSING DATA:
 A SEEMINGLY STATISTICAL PROBLEM (Mohan, Pearl \& Tian 2012)

- Pervasive in every experimental science.
- Huge literature, powerful software industry, deeply entrenched culture.
- Current practices are based on statistical characterization (Rubin, 1976) of a problem that is inherently causal.
- Needed: (1) theoretical guidance, (2) performance guarantees, and (3) tests of assumptions.

WHAT CAN CAUSAL THEORY DO FOR MISSING DATA?

Q-1. What should the world be like, for a given statistical procedure to produce the expected result?

Q-2. Can we tell from the postulated world whether any method can produce a bias-free result? How?

Q-3. Can we tell from data if the world does not work as postulated?

- To answer these questions, we need models of the world, i.e., process models.
- Statistical characterization of the problem is too crude, e.g., MCAR, MAR, MNAR.

GOAL: ESTIMATE $P(X, Y, Z)$

Sam-	Observations			Missingness		
ple \#	X^{*}	Y^{*}	Z^{*}	R_{X}	R_{y}	R_{Z}
1	1	0	0	0	0	0
2	1	0	1	0	0	0
3	1	m	m	0	1	1
4	0	1	m	0	0	1
5	m	1	m	1	0	1
6	m	0	1	1	0	0
7	m	m	0	1	1	0
8	0	1	m	0	0	1
9	0	0	m	0	0	1
10	1	0	m	0	0	1
11	1	0	1	0	0	0
-						

Missingness graph

$X^{*}=\left\{\begin{array}{l}X \text { if } R_{X}=0 \\ m \text { if } R_{X}=1\end{array}\right.$

NAIVE ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

Complete Cases

NAIVE ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

Complete Cases

NAIVE ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

Complete Cases

Sam-	Observations			Missingness									
ple \#	X*	Y*	Z*		R_{y}	R_{z}	\#	X	Y	Z	${ }^{\text {x }}$	y	R_{z}
1	1	0	0	0	0	0	$\longrightarrow 1$	1	0	0	0	0	0
2	1	0	1	0	0	0	$\longrightarrow 2$	1	0	1	0	0	0
3	1	m	m	0	1	1	11	1	0	1	0	0	0
4	0	1	m	0	0	1	\square						
5	m	1	m		0	1	- Lin	de		es	m	te is	
6	m	0	1	1	0	0	gen	ral	b	Sed			
7	m	m	0		1	0	$P(X, Y$,						
8	0	1	m		0	1							
9	0	0	m		0	1	$\neq P(X$				R_{y}	$0, R_{z}$	=0)
10	1	0	m		0	1	X					Z	
11	1	0	1			0						N	IAR

SMART ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

Sam-	Observations ple \#					X^{*}	Y^{*}
Z^{*}	R_{x}	R_{y}	R_{z}	Z			

SMART ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

$$
P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)
$$

Sam- ple \#	X^{*}	Y^{*}	Z^{*}
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1
-			

$$
\begin{array}{r}
P\left(X \mid Y, R_{x}=0, R_{y}=0\right) \\
P\left(Y \mid R_{y}=0\right)
\end{array}
$$

SMART ESTIMATE OF $P(X, Y, Z)$

$$
P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)
$$

Sam- ple \#	X^{*}	Y^{*}	Z^{*}	Compute $P\left(Y \mid R_{y}=0\right)$	
1	1	0	0		Row
2	1	0	1	Y^{*}	
$\#$	1	m	m	1	0
3	0	1	m	2	0
4	m	1	m	4	1
6	m	0	1	5	1
7	m	m	0	6	0
8	0	1	m	8	1
9	0	0	m	9	0
10	1	0	m	10	0
11	1	0	1	11	0
-				-	

$$
\begin{array}{r}
P\left(X \mid Y, R_{x}=0, R_{y}=0\right) \\
P\left(Y \mid R_{y}=0\right)
\end{array}
$$

SMART ESTIMATE OF $\boldsymbol{P}(X, Y, Z)$

$$
P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)
$$

Sam-	X*	Y*	Z*	Compute$P\left(Y \mid R_{y}=0\right)$		$P\left(X \mid Y, R_{x}=0, R_{y}=0\right)$			
ple \#									$P(Y \mid R$
1	1	0	0	Row	Y^{*}	Compute			
2	1	0	1	\#		$P\left(X \mid Y, R_{x}=0, R_{y}=0\right)$			
3	1	m	m	1	0	Row	X*	Y^{*}	
4	0	1	m	2	0	\#			
5	m	1	m	4	1	1	1	0	
6	m	0	1	5	1	2	1	0	
7	m	m	0	6	0	4	0	1	
8	0	1	m	8	1	8	0	1	
9	0	0	m	9	0	9	0	0	
10	1	0	m	10	0	10	1	0	
11	1	0	1	11	0	11	1	0	
-				-		-			

SMART ESTIMATE OF $\boldsymbol{P}(\boldsymbol{X}, Y, Z)$

$$
P(X, Y, Z)=P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)
$$

Sam-	X^{*}	Y^{*}	Z*	Compute$P\left(Y \mid R_{y}=0\right)$		$P\left(X \mid Y, R_{x}=0, R_{y}=0\right)$						
ple \#									$P\left(Y \mid R_{y}=0\right)$			
1	1	0	0	Row	Y^{*}	Compute$P\left(X \mid Y, R_{x}=0, R_{y}=0\right)$						
2	1	0	1	\#								
3	1	m	m	1	0	Row	X*	Y^{*}				
4	0	1	m	2	0	\#						
5	m	1	m	4	1	1	1	0	Compute			
6	m	0	1	5	1	2	1	0	$P\left(Z \mid X, Y, R_{x}=0, R_{y}=0, R_{z}=0\right)$			
7	m	m	0	6	0	4	0	1	Row	X*	Y^{*}	Z*
8	0	1	m	8	1	8	0	1	\#			
9	0	0	m	9	0	9	0	0	1	1	0	0
10	1	0	m	10	0	10	1	0	2	1	0	1
11	1	0	1	11	0	11	1	0	11	1	0	1
-						-			-			

RECOVERABILITY FROM MISSING DATA

Definition:
Given a missingness model M, a probabilistic quantity Q is said to be recoverable if there exists an algorithm that produces a consistent estimate of Q for every dataset generated by M.

That is, in the limit of large sample, Q is estimable as if no data were missing.

RECOVERABILITY IN MARKOVIAN MODELS

Theorem:

If the missingness-graph is Markovian (i.e., no latent variables) then a necessary and sufficient condition for recoverability of $P(V)$ is that no variable X be adjacent to its missingness mechanism R_{x}.
e.g.,

DECIDING RECOVERABILITY

Theorem:

Q is recoverable iff it is decomposable into terms of the form $Q_{j}=P\left(S_{j} \mid T_{j}\right)$ such that T_{j} contains the missingness mechanism R_{v} of every partially observed variable V that appears in Q.
e.g.,
(a) Accident Injury

Missing (X)

$$
\begin{aligned}
& Q_{1}=P(X, Y)=P(Y) P(X \mid Y) \\
&=P(Y) P\left(X \mid Y, R_{x}\right) \quad \text { recoverable } \\
& Q_{2}=P(X)=\sum_{y} P(X, Y) \quad \text { recoverable }
\end{aligned}
$$

DECIDING RECOVERABILITY

Theorem:

Q is recoverable iff it is decomposable into terms of the form $Q_{j}=P\left(S_{j} \mid T_{j}\right)$ such that T_{j} contains the missingness mechanism R_{v} of every partially observed variable V that appears in Q.
e.g.,
(b) Injury Treatment

$Q_{1}=P(X, Y) \neq P(Y) P\left(X \mid Y, R_{x}\right)$ nonrecoverable
$Q_{2}=P(X)=P\left(X \mid R_{x}\right) \quad$ recoverable

AN IMPOSSIBILITY THEOREM FOR MISSING DATA

(a) Accident Injury

(b) Injury Treatment
$X \longrightarrow$
Missing (X)

- Two statistically indistinguishable models, yet $P(X, Y)$ is recoverable in (a) and not in (b).
- No universal algorithm exists that decides recoverability (or guarantees unbiased results) without looking at the model.

A STRONGER IMPOSSIBILITY THEOREM

(a)

(b)

- Two statistically indistinguishable models, $P(X)$ is recoverable in both, but through two different methods:
$\ln (\mathrm{a}): P(X)=\Sigma_{y} P(Y) P\left(X \mid Y, R_{x}=0\right)$, while
in (b): $P(X)=P\left(X \mid R_{x}=0\right)$
- No universal algorithm exists that produces an unbiased estimate whenever such exists.

CONCLUSIONS

Deduction is indispensible in causal inference, as it is in science and machine learning.

1. Think nature, not data, not even experiment.
2. Counterfactuals, the building blocks of scientific and moral thinking can be algorithmitized.
3. Identifiability, testability, recoverability and transportability are computational tasks with formal solutions.
4. Think Nature, not data.

Thank you

