The Classification Program for Counting Problems III Planar Dichotomy Theorems

Heng Guo

Queen Mary, University of London

Simons Institute

Jan 28, 2016

Contents

2) Tractable Cases

• Counting Constraint Satisfaction Problems:

- Counting Constraint Satisfaction Problems:
 - ► *V* a set of variables and *C* a set of constraints.
 - *C* can be also viewed as hyperedges.

• Counting Constraint Satisfaction Problems:

- ► *V* a set of variables and *C* a set of constraints.
- C can be also viewed as hyperedges.
- Name #CSP(𝔅)

Instance A bipartite graph G = (V, C, E) and a mapping $\pi : C \to \mathcal{F}$

Output The quantity:

$$\sum_{\sigma: V \to \{0,1\}} \prod_{c \in C} f_c \left(\sigma \mid_{N(c)} \right),$$

where N(c) are the neighbors of c and $f_c = \pi(c) \in \mathcal{F}$.

Counting Perfect Matchings

Counting Perfect Matchings

 #PM is provably not expressible in vertex assignment models. (see e.g. [Freedman, Lovász, and Schrijver 07])

- #PM is provably not expressible in vertex assignment models.
 (see e.g. [Freedman, Lovász, and Schrijver 07])
- Edge-coloring models edges are variables and vertices are functions.

- #PM is provably not expressible in vertex assignment models.
 (see e.g. [Freedman, Lovász, and Schrijver 07])
- Edge-coloring models edges are variables and vertices are functions.
- Name Holant(F)

Instance A graph G = (V, E) and a mapping $\pi : V \to \mathcal{F}$

Output The quantity:

$$\sum_{\sigma: E \to \{0,1\}} \prod_{\nu \in V} f_{\nu} \left(\sigma \mid_{E(\nu)} \right),$$

where E(v) are the incident edges of v and $f_v = \pi(v) \in \mathfrak{F}$.

• More general than #CSP:

 $#CSP(\mathcal{F}) \equiv_T Holant(\mathcal{EQ} \cup \mathcal{F}),$

where $\mathcal{EQ} = \{=_1, =_2, =_3, \dots\}$ is the set of equalities of all arities.

- Equivalent formulation: Tensor network contraction
- PI-Holant(\mathfrak{F}) denotes the version where instances are all planar.

#PM as a Holant

• Put functions EXACTONE (EO) on nodes (edges are variables).

#PM as a Holant

• Put functions EXACTONE (EO) on nodes (edges are variables).

Heng Guo (QMUL)

Planar Dichotomy

#PM as a Holant

- Put functions EXACTONE (EO) on nodes (edges are variables).
- #PM is then the partition function:

Heng Guo (QMUL)

Planar Dichotomy

Counting Perfect Matchings in Planar Graphs

 Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general graphs.

Counting Perfect Matchings in Planar Graphs

- Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general graphs.
- However, for planar graphs, there is a polynomial time algorithm [Kastelyn 61 & 67, Temperley and Fisher 61].

Counting Perfect Matchings in Planar Graphs

- Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general graphs.
- However, for planar graphs, there is a polynomial time algorithm [Kastelyn 61 & 67, Temperley and Fisher 61].
 - The FKT algorithm is via Pfaffian orientations of planar graphs.

Valiant introduced holographic algorithms to extend the reach of FKT algorithms [Valiant 04]:

Valiant introduced holographic algorithms to extend the reach of FKT algorithms [Valiant 04]:

Matchgates: functions expressible by perfect matchings (via planar gadgets).

Valiant introduced holographic algorithms to extend the reach of FKT algorithms [Valiant 04]:

- Matchgates: functions expressible by perfect matchings (via planar gadgets).
- Holographic Transformation: a change of basis.

For a 2-by-2 nonsingular matrix T, two functions f and g of arities m and n respectively, Valiant's Holant theorem states

$$Holant(f \mid g) = Holant(fT^{\otimes m} \mid (T^{-1})^{\otimes n}g).$$

Note that $Holant(f) = Holant(f \mid =_2)$.

Ising Model

Ising Model

Ising Model

Partition function (normalizing factor):

$$Z_G(\beta) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

where $w(\sigma) = \beta^{m(\sigma)}$, $m(\sigma)$ is the number of monochromatic edges under σ .

 Recall that [f₀, f₁,..., f_d] is a symmetric function f where entries are listed according to Hamming weights.

- Recall that [f₀, f₁,..., f_d] is a symmetric function f where entries are listed according to Hamming weights.
 - $\blacktriangleright =_d : [1, 0, \dots, 0, 1];$
 - ▶ EO_d : [0, 1, 0, ..., 0];
 - Ising function : $[\beta, 1, \beta]$.

- Recall that [f₀, f₁,..., f_d] is a symmetric function f where entries are listed according to Hamming weights.
 - $\blacktriangleright =_d : [1, 0, \dots, 0, 1];$
 - ▶ EO_d : [0, 1, 0, ..., 0];
 - Ising function : $[\beta, 1, \beta]$.
- Vertices can be viewed as $=_d$ functions (*d* is the degree).

- Recall that [f₀, f₁,..., f_d] is a symmetric function f where entries are listed according to Hamming weights.
 - $\blacktriangleright =_d : [1, 0, \dots, 0, 1];$
 - ▶ EO_d : [0, 1, 0, ..., 0];
 - Ising function : $[\beta, 1, \beta]$.
- Vertices can be viewed as $=_d$ functions (*d* is the degree).
- Ising is then

$$Holant(=_1, =_2, \ldots, =_d, \ldots \mid [\beta, 1, \beta])$$

Planar Ising is Tractable (Cont.)

• Do a transformation of $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. (Notice that $H = H^{-1}$.)

Planar Ising is Tractable (Cont.)

• Do a transformation of $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. (Notice that $H = H^{-1}$.)

On the vertex side:

$$(=_{d})H^{\otimes d} = ([1,0]^{\otimes d} + [0,1]^{\otimes d}) H^{\otimes d}$$
$$= ([1,0]H)^{\otimes d} + ([0,1]H)^{\otimes d} = [1,1]^{\otimes d} + [1,-1]^{\otimes d}$$
$$= [1,0,1,0,\dots,0,1]$$

Planar Ising is Tractable (Cont.)

• Do a transformation of $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. (Notice that $H = H^{-1}$.)

On the vertex side:

$$(=_{d})H^{\otimes d} = ([1,0]^{\otimes d} + [0,1]^{\otimes d}) H^{\otimes d}$$
$$= ([1,0]H)^{\otimes d} + ([0,1]H)^{\otimes d} = [1,1]^{\otimes d} + [1,-1]^{\otimes d}$$
$$= [1,0,1,0,\dots,0,1]$$

On the edge side:

$$H^{\otimes 2}\left((\beta-1)\begin{bmatrix}1\\0\end{bmatrix}^{\otimes 2}+(\beta-1)\begin{bmatrix}0\\1\end{bmatrix}^{\otimes 2}+\begin{bmatrix}1\\1\end{bmatrix}^{\otimes 2}\right) = [\beta-1,0,\beta-1]+[2,0,0]$$
$$= [\beta+1,0,\beta-1]$$

Both of the two functions above are matchgates.

Heng Guo (QMUL)

Planar Dichotomy

Complexity Classifications

Counting problems with local constraints are usually classified into:

- 1. P-time solvable over general graphs;
- 2. **#P**-hard over general graphs but **P**-time solvable over planar graphs;
- 3. #P-hard over planar graphs.

Complexity Classifications

Counting problems with local constraints are usually classified into:

- 1. P-time solvable over general graphs;
- 2. **#P**-hard over general graphs but **P**-time solvable over planar graphs;
- 3. **#P**-hard over planar graphs.

Category (2) is always captured by holographic algorithms with matchgates. Examples include:

- Tutte polynomials [Vertigan 91], [Vertigan 05].
- 2-Spin systems [Kowalczyk 10], [Cai, Kowalczyk, Williams 12].
- Boolean #CSP [Cai, Lu, Xia 10], [G. and Williams 13], [Cai, Fu 16].

Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15] Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15]

1. Holant(\mathfrak{F}) is tractable;

Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15]

- 1. Holant(\mathfrak{F}) is tractable;
- 2. there exists a holographic transformation under which \mathcal{F} is matchgate,
Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15]

- 1. Holant(\mathfrak{F}) is tractable;
- 2. there exists a holographic transformation under which \mathcal{F} is matchgate,
- 3. \mathcal{F} defines a special class of problems to count orientations.

Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15]

- 1. Holant(\mathcal{F}) is tractable;
- 2. there exists a holographic transformation under which \mathcal{F} is matchgate,
- 3. \mathcal{F} defines a special class of problems to count orientations.

Category (1) is characterized in [Cai, G., Williams 13].

Let \mathcal{F} be a set of symmetric complex-weighted Boolean functions. PI-Holant(\mathcal{F}) is **#P**-hard unless [Cai, Fu, G., Williams 15]

- 1. Holant(\mathcal{F}) is tractable;
- 2. there exists a holographic transformation under which \mathcal{F} is matchgate,
- 3. \mathcal{F} defines a special class of problems to count orientations.

Category (1) is characterized in [Cai, G., Williams 13].

Category (3) is not captured by holographic algorithms with matchgates!

Contents

Heng Guo (QMUL)

• Affine $\mathcal{A}: \chi_{\mathbf{X}\mathbf{A}=\mathbf{0}} \cdot \mathbf{i}^{\mathbf{X}\mathbf{B}\mathbf{X}^{T}}$.

- Affine $\mathcal{A}: \chi_{\mathbf{X}\mathbf{A}=\mathbf{0}} \cdot \mathbf{i}^{\mathbf{X}\mathbf{B}\mathbf{X}^{\mathrm{T}}}$.
- Product-type \mathcal{P} : products of weighted equalities and disequalities.

- Affine $\mathcal{A}: \chi_{\mathbf{X} \mathbf{A} = \mathbf{0}} \cdot \mathbf{i}^{\mathbf{X} \mathbf{B} \mathbf{X}^{\mathrm{T}}}$.
- Product-type \mathcal{P} : products of weighted equalities and disequalities.
- Matchgates \mathcal{M} . (Only tractable on planar graphs.)

- Affine $\mathcal{A}: \chi_{\mathbf{X} \mathbf{A} = \mathbf{0}} \cdot \mathbf{i}^{\mathbf{X} \mathbf{B} \mathbf{X}^{\mathrm{T}}}$.
- Product-type \mathcal{P} : products of weighted equalities and disequalities.
- Matchgates \mathcal{M} . (Only tractable on planar graphs.)
- Vanishing \mathcal{V} : always return 0.

Vanishing

Vanishing

• [1, i] is vanishing.

- [1, i] is vanishing.
- Any degenerate signature containing more than half [1, i]'s is vanishing. For example,

 $f = [1, \mathbf{i}] \otimes [1, \mathbf{i}] \otimes [0, 1].$

- [1, i] is vanishing.
- Any degenerate signature containing more than half [1, i]'s is vanishing. For example,

 $f = [1, \mathbf{i}] \otimes [1, \mathbf{i}] \otimes [0, 1].$

 However, such signatures are not symmetric. We need to introduce an operation of symmetrization. Let S_n be the symmetric group of degree *n*. Then for positive integers *t* and *n* with $t \leq n$ and unary signatures v, v_1, \ldots, v_{n-t} , we define

$$\operatorname{Sym}_{n}^{t}(\boldsymbol{v};\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{n-t})=\sum_{\pi\in\mathcal{S}_{n}}\bigotimes_{k=1}^{n}u_{\pi(k)},$$

where the ordered sequence

$$(u_1, u_2, \ldots, u_n) = (\underbrace{v, \ldots, v}_{t \text{ copies}}, v_1, \ldots, v_{n-t}).$$

For example,

$$\begin{split} \text{Sym}_3^2([1,i];[0,1]) &= 2[0,1]\otimes[1,i]\otimes[1,i] + 2[1,i]\otimes[0,1]\otimes[1,i] + 2[1,i]\otimes[1,i]\otimes[0,1] \\ &= 2[0,1,2i,-3]. \end{split}$$

For example,

$$\begin{split} Sym_3^2([1,i];[0,1]) &= 2[0,1]\otimes[1,i]\otimes[1,i] + 2[1,i]\otimes[0,1]\otimes[1,i] + 2[1,i]\otimes[1,i]\otimes[0,1] \\ &= 2[0,1,2i,-3]. \end{split}$$

For example,

$$\begin{split} Sym_3^2([1,i];[0,1]) &= 2[0,1]\otimes[1,i]\otimes[1,i] + 2[1,i]\otimes[0,1]\otimes[1,i] + 2[1,i]\otimes[1,i]\otimes[0,1] \\ &= 2[0,1,2i,-3]. \end{split}$$

For example,

$$\begin{split} Sym_3^2([1,i];[0,1]) &= 2[0,1]\otimes[1,i]\otimes[1,i] + 2[1,i]\otimes[0,1]\otimes[1,i] + 2[1,i]\otimes[1,i]\otimes[0,1] \\ &= 2[0,1,2i,-3]. \end{split}$$

Gadget Construction

$$g(x_1, x_2, x_3) = \sum_{y_1, y_2, y_3} f_1(x_1, y_1, y_2) \cdot f_2(x_2, y_1, y_3) \cdot f_3(x_3, y_2, y_3)$$

Gadget Construction

$$g(x_1, x_2, x_3) = \sum_{y_1, y_2, y_3} f_1(x_1, y_1, y_2) \cdot f_2(x_2, y_1, y_3) \cdot f_3(x_3, y_2, y_3)$$

Maximal tractable cases should be closed under gadget construction.

All of \mathcal{A} , \mathcal{P} , \mathcal{M} , \mathcal{V} do.

Heng Guo (QMUL)

Planar Dichotomy

Indeed, algorithms for \mathcal{A} , \mathcal{P} , \mathcal{M} , \mathcal{V} can be described in a uniform way:

1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .

- 1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .
 - Affine $\mathcal{A}: \chi_{\mathbf{x}\mathcal{A}=\mathbf{0}} \cdot \mathbf{i}^{\mathbf{x}\mathcal{B}\mathbf{x}^{\mathrm{T}}}$.
 - ► Product-type P: products of weighted equalities and disequalities.
 - ► Matchgates *M*. (Only tractable on planar graphs.)
 - Vanishing \mathcal{V} : always return 0.

- 1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .
- 2. This representation can be updated efficiently with the following two basic operations:

- 1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .
- 2. This representation can be updated efficiently with the following two basic operations:

- 1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .
- 2. This representation can be updated efficiently with the following two basic operations:

Indeed, algorithms for $\mathcal{A}, \mathcal{P}, \mathcal{M}, \mathcal{V}$ can be described in a uniform way:

- 1. There exists a succinct representation (polynomial size) of any function in \mathcal{F} .
- 2. This representation can be updated efficiently with the following two basic operations:

Repeat above until one vertex is left.

The resulting nullary function is the Holant value.

Heng Guo (QMUL)

Planar Dichotomy

 $Holant(f) = Holant(f \mid =_2)$

 $Holant(f) = Holant(f \mid =_{2})$ $= Holant(fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_{2})$

 $\begin{aligned} \mathsf{Holant}(f) &= \mathsf{Holant}(f \mid =_2) \\ &= \mathsf{Holant}(f \mathcal{T}^{\otimes n} \mid (\mathcal{T}^{-1})^{\otimes 2} =_2) \\ &\leq_{\mathsf{T}} \mathsf{Holant}(f \mathcal{T}^{\otimes n}, (\mathcal{T}^{-1})^{\otimes 2} =_2) \end{aligned}$

 $\begin{aligned} \mathsf{Holant}(f) &= \mathsf{Holant}(f \mid =_2) \\ &= \mathsf{Holant}(f \mathcal{T}^{\otimes n} \mid (\mathcal{T}^{-1})^{\otimes 2} =_2) \\ &\leq_{\mathsf{T}} \mathsf{Holant}(f \mathcal{T}^{\otimes n}, (\mathcal{T}^{-1})^{\otimes 2} =_2) \end{aligned}$

• *f* is \mathcal{F} -transformable if there exists *T* such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.

 $Holant(f) = Holant(f \mid =_{2})$ $= Holant(fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_{2})$ $\leq_{T} Holant(fT^{\otimes n}, (T^{-1})^{\otimes 2} =_{2})$ $\leq_{T} Holant(\mathcal{F})$

• *f* is \mathcal{F} -transformable if there exists *T* such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.

 $Holant(f) = Holant(f \mid =_2)$ = Holant($fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_2$) $\leq_T Holant(fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2)$ $\leq_T Holant(\mathcal{F})$

- *f* is \mathcal{F} -transformable if there exists *T* such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} is tractable, then so is \mathcal{F} -transformable.

 $Holant(f) = Holant(f \mid =_2)$ = Holant($fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_2$) $\leq_T Holant(fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2)$ $\leq_T Holant(\mathcal{F})$

- *f* is \mathcal{F} -transformable if there exists *T* such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} is tractable, then so is \mathcal{F} -transformable.
- \mathcal{V} is closed under such transformations, but \mathcal{A} , \mathcal{P} , \mathcal{M} are not.

 $Holant(f) = Holant(f \models_2)$ = Holant($fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_2$) $\leq_T Holant(fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2)$ $\leq_T Holant(\mathcal{F})$

- *f* is \mathcal{F} -transformable if there exists *T* such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} is tractable, then so is \mathcal{F} -transformable.
- \mathcal{V} is closed under such transformations, but $\mathcal{A}, \mathcal{P}, \mathcal{M}$ are not.
- $\mathcal{A}, \mathcal{P}, \mathcal{M}$ -transformables and \mathcal{V} are the main tractable classes for PI-Holant.

Planar Dichotomy

Counting Orientations, (equivalent to normal Holant via $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$) where two types of nodes are allowed:

- 1. Exactly one edge coming in;
- 2. All edges coming in or going out (either a sink or a source).

Moreover, we require that the gcd of the degrees of type 2 nodes is at least 5.

Then the problem is tractable for planar graphs.

Contents

• Prove the dichotomy for a single function first. Induction on the arity.

General Proof Strategy

- Prove the dichotomy for a single function first. Induction on the arity.
 - Base cases: arity-3 or 4.
 - Arity-reduction.

- Prove the dichotomy for a single function first. Induction on the arity.
 - Base cases: arity-3 or 4.
 - Arity-reduction.
- Prove that different tractable cases cannot mix together.

- Prove the dichotomy for a single function first. Induction on the arity.
 - Base cases: arity-3 or 4.
 - Arity-reduction.
- Prove that different tractable cases cannot mix together.
- We will show next that most arity-4 functions are **#P**-hard.

The signature matrix of a symmetric arity 4 signature $f = [f_0, f_1, f_2, f_3, f_4]$ is

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2} \\ f_{1} & f_{2} & f_{2} & f_{3} \\ f_{1} & f_{2} & f_{2} & f_{3} \\ f_{2} & f_{3} & f_{3} & f_{4} \end{bmatrix}$$

.

The signature matrix of a symmetric arity 4 signature $f = [f_0, f_1, f_2, f_3, f_4]$ is

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2} \\ f_{1} & f_{2} & f_{2} & f_{3} \\ f_{1} & f_{2} & f_{2} & f_{3} \\ f_{2} & f_{3} & f_{3} & f_{4} \end{bmatrix}$$

.

For asymmetric signatures,

$$M_g = \begin{bmatrix} g^{0000} & g^{0010} & g^{0011} & g^{0011} \\ g^{0100} & g^{0110} & g^{0101} & g^{0111} \\ g^{1000} & g^{1010} & g^{1001} & g^{1011} \\ g^{1100} & g^{1110} & g^{1101} & g^{1111} \end{bmatrix},$$

rows indexed by $(x_1, x_2) \in \{0, 1\}^2$ and columns by $(x_4, x_3) \in \{0, 1\}^2$.

Signature Matrices

$$M_g = \begin{bmatrix} g^{0000} & g^{0010} & g^{0001} & g^{0011} \\ g^{0100} & g^{0110} & g^{0101} & g^{0111} \\ g^{1000} & g^{1010} & g^{1001} & g^{1011} \\ g^{1100} & g^{1110} & g^{1111} \end{bmatrix}$$

rows indexed by $(x_1, x_2) \in \{0, 1\}^2$ and columns by $(x_4, x_3) \in \{0, 1\}^2$.

We wrote the signature matrices in

this way so that

 $M_h = M_{f_1} M_{f_2}$

• RM₄(C): 4-by-4 redundant matrices

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2}' \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{2}'' & f_{3}' & f_{3}' & f_{4} \end{bmatrix}$$

• RM₄(C): 4-by-4 redundant matrices

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2}' \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{2}'' & f_{3}' & f_{3}' & f_{4} \end{bmatrix}$$

• RM₄(C): 4-by-4 redundant matrices

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2}' \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{2}'' & f_{3}' & f_{3}' & f_{4} \end{bmatrix}$$

• RM₄(C): 4-by-4 redundant matrices

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2}' \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{1}'' & f_{2} & f_{2} & f_{3} \\ f_{2}'' & f_{3}' & f_{3}' & f_{4} \end{bmatrix}$$

• Compressed signature matrix \widetilde{M}_{f}

$$\begin{bmatrix} f_0 & f_1 & f_1 & f_2' \\ f_1' & f_2 & f_2 & f_3 \\ f_1' & f_2 & f_2 & f_3 \\ f_2'' & f_3' & f_3' & f_4 \end{bmatrix} \rightarrow \begin{bmatrix} f_0 & 2f_1 & f_2' \\ f_1' & 2f_2 & f_3 \\ f_2'' & 2f_3' & f_4 \end{bmatrix}$$

This operation is a semi-group isomorphism between $RM_4(\mathbb{C})$ and $\mathbb{C}^{3\times 3}$.

• RM₄(C): 4-by-4 redundant matrices

$$M_{f} = \begin{bmatrix} f_{0} & f_{1} & f_{1} & f_{2}' \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{1}' & f_{2} & f_{2} & f_{3} \\ f_{2}'' & f_{3}' & f_{3}' & f_{4} \end{bmatrix}$$

• Compressed signature matrix \widetilde{M}_{f}

$$\begin{bmatrix} f_0 & f_1 & f_1' & f_2' \\ f_1' & f_2 & f_2 & f_3 \\ f_1'' & f_2 & f_2 & f_3 \\ f_2''' & f_3' & f_3' & f_4 \end{bmatrix} \rightarrow \begin{bmatrix} f_0 & 2f_1 & f_2' \\ f_1' & 2f_2 & f_3 \\ f_2''' & 2f_3' & f_4 \end{bmatrix}$$

This operation is a semi-group isomorphism between $RM_4(\mathbb{C})$ and $\mathbb{C}^{3\times 3}$.

• If
$$M_h = M_{f_1}M_{f_2}$$
 then $\widetilde{M_h} = \widetilde{M_{f_1}}\widetilde{M_{f_2}}$.

Non-singular Compressed Matrix means Hardness

Lemma

Let f be an arity 4 signature with complex weights. If M_f is redundant and

 M_f is nonsingular, then PI-Holant(f) is **#P**-hard.

#PL-4-REG-EO is #P-hard.

#PL-4-REG-EO is #P-hard.

$\#PL-4-REG-EO \leq PI-Holant(id)$

#PL-4-REG-EO is #P-hard.

$\#PL-4-REG-EO \leq PI-Holant(id)$

$\mathsf{Pl}\text{-}\mathsf{Holant}(id) \leq \mathsf{Pl}\text{-}\mathsf{Holant}(f)$

Planar Dichotomy

The identity element of $RM_4(\mathbb{C})$ corresponds to an arity 4 signature *id* with

r10007

and

$$M_{id} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$\widetilde{M_{id}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Recall that PI-Holant([3, 0, 1, 0, 3]) is equivalent to counting Eulerian Orientations in planar 4-regular graphs (via $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$), which is **#P**-hard.

Recall that PI-Holant([3, 0, 1, 0, 3]) is equivalent to counting Eulerian Orientations in planar 4-regular graphs (via $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$), which is **#P**-hard.

We will show next PI-Holant([3, 0, 1, 0, 3]) \leq_T PI-Holant(*id*).

Figure: Recursive construction to approximate $[1, 0, \frac{1}{3}, 0, 1]$. Vertices are assigned *id*.

We claim that the signature matrix M_{N_k} of Gadget N_k is

$$M_{N_k} = egin{bmatrix} 1 & 0 & 0 & a_k \ 0 & a_{k+1} & a_{k+1} & 0 \ 0 & a_{k+1} & a_{k+1} & 0 \ a_k & 0 & 0 & 1 \end{bmatrix},$$

where
$$a_k = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2} \right)^k$$

Heng Guo (QMUL)

Rotation of the Signature Matrix

(d) Counterclockwise Rotation

Entires of Hamming weight 2 are in the two solid cycles.

Entries of Hamming weight 3 are in the dashed cycle.

(e) Movement of Entries

It is easy to verify that $\frac{a_k+a_{k+1}}{2} = a_{k+2}$.

• We can realize
$$M_{N_k} = \begin{bmatrix} 1 & 0 & 0 & a_k \\ 0 & a_{k+1} & a_{k+1} & 0 \\ 0 & a_{k+1} & a_{k+1} & 0 \\ a_k & 0 & 0 & 1 \end{bmatrix}$$
 where $a_k = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^k$,
and our target is $\begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1 \end{bmatrix}$.

• We can realize
$$M_{N_k} = \begin{bmatrix} 1 & 0 & 0 & a_k \\ 0 & a_{k+1} & a_{k+1} & 0 \\ 0 & a_{k+1} & a_{k+1} & 0 \\ a_k & 0 & 0 & 1 \end{bmatrix}$$
 where $a_k = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^k$,
and our target is $\begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1 \end{bmatrix}$.

• If we can reduce the error below 3^{-n} ,

then we can recover the exact value.

• We can realize
$$M_{N_k} = \begin{bmatrix} 1 & 0 & 0 & a_k \\ 0 & a_{k+1} & a_{k+1} & 0 \\ 0 & a_{k+1} & a_{k+1} & 0 \\ a_k & 0 & 0 & 1 \end{bmatrix}$$
 where $a_k = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^k$,
and our target is $\begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1 \end{bmatrix}$.

If we can reduce the error below 3⁻ⁿ,

then we can recover the exact value.

• It suffices to do k = 4n.

Lemma

Let f be an arity 4 signature with complex weights. If M_f is redundant and

 $M_{\rm f}$ is nonsingular, then we have

 $\operatorname{Holant}(\operatorname{id}) \leq_T \operatorname{Holant}(f).$

Therefore Holant(f) is #**P**-hard.

We will show it by interpolation.

Sequential Construction

Figure: Recursive construction to interpolate *id*. The vertices are assigned *f*. $M_{N_s} = (M_f)^s$. Diamonds indicates the most significant bit and the bits are ordered counterclockwise.

Heng Guo (QMUL)

Planar Dichotomy

Suppose that *id* appears *n* times in Ω .

Suppose that *id* appears *n* times in Ω .

Replace *id* by N_s to get Ω_s .

 $M_{N_s} = (M_f)^s.$

Suppose that *id* appears *n* times in Ω .

Replace *id* by N_s to get Ω_s .

 $M_{N_s} = (M_f)^s.$

By the Jordan normal form of \widetilde{M}_{f} , there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$\widetilde{M}_{f} = T\Lambda T^{-1} = T \begin{bmatrix} \lambda_{1} & b_{1} & 0 \\ 0 & \lambda_{2} & b_{2} \\ 0 & 0 & \lambda_{3} \end{bmatrix} T^{-1},$$

where $b_1, b_2 \in \{0, 1\}$.

Suppose that *id* appears *n* times in Ω .

Replace *id* by N_s to get Ω_s .

 $M_{N_s} = (M_f)^s.$

By the Jordan normal form of \widetilde{M}_{f} , there exists $T, \Lambda \in \mathbb{C}^{3 \times 3}$ such that

$$\widetilde{M}_{f} = T\Lambda T^{-1} = T \begin{bmatrix} \lambda_{1} & b_{1} & 0 \\ 0 & \lambda_{2} & b_{2} \\ 0 & 0 & \lambda_{3} \end{bmatrix} T^{-1},$$

where $b_1, b_2 \in \{0, 1\}$.

Here we will only deal with the case that $\lambda_1=\lambda_2=\lambda_3\neq 0$ and

 $b_1 = b_2 = 1.$

Sleight of Hand

We have

$$(\widetilde{M}_f)^s = T(\Lambda)^s T^{-1},$$

where

$$\Lambda = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}.$$

Notice

$$\widetilde{M_{id}} = T\widetilde{M_{id}}T^{-1}.$$

We will consider new instances where each occurrence of *id* (or N_s) is replaced by three signatures whose compressed matrices are T, $\widetilde{M_{id}}$ (or Λ^s), and T^{-1} respectively.

Stratification

We stratify all assignments to Λ^s according to:

- (0,0) or (2,2) *i* many times;
- (1, 1) *j* many times;
- (0, 1) *k* many times;
- (1, 2) *l* many times;
- (0, 2) *m* many times.

Any other assignment contributes a factor 0.

In Ω only (0,0), (1,1) (2,2) contributes a 1.
Stratification

Let $c_{ijk\ell m}$ be the sum over all such assignments of the products of evaluations (including the contributions from T and T^{-1}) on Ω_s .

$$\mathsf{Holant}_{\Omega} = \sum_{i+j=n} rac{c_{ij000}}{2^j}.$$

The value of the Holant on Ω_s , for $s \ge 1$, is

$$\begin{aligned} \mathsf{Holant}_{\Omega_{s}} &= \sum_{i+j+k+\ell+m=n} \lambda^{(i+j)s} \left(s\lambda^{s-1} \right)^{k+\ell} \left(s(s-1)\lambda^{s-2} \right)^{m} \left(\frac{c_{ijk\ell m}}{2^{j+k+m}} \right) \\ &= \lambda^{ns} \sum_{i+j+k+\ell+m=n} s^{k+\ell+m} (s-1)^{m} \left(\frac{c_{ijk\ell m}}{\lambda^{k+\ell+2m} 2^{j+k+m}} \right). \end{aligned}$$

Rank Deficiency

However, the linear system is rank deficient.

A simple example:

$$\begin{cases} x + y + z = 1\\ x + y + 2z = 2 \end{cases}$$

A simple example:

$$\begin{cases} x + y + z = 1 \\ x + y + 2z = 2 \end{cases} \Rightarrow$$

A simple example:

$$\begin{cases} x+y+z=1\\ x+y+2z=2 \end{cases} \qquad \Rightarrow \qquad \qquad \begin{cases} x+y=0\\ z=1 \end{cases}$$

A simple example:

$$\begin{cases} x + y + z = 1 \\ x + y + 2z = 2 \end{cases} \Rightarrow \begin{cases} x + y = 0 \\ z = 1 \end{cases}$$

Our system:

$$\operatorname{Holant}_{\Omega_{s}} = \lambda^{ns} \sum_{i+j+k+\ell+m=n} s^{k+\ell+m} (s-1)^{m} \left(\frac{c_{ijk\ell m}}{\lambda^{k+\ell+2m} 2^{j+k+m}} \right).$$

Rank Deficiency

We define new unknowns for any $q, m \ge 0$ and $q + m \le n$,

$$\mathbf{x}_{q,m} = \sum_{i+j=n-m-q,k+\ell=q} \left(\frac{\mathbf{c}_{ijk\ell m}}{\lambda^{k+\ell+2m} \mathbf{2}^{j+k+m}} \right)$$

The Holant of Ω , which equals to $\sum_{i+j=n} \frac{c_{ij000}}{2^{j}}$, now becomes $x_{0,0}$. This new linear system is

$$\operatorname{Holant}_{\Omega_s} = \lambda^{ns} \sum_{q+m \leqslant n} s^{q+m} (s-1)^m x_{q,m}.$$

Let $\alpha_{q,m} = s^{q+m}(s-1)^m$ be the coefficients.

The new system is still rank deficient.

Observe that

$$s^{q+m}(s-1)^m = s^{q-1+m}(s-1)^m + s^{q-2+m+1}(s-1)^{m+1}.$$

Therefore

$$\alpha_{q,m} X_{q,m} = \alpha_{q-1,m} X_{q,m} + \alpha_{q-2,m+1} X_{q,m}.$$

We recursively define new variables

 $x_{q-1,m} \leftarrow x_{q,m} + x_{q-1,m}$ $x_{q-2,m+1} \leftarrow x_{q,m} + x_{q-2,m+1}$

from q = n down to 2.

<i>x</i> _{0,0}	<i>X</i> 0,1	<i>x</i> _{0,2}	 <i>x</i> _{0,<i>n</i>-2}	<i>x</i> _{0,<i>n</i>-1}	<i>x</i> _{0,<i>n</i>}
<i>x</i> _{1,0}	<i>x</i> _{1,1}	<i>x</i> _{1,2}	 <i>x</i> _{1,<i>n</i>-2}	<i>X</i> _{1,<i>n</i>-1}	
<i>X</i> _{2,0}	<i>X</i> _{2,1}	<i>X</i> _{2,2}	 <i>X</i> _{2,<i>n</i>-2}		
:	:	:			
<i>x</i> _{n-2,0}	<i>x</i> _{n-2,1}	X _{n-2,2}			

$$x_{n-1,0}$$
 $x_{n-1,1}$

*x*_{*n*,0}

Heng Guo (QMUL)

<i>x</i> _{0,0}	<i>X</i> _{0,1}	<i>X</i> _{0,2}	<i>X</i> 0,3	<i>X</i> _{0,4}	<i>X</i> 0,5	<i>x</i> _{0,6}
<i>x</i> _{1,0}	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	<i>x</i> _{1,5}	
<i>x</i> _{2,0}	<i>X</i> 2,1	<i>X</i> _{2,2}	<i>X</i> 2,3	<i>X</i> _{2,4}		
<i>x</i> _{3,0}	<i>X</i> 3,1	<i>X</i> 3,2	<i>X</i> 3,3			
<i>x</i> _{4,0}	<i>x</i> _{4,1}	<i>X</i> _{4,2}				
<i>x</i> _{5,0}	<i>x</i> _{5,1}					
<i>x</i> 6,0						

<i>x</i> _{0,0}	<i>X</i> 0,1	<i>X</i> _{0,2}	<i>X</i> 0,3	<i>X</i> _{0,4}	<i>x</i> _{0,5}	<i>x</i> _{0,6}
<i>x</i> _{1,0}	<i>X</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>x</i> _{1,4}	<i>x</i> _{1,5}	
<i>X</i> _{2,0}	<i>X</i> _{2,1}	<i>X</i> 2,2	<i>X</i> 2,3	<i>X</i> _{2,4}		
<i>X</i> 3,0	<i>X</i> 3,1	<i>X</i> 3,2	X _{3,3}			
<i>x</i> _{4,0}	<i>x</i> _{4,1} ∕	<i>X</i> 4,2				
<i>x</i> _{5,0} ↑ <i>x</i> _{6,0}	x _{5,1}					

• Guessing tractable cases is usually the first step towards a dichotomy.

- Guessing tractable cases is usually the first step towards a dichotomy.
 - The next step is trying to show anything different is hard.

- Guessing tractable cases is usually the first step towards a dichotomy.
 - The next step is trying to show anything different is hard.
- However, there always are some new tractable cases each time we extend our setting. Is there more?

- Guessing tractable cases is usually the first step towards a dichotomy.
 - The next step is trying to show anything different is hard.
- However, there always are some new tractable cases each time we extend our setting. Is there more?
- Future directions:
 - *H*-minor free graphs.
 - Higher domains.

▶ ...

Thank You!