THE MATHEMATICS OF CAUSAL INFERENCE With reflections on machine learning and the logic of science

> Judea Pearl UCLA

OUTLINE

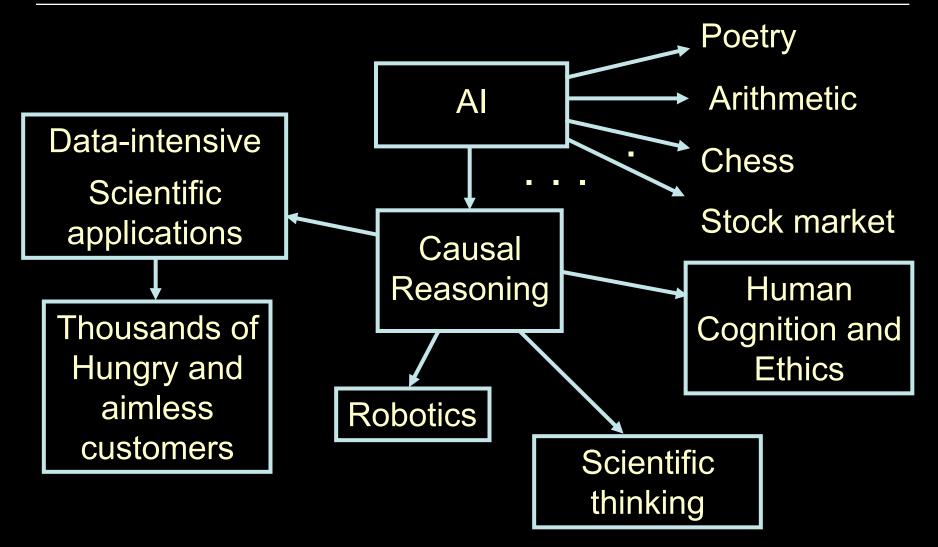
- The causal revolution from statistics to counterfactuals – from Babylon to Athens
- 2. The fundamental laws of causal inference
- 3. From counterfactuals to problem solving
- Old (ATE, ETT, ...)
 b) attribution
 c) mediation
 d) generalizability external validity
 e) latent heterogeneity
 f) missing data

TURING ON MACHINE LEARNING AND EVOLUTION

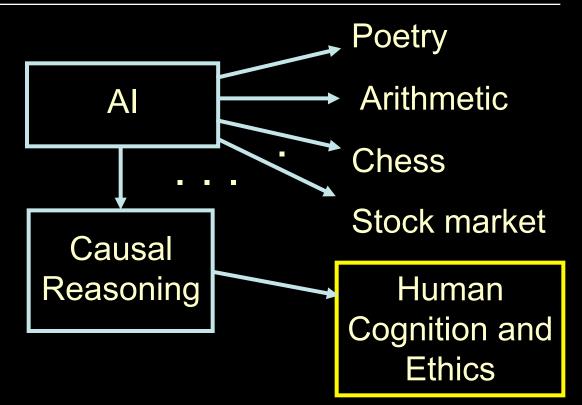
- The survival of the fittest is a slow method for measuring advantages.
- The experimenter, by exercise of intelligence, should be able to speed it up.
- If he can trace a cause for some weakness he can probably think of the kind of mutation which will improve it.

(A.M. Turing, 1950)

THE UBIQUITY OF CAUSAL REASONING



THE UBIQUITY OF CAUSAL REASONING



Causal Explanation

"She handed me the fruit and I ate"

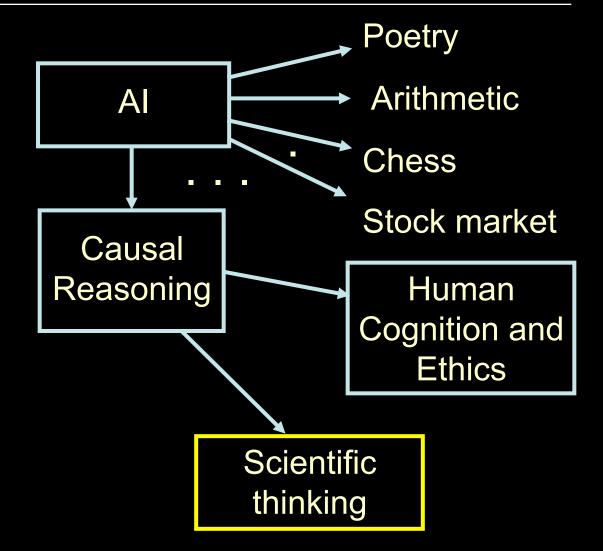
"The serpent deceived me, and I ate"

COUNTERFACTUALS AND OUR SENSE OF JUSTICE

Abraham: Are you about to smite the righteous with the wicked? What if there were fifty righteous men in the city?

And the Lord said, *"If I find in the city of Sodom fifty* good men, I will pardon the whole place for their sake." Genesis 18:26

THE UBIQUITY OF CAUSAL REASONING



WHY PHYSICS IS COUNTERFACTUAL

Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (*Y*) equals a constant (2) times the weight (*X*) Correct notation:

Y ≕22 X	<i>X</i> = 1	$X = \frac{1}{2} \times X = 3$
X = 3 X 1	Y = 2	Y = X + 1
Process information	The solution	<u>Alternative</u>

Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must "wipe out" X = 1.

WHY PHYSICS IS COUNTERFACTUAL

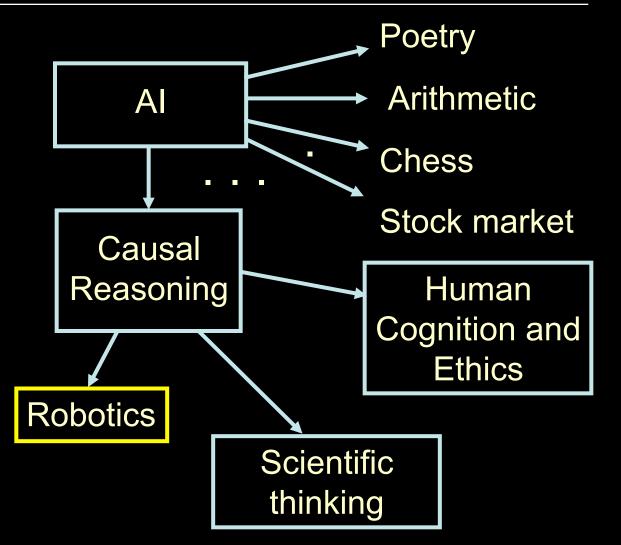
Scientific Equations (e.g., Hooke's Law) are non-algebraic e.g., Length (Y) equals a constant (2) times the weight (X) Correct notation: (or) $Y \leftarrow 2X$ X = 1 $X = \frac{1}{2} \times 1$ X = 3 $X = 3 \times 1$ Y = 2 Y = X + 1

Process information The solution

Y = X + 1Alternative

Had X been 3, Y would be 6. If we raise X to 3, Y would be 6. Must "wipe out" X = 1.

THE UBIQUITY OF CAUSAL REASONING

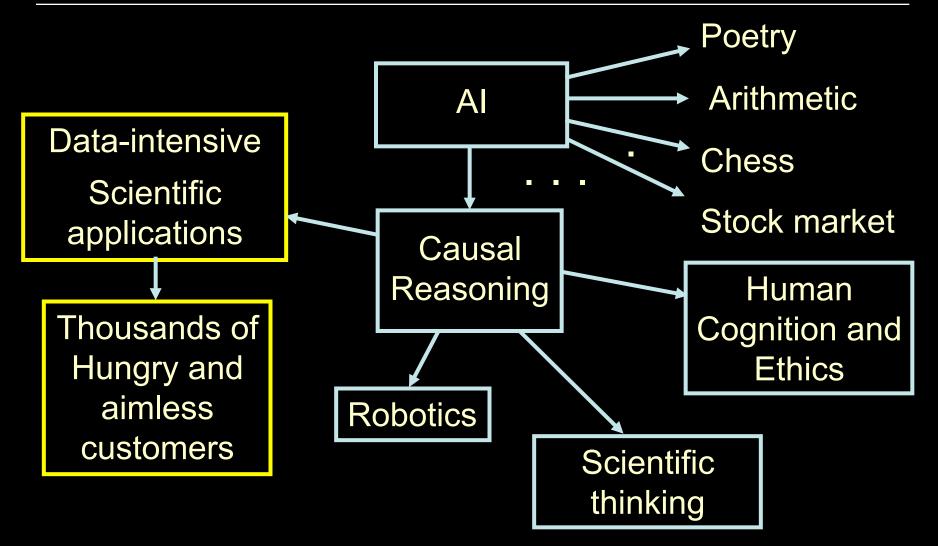




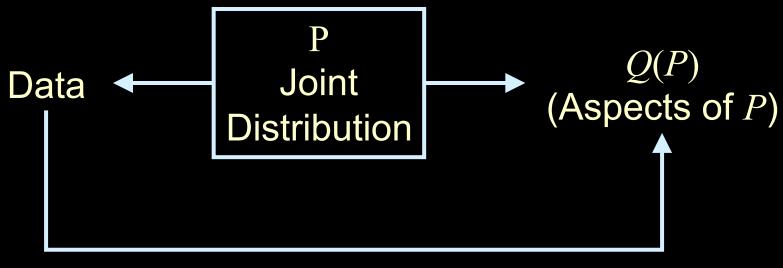
WHAT KIND OF QUESTIONS SHOULD THE ROBOT ANSWER?

- Observational Questions:
 "What if I see A"
- Action Questions:
 "What if I do A?"
- Counterfactuals Questions: "What if I did things differently?"
- Options:
 "With what probability?"

THE UBIQUITY OF CAUSAL REASONING



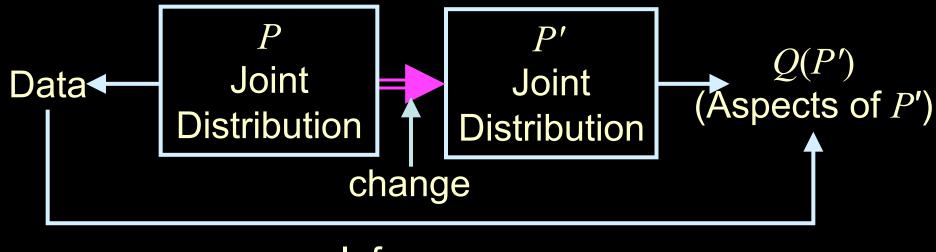
TRADITIONAL STATISTICAL INFERENCE PARADIGM



Inference

e.g., Infer whether customers who bought product *A* would also buy product *B*. $Q = P(B \mid A)$

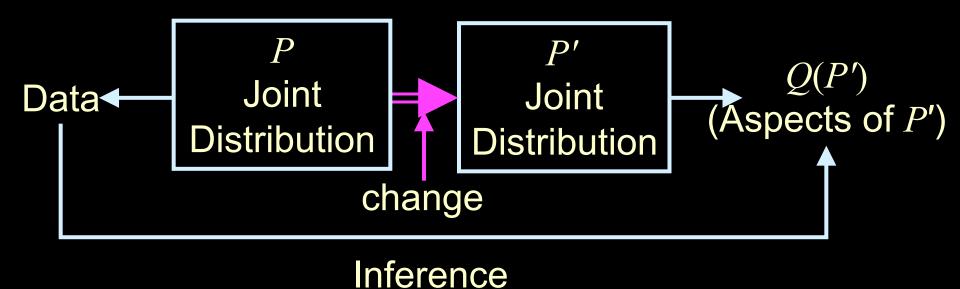
FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES



Inference

How does P change to P'? New oracle e.g., Estimate P'(cancer) if we ban smoking.

FROM STATISTICAL TO CAUSAL ANALYSIS: 1. THE DIFFERENCES



e.g., Estimate the probability that a customer who bought *A* would buy *B* if we were to double the price.

THE STRUCTURAL MODEL PARADIGM



Inference

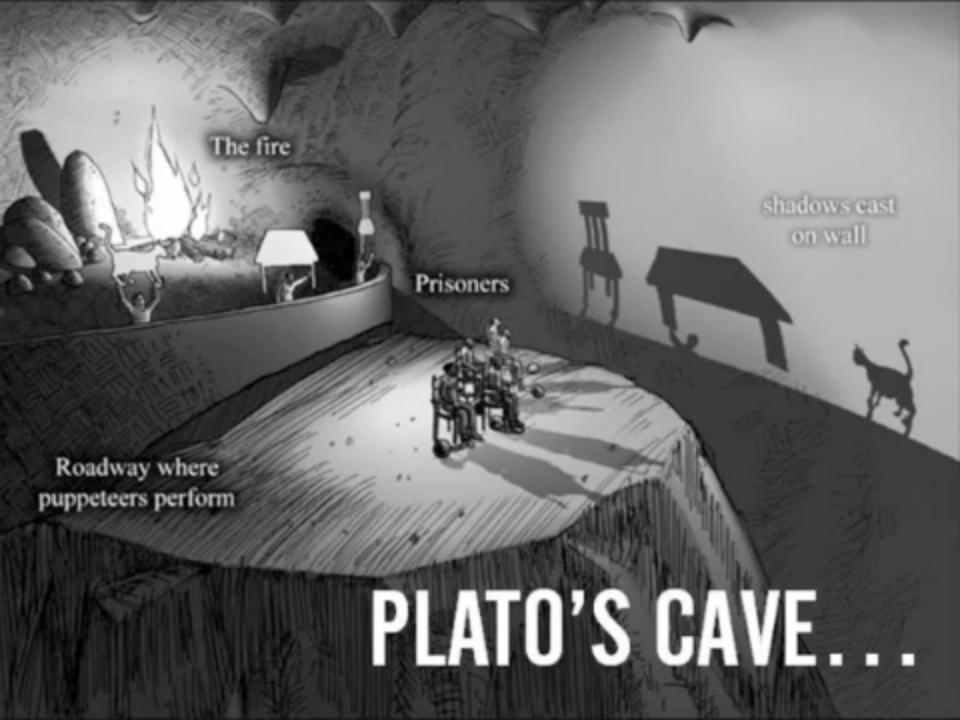
M – Invariant strategy (mechanism, recipe, law, protocol) by which Nature assigns values to variables in the analysis.

"A painful de-crowning of a beloved oracle!"

WHAT KIND OF QUESTIONS SHOULD THE ORACLE ANSWER?

- Observational Questions:
 "What if we see A" (What is?) P(y | A)
- Action Questions:
 "What if we do A?" (What if?) P(y | do(A)
- Counterfactuals Questions: "What if we did things differently?" (Why?)
- Options: $P(y_{A'} | A)$ "With what probability?"

THE CAUSAL HIERARCHY - SYNTACTIC DISTINCTION



STRUCTURAL CAUSAL MODELS: THE WORLD AS A COLLECTION OF SPRINGS

Definition: A structural causal model is a 4-tuple $\langle V, U, F, P(u) \rangle$, where

- $V = \{V_1, ..., V_n\}$ are endogenous variables
- $U = \{U_1, ..., U_m\}$ are background variables
- $F = \{f_1, ..., f_n\}$ are functions determining V,

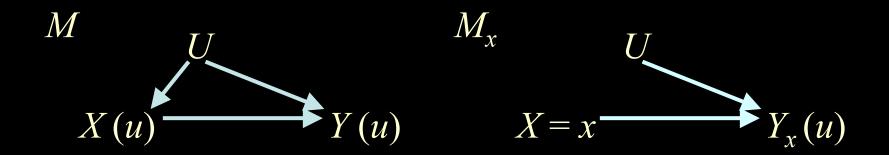
 $v_i = f_i(v, u)$ e.g., $y = \alpha + \beta x + u_Y$ Not regression!!!! • P(u) is a distribution over U

P(u) and F induce a distribution P(v) over observable variables

COUNTERFACTUALS ARE EMBARRASSINGLY SIMPLE

Definition:

The sentence: "*Y* would be *y* (in situation *u*), had *X* been *x*," denoted $Y_x(u) = y$, means: The solution for *Y* in a mutilated model M_x , (i.e., the equations for *X* replaced by X = x) with input U=u, is equal to *y*.



The Fundamental Equation of Counterfactuals:

$$Y_{\chi}(u) = Y_{M_{\chi}}(u)$$

THE TWO FUNDAMENTAL LAWS OF CAUSAL INFERENCE

1. The Law of Counterfactuals

$$Y_{\chi}(u) = Y_{M_{\chi}}(u)$$

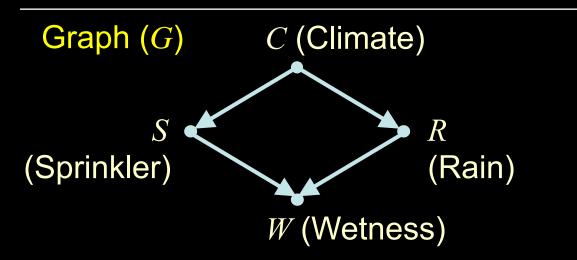
(*M* generates and evaluates all counterfactuals.)

2. The Law of Conditional Independence (*d*-separation)

$$(X \operatorname{sep} Y | Z)_{G(M)} \Rightarrow (X \perp Y | Z)_{P(v)}$$

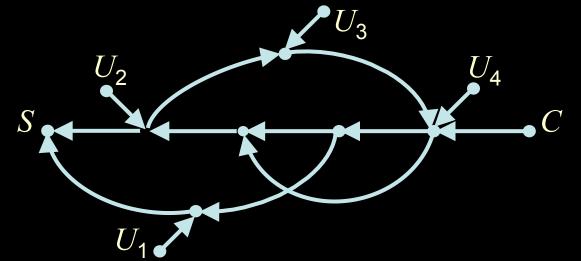
(Separation in the model \Rightarrow independence in the distribution.)

THE LAW OF CONDITIONAL INDEPENDENCE

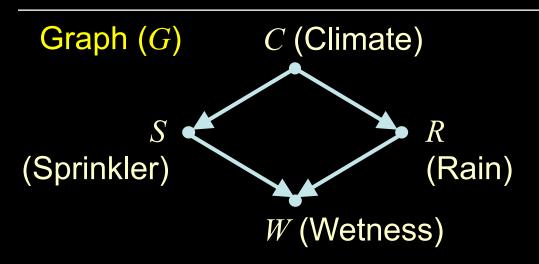


Model (M) $C = f_C(U_C)$ $S = f_S(C, U_S)$ $R = f_R(C, U_R)$ $W = f_W(S, R, U_W)$

Each function summarizes millions of micro processes.



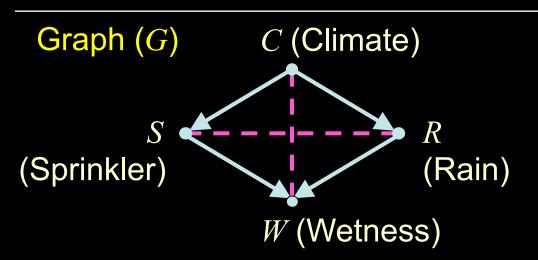
THE LAW OF CONDITIONAL INDEPENDENCE



Model (M) $C = f_C(U_C)$ $S = f_S(C, U_S)$ $R = f_R(C, U_R)$ $W = f_W(S, R, U_W)$

Gift of the Gods If the *U*'s are independent, the observed distribution P(C,R,S,W) satisfies constraints that are: $\begin{pmatrix} U_3 \\ U_4 \end{pmatrix}$ (1) independent of the *f*'s and of $P(N_{f_1}, C)$ (2) readable from the graph.

D-SEPARATION: NATURE'S LANGUAGE FOR COMMUNICATING ITS STRUCTURE



Model (M)

 $C = f_C(U_C)$ $S = f_S(C, U_S)$ $R = f_R(C, U_R)$ $W = f_W(S, R, U_W)$

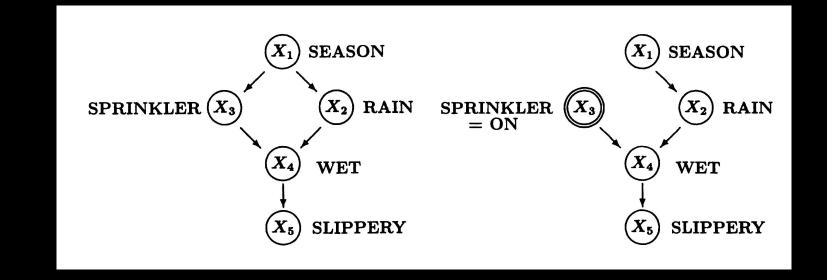
Every missing arrow advertises an independency, conditional on a separating set.

e.g.,
$$C \perp \!\!\!\perp W \mid (S,R)$$
 $S \perp \!\!\!\perp R \mid C$

Applications:

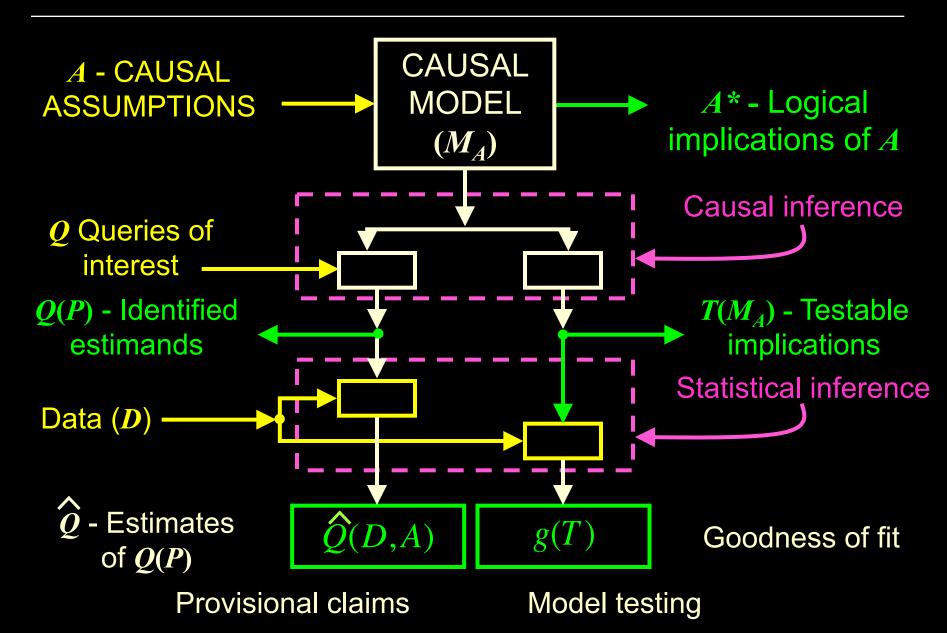
- 1. Model testing
- 2. Structure learning
- 3. Reducing "what if I do" questions to symbolic calculus
- 4. Reducing scientific questions to symbolic calculus

SEEING VS. DOING



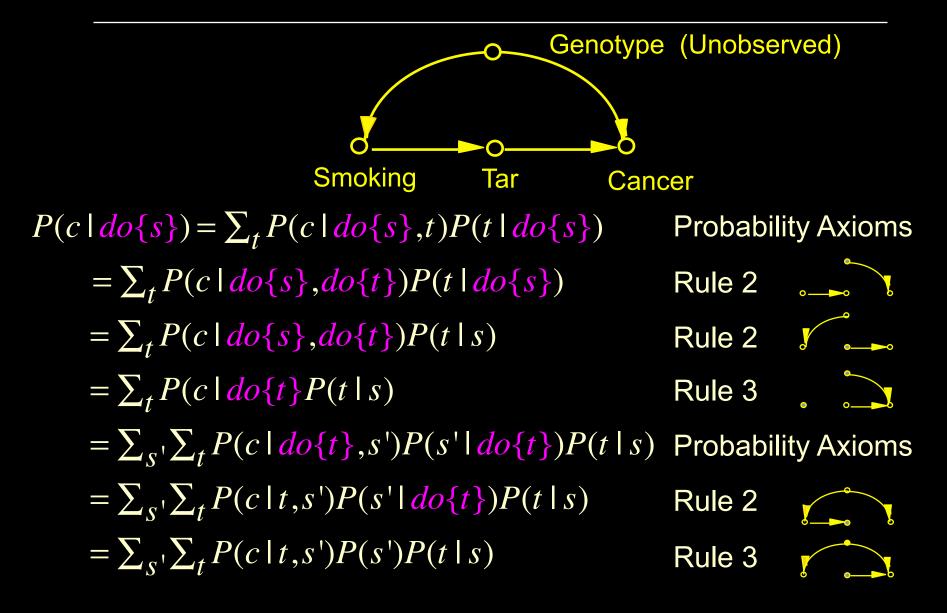
 $P(x_{1},...,x_{n}) = \prod_{i} P(x_{i} | pa_{i})$ $P(x_{1},x_{2},x_{3},x_{4},x_{5}) = P(x_{1})P(x_{2} | x_{1})P(x_{3} | x_{1})P(x_{4} | x_{2},x_{3})P(x_{5} | x_{4})$ Effect of turning the sprinkler ON (Truncated product) $P_{X_{3}}=ON(x_{1},x_{2},x_{4},x_{5}) = P(x_{1})P(x_{2} | x_{1})P(x_{4} | x_{2},X_{3} = ON)P(x_{5} | x_{4})$ $\neq P(x_{1},x_{2},x_{4},X_{5} | X_{3} = ON)$

THE LOGIC OF CAUSAL ANALYSIS

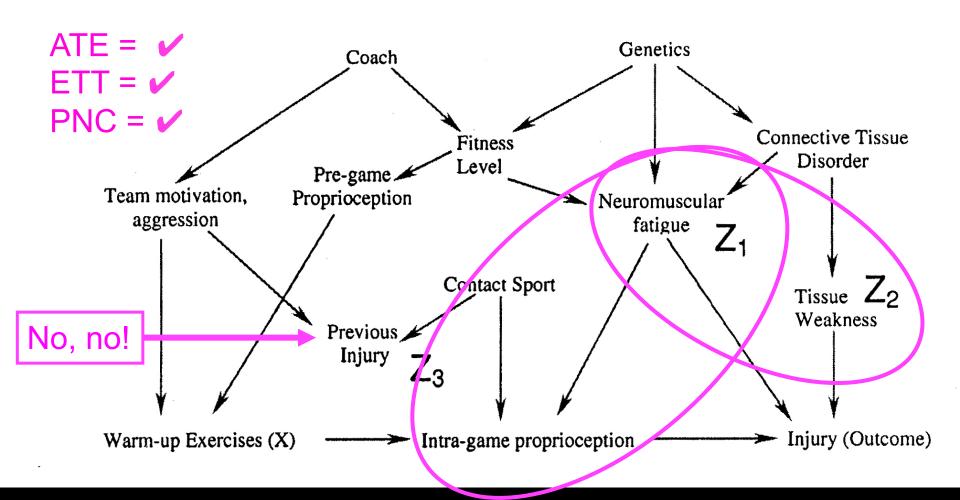


Rule 1: Ignoring observations $P(y | do{x}, z, w) = P(y | do{x}, w)$ if $(Y \perp Z \mid X, W)_{G_{\overline{Y}}}$ Rule 2: Action/observation exchange $P(y \mid do\{x\}, do\{z\}, w) = P(y \mid do\{x\}, z, w)$ if $(Y \perp Z \mid X, W)_{G \overline{X} Z}$ Rule 3: Ignoring actions $P(y | do{x}, do{z}, w) = P(y | do{x}, w)$ if $(Y \perp Z \mid \overline{X, W})_{G \overline{X} \overline{Z(W)}}$ Completeness Theorem (Shpitser, 2006)

DERIVATION IN CAUSAL CALCULUS



EFFECT OF WARM-UP ON INJURY (After Shrier & Platt, 2008)



MATHEMATICALLY SOLVED PROBLEMS

- 1. Policy evaluation (ATE, ETT,...)
- 2. Attribution
- 3. Mediation (direct and indirect effects)
- 4. Selection Bias
- 5. Latent Heterogeneity
- 6. Transportability
- 7. Missing Data

TRANSPORTABILITY OF KNOWLEDGE ACROSS DOMAINS (with E. Bareinboim)

1. A Theory of causal transportability

When can causal relations learned from experiments be transferred to a different environment in which no experiment can be conducted?

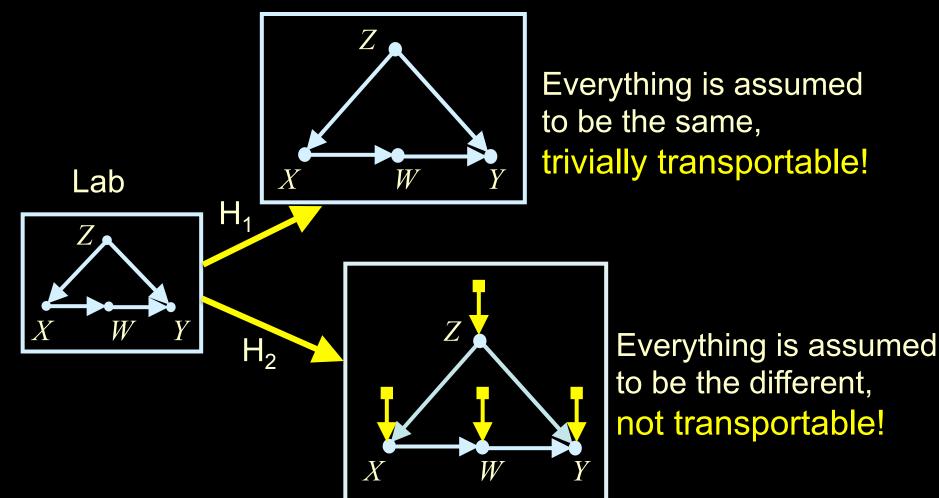
2. A Theory of statistical transportability

When can statistical information learned in one domain be transferred to a different domain in which

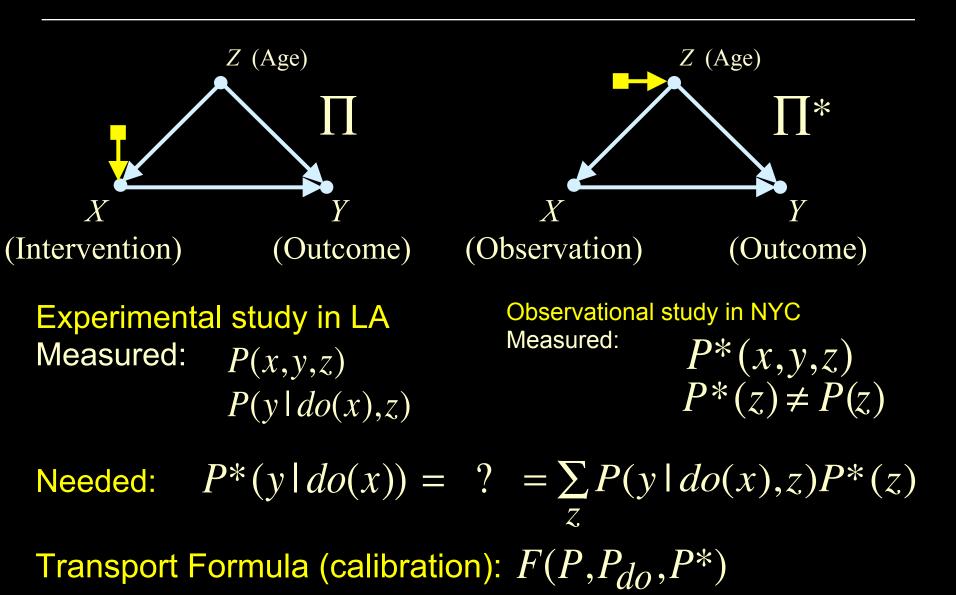
- a. only a subset of variables can be observed? Or,
- b. only a few samples are available?

MOVING FROM THE LAB TO THE REAL WORLD . . .

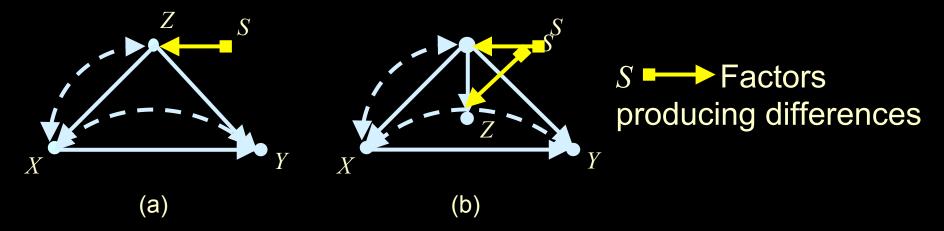
Real world



MOTIVATION WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC?

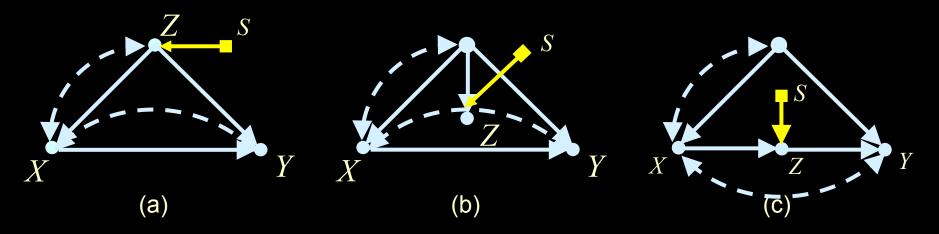


TRANSPORT FORMULAS DEPEND ON THE STORY



a) Z represents age $P^*(y | do(x)) = \sum_{z} P(y | do(x), z) P^*(z)$ b) Z represents language skill $P^*(y | do(x)) = P(y | do(x))$

TRANSPORT FORMULAS DEPEND ON THE STORY

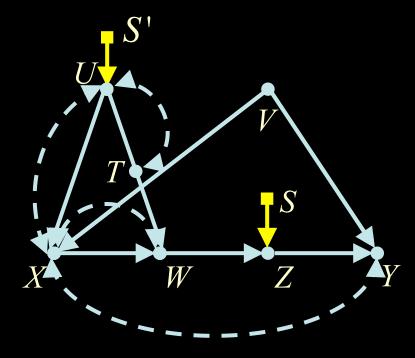


a) Z represents age P*(y | do(x)) = ∑_z P(y | do(x),z)P*(z)
b) Z represents language skill

 $P^*(y \mid do(x)) = P(y \mid do(x))$

c) Z represents a bio-marker $P^*(y | do(x)) = \sum_{z} P(y | do(x), z) P^*(z | x)$

GOAL: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE



INPUT: Annotated Causal Graph *S* → Factors creating differences

OUTPUT:

- 1. Transportable or not?
- 2. Measurements to be taken in the experimental study
- 3. Measurements to be taken in the target population
- 4. A transport formula

 $P^{*}(y | do(x)) = f[P(y, v, z, w, t, u | do(x)); P^{*}(y, v, z, w, t, u)]$

TRANSPORTABILITY REDUCED TO CALCULUS

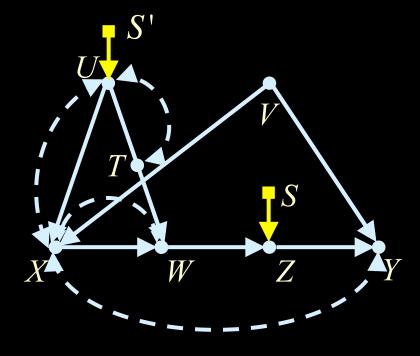
Theorem

A causal relation R is transportable from \prod to \prod^* if and only if it is reducible, using the rules of *do*-calculus, to an expression in which *S* is separated from *do*().

$$R(\Pi^*) = P^*(y | do(x)) = P(y | do(x), s)$$

= $\sum_{w} P(y | do(x), s, w) P(w | do(x), s)$
= $\sum_{w} P(y | do(x), w) P(w | s)$
= $\sum_{w} P(y | do(x), w) P^*(w)$

RESULT: ALGORITHM TO DETERMINE IF AN EFFECT IS TRANSPORTABLE



 $P^*(y \mid do(x)) =$

Ζ.

INPUT: Annotated Causal Graph *S* ➡ Factors creating differences

OUTPUT:

- 1. Transportable or not?
- 2. Measurements to be taken in the experimental study
- 3. Measurements to be taken in the target population
- 4. A transport formula
- 5. Completeness (Bareinboim, 2012)

 $\sum P(y \mid do(x), z) \sum P^*(z \mid w) \sum P(w \mid do(w), t) P^*(t)$

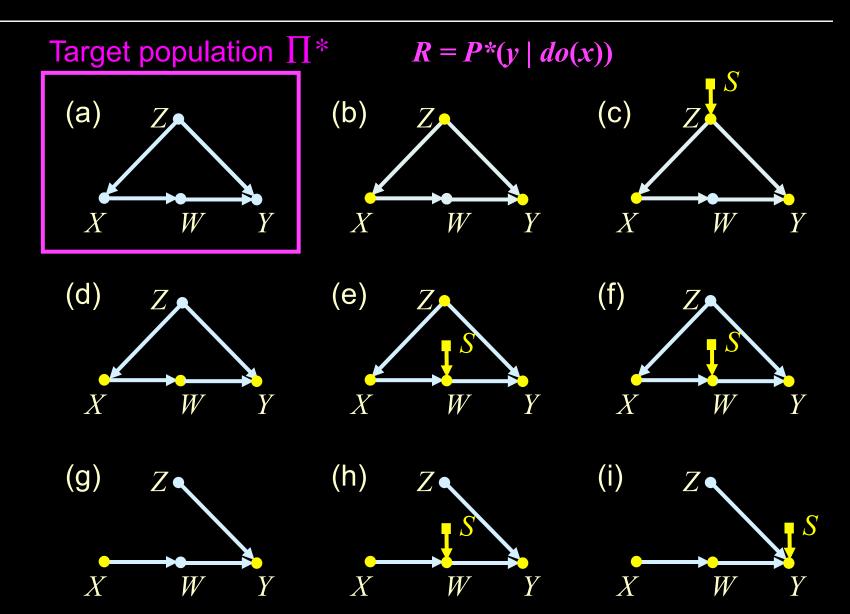
W

FROM META-ANALYSIS TO META-SYNTHESIS

The problem

How to combine results of several experimental and observational studies, each conducted on a different population and under a different set of conditions, so as to construct an aggregate measure of effect size that is "better" than any one study in isolation.

META-SYNTHESIS AT WORK



META-SYNTHESIS REDUCED TO CALCULUS

Theorem

 $\{\prod_1, \prod_2, ..., \prod_K\}$ – a set of studies. $\{D_1, D_2, ..., D_K\}$ – selection diagrams (relative to \prod^*). A relation $R(\prod^*)$ is "meta estimable" if it can be decomposed into terms of the form:

 $Q_k = P(V_k \mid do(W_k), Z_k)$

such that each Q_k is transportable from D_k .

MISSING DATA: A SEEMINGLY STATISTICAL PROBLEM (Mohan, Pearl & Tian 2012)

- Pervasive in every experimental science.
- Huge literature, powerful software industry, deeply entrenched culture.
- Current practices are based on statistical characterization (Rubin, 1976) of a problem that is inherently causal.
- Needed: (1) theoretical guidance,
 (2) performance guarantees, and (3) tests of assumptions.

WHAT CAN CAUSAL THEORY DO FOR MISSING DATA?

- Q-1. What should the world be like, for a given statistical procedure to produce the expected result?
- Q-2. Can we tell from the postulated world whether any method can produce a bias-free result? How?

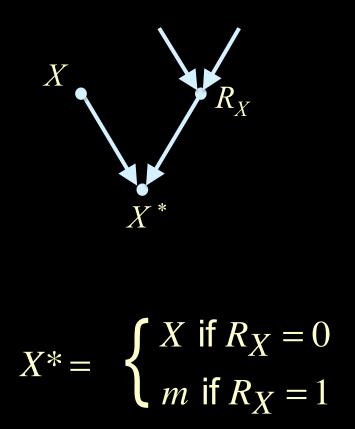
Q-3. Can we tell from data if the world does not work as postulated?

- To answer these questions, we need models of the world, i.e., process models.
- Statistical characterization of the problem is too crude, e.g., MCAR, MAR, MNAR.

GOAL: ESTIMATE P(X, Y, Z)

Sam-	Obs	ervat	ions	Mis	singness			
ple #	X*	Y*	Ζ*	R _x	Ry	R_{Z}		
1	1	0	0	0	0	0		
2	1	0	1	0	0	0		
3	1	m	m	0	1	1		
4	0	1	m	0	0	1		
5	m	1	m	1	0	1		
6	m	0	1	1	0	0		
7	m	m	0	1	1	0		
8	0	1	m	0	0	1		
9	0	0	m	0	0	1		
10	1	0	m	0	0	1		
11	1	0	1	0	0	0		

Missingness graph



NAIVE ESTIMATE OF P(X, Y, Z)

				1			Complete Cases	
Sam-	Obs	ervat	ions	Mis	singn	ess	Row X Y Z R _x R _v	R
ple #	X*	Y*	Z*	R _x	Ry	R_{Z}		^Z
1	1	0	0	0	0	0	→ 1 1 0 0 0 0	0
2	1	0	1	0	0	0	→ 2 1 0 1 0 0	0
3	1	m	m	0	1	1		0
4	0	1	m	0	0	1	-	
5	m	1	m	1	0	1	 Line deletion estimate is 	
6	m	0	1	1	0	0	generally biased.	
7	m	m	0	1	1	0	P(X,Y,Z)	
8	0	1	m	0	0	1		
9	0	0	m	0	0	1	$\neq P(X,Y,Z \mid R_{\chi} = 0, R_{y} = 0, R_{y}$	z = 0)
10	1	0	m	0	0	1		
11	1	0	1	0	0	0		CAR
-							$R_x \qquad R_y \qquad R_z$	

NAIVE ESTIMATE OF P(X, Y, Z)

				I			Complete Cases	
Sam-	Obs	servat	ions	Mis	singn	ess		P
ple #	X*	Y*	Z*	R _x	R_{y}	R_Z		''Z
1	1	0	0	0	0	0	→ 1 1 0 0 0 0	0
2	1	0	1	0	0	0	→ 2 1 0 1 0 0	0
3	1	m	m	0	1	1		0
4	0	1	m	0	0	1	-	
5	m	1	m	1	0	1	Line deletion estimate is	
6	m	0	1	1	0	0	generally biased.	
7	m	m	0	1	1	0	P(X,Y,Z)	
8	0	1	m	0	0	1		-0)
9	0	0	m	0	0	1	$\neq P(X,Y,Z \mid R_{\chi} = 0, R_{y} = 0, R_{z}$	z = 0)
10	1	0	m	0	0	1	$X \qquad Y \qquad Z$	
11	1	0	1	0	0	0		AR
-							$R_x R_z$	

NAIVE ESTIMATE OF P(X, Y, Z)

		Observations Missingness					Complete Cases						
Sam-	Obs	servat	ions	Mis	singn	ess	Row	X	Y	Ζ	R _x	R	R
ple #	X*	Y*	Z*	R _x	Ry	R_z		Λ			'` X	Ry	Ϋ́Ζ
1	1	0	0	0	0	0	→ 1	1	0	0	0	0	0
2	1	0	1	0	0	0	→ 2	1	0	1	0	0	0
3	1	m	m	0	1	1	<u> </u>	1	0	1	0	0	0
4	0	1	m	0	0	1	-						
5	m	1	m	1	0	1	• Line	dele	etior	n est	tima	te is	5
6	m	0	1	1	0	0	gene	erally	y bia	ased			
7	m	m	0	1	1	0	P(X,Y,Z)						
8	0	1	m	0	0	1				0	D		
9	0	0	m	0	0	1	$\neq P(X,$	Y,Z	R_{χ}	=0,	$R_y =$	=0, K	$Z_z = 0$
10	1	0	m	0	0	1	X			Y		Ζ	
11	1	0	1	0	0	0				$\mathbf{>}$		• N	INAR
-							R.			$R_{}$		R_{-}	

 \mathcal{X}

Z

Sam-	Obs	servat	ions	Mis	singn	ess	
ple #	Χ*	Y*	Z *	R_{X}	R_{y}	R_{Z}	$Z \checkmark X \checkmark Y R_{v}$
1	1	0	0	0	0	0	
2	1	0	1	0	0	0	
3	1	m	m	0	1	1	
4	0	1	m	0	0	1	$R_z R_x$
5	m	1	m	1	0	1	P(X,Y,Z)
6	m	0	1	1	0	0	$\neq P(X,Y,Z \mid R_{\chi} = 0, R_{y} = 0, R_{z} = 0)$
7	m	m	0	1	1	0	
8	0	1	m	0	0	1	$P(X,Y,Z) = P(Z \mid X,Y)P(X \mid Y)P(Y)$
9	0	0	m	0	0	1	
10	1	0	m	0	0	1	$P(Y) = P(Y \mid R_y = 0)$
11	1	0	1	0	0	0	$P(X Y) = P(X Y, R_x = 0, R_y = 0)$
-							$P(Z \mid X, Y) = P(Z \mid X, Y, R_{\chi} = 0, R_{V} = 0, R_{Z} = 0)$

$P(X,Y,Z) = P(Z \mid X,Y)$	$(R_x = 0, R_y = 0, R_z = 0)$
	$P(X Y, R_x = 0, R_y = 0)$

Sam- ple #	X*	Y*	Z*
1	1	0	0
2	1	0	1
3	1	m	m
4	0	1	m
5	m	1	m
6	m	0	1
7	m	m	0
8	0	1	m
9	0	0	m
10	1	0	m
11	1	0	1

\mathcal{A}	/	y		
P(Y		R_{v}	=	0)

 $P(X,Y,Z) = P(Z | X,Y,R_x = 0,R_y = 0,R_z = 0)$

Sam- ple #	X*	Y*	Z*	$Comp P(Y R_y$	ute ,=0)
1	1	0	0	Row	Y*
2	1	0	1	#	·
3	1	m	m	1	0
4	0	1	m	2	0
5	m	1	m	4	1
6	m	0	1	5	1
7	m	m	0	6	0
8	0	1	m	8	1
9	0	0	m	9	0
10	1	0	m	10	0
11	1	0	1	11	0
_				-	

 $P(X \mid Y, R_{\chi} = 0, R_{y} = 0)$ $P(Y \mid R_{y} = 0)$

 $P(X,Y,Z) = P(Z | X,Y,R_x = 0,R_y = 0,R_z = 0)$

= 0)

= 0)

Sam- ple #	X*	Y*	Z*	$Comp P(Y R_y)$			Р	$(X \mid Y)$	$R_{x} = 0, R_{y}$ $P(Y \mid R_{y})$
1	1	0	0	Row	Y*	Comp	ute		1 (1 · · · · y
2	1	0	1	#		P(X Y, X)	$R_{\chi}=0, I$	$R_y=0)$	
3	1	m	m	1	0	Row	X*	Y*	
4	0	1	m	2	0	#			
5	m	1	m	4	1	1	1	0	
6	m	0	1	5	1	2	1	0	
7	m	m	0	6	0	4	0	1	
8	0	1	m	8	1	8	0	1	
9	0	0	m	9	0	9	0	0	
10	1	0	m	10	0	10	1	0	
11	1	0	1	11	0	11	1	0	
-				-		_			

	$P(X,Y,Z) = P(Z \mid X,Y,R_{\chi} = 0,R_{y} = 0,R_{z} = 0)$													
Sam- ple #	X*	Y*	Z*		Compute $P(Y R_y=0)$		$P(X \mid Y, R_x = 0, R_y = 0)$ $P(Y \mid R_y = 0)$							
1	1	0	0	Row			ute		×	У				
2	1	0	1	#		P(X Y, X)		$R_v = 0)$						
3	1	m	m	1	0	Row	X*	Y*						
4	0	1	m	2	0	#								
5	m	1	m	4	1	1	1	0	Compu	ıte				
6	m	0	1	5	1	2	1	0	P(Z X, Y)		,R _y =(), $R_{z}=0)$		
7	m	m	0	6	0	4	0	1	Row	X*	Y*	Z*		
8	0	1	m	8	1	8	0	1	#					
9	0	0	m	9	0	9	0	0	1	1	0	0		
10	1	0	m	10	0	10	1	0	2	1	0	1		
11	1	0	1	11	0	11	1	0	11	1	0	1		
-				-		-			-					

Definition:

Given a missingness model *M*, a probabilistic quantity *Q* is said to be recoverable if there exists an algorithm that produces a consistent estimate of *Q* for every dataset generated by *M*.

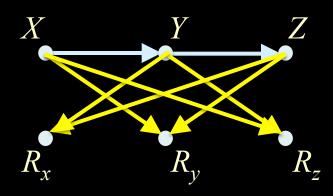
That is, in the limit of large sample, Q is estimable as if no data were missing.

RECOVERABILITY IN MARKOVIAN MODELS

Theorem:

If the missingness-graph is Markovian (i.e., no latent variables) then a necessary and sufficient condition for recoverability of P(V) is that no variable X be adjacent to its missingness mechanism R_x .

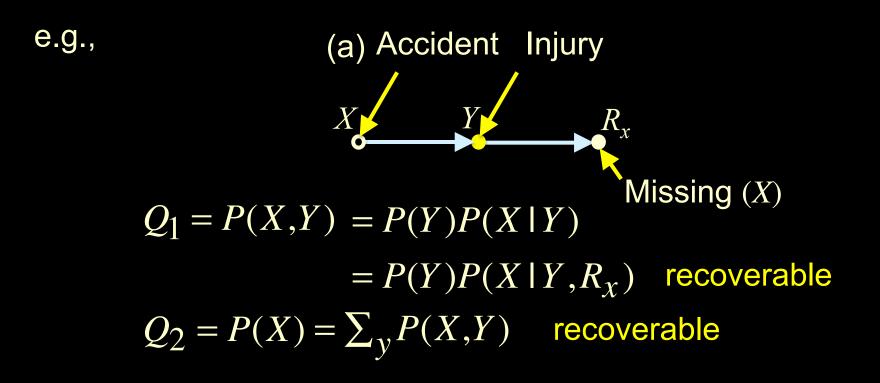
e.g.,



DECIDING RECOVERABILITY

Theorem:

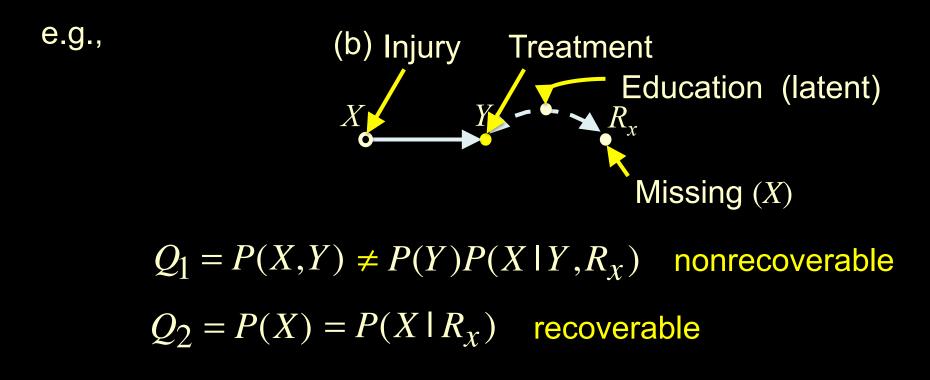
Q is recoverable iff it is decomposable into terms of the form $Q_j = P(S_j | T_j)$ such that T_j contains the missingness mechanism R_v of every partially observed variable *V* that appears in *Q*.



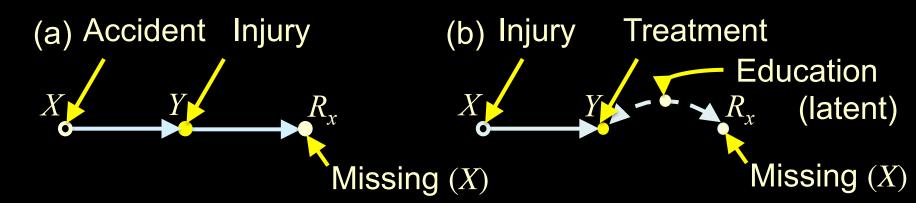
DECIDING RECOVERABILITY

Theorem:

Q is recoverable iff it is decomposable into terms of the form $Q_j = P(S_j | T_j)$ such that T_j contains the missingness mechanism R_v of every partially observed variable *V* that appears in *Q*.



AN IMPOSSIBILITY THEOREM FOR MISSING DATA



- Two statistically indistinguishable models, yet *P*(*X*, *Y*) is recoverable in (a) and not in (b).
- No universal algorithm exists that decides recoverability (or guarantees unbiased results) without looking at the model.

A STRONGER IMPOSSIBILITY THEOREM

- Two statistically indistinguishable models, P(X) is recoverable in both, but through two different methods: In (a): $P(X) = \sum_{y} P(Y)P(X | Y, R_{\chi} = 0)$, while in (b): $P(X) = P(X | R_{\chi} = 0)$
- No universal algorithm exists that produces an unbiased estimate whenever such exists.

CONCLUSIONS

Deduction is indispensible in causal inference, as it is in science and machine learning.

- 1. Think nature, not data, not even experiment.
- 2. Counterfactuals, the building blocks of scientific and moral thinking can be algorithmitized.
- Identifiability, testability, recoverability and transportability are computational tasks with formal solutions.
- 4. Think Nature, not data.

Thank you