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#CSP

@ Counting Constraint Satisfaction Problems:

» V aset of variables and C a set of constraints.

» C can be also viewed as hyperedges.

@ Name #CSP(J)
Instance A bipartite graph G = (V, C, E) and a mappingt: C — F
Output The quantity:

Z ch (0 Ine)) »

o:V—{0,1} ceC

where N(c) are the neighbors of c and f, = 7t(c) € F.
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Counting Perfect Matchings

Perfect Matchings
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Holant Problems

@ #PM is provably not expressible in vertex assignment models.

(see e.g. [Freedman, Lovész, and Schrijver 07])
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Holant Problems

@ #PM is provably not expressible in vertex assignment models.

(see e.g. [Freedman, Lovész, and Schrijver 07])
@ Edge-coloring models — edges are variables and vertices are functions.

@ Name Holant(F)
Instance A graph G = (V,E)and amapping7: V — F
Output The quantity:

Z H ACAEN

o:E—{0,1} veV

where E(v) are the incident edges of v and f, = mt(v) € F.
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@ More general than #CSP:
#CSP(F) =7 Holant(EQ U F),

where £Q = {=1, =5, =3, ... } is the set of equalities of all arities.
@ Equivalent formulation: Tensor network contraction ...

@ Pl-Holant(F) denotes the version where instances are all planar.
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#PM as a Holant

@ Put functions EXACTONE (EQO) on nodes (edges are variables).
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#PM as a Holant

@ Put functions EXACTONE (EQO) on nodes (edges are variables).

@ #PM is then the partition function:

#PM = Z HEOd(U|E(v])-

o:E—{0,1} veV

EO4
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Counting Perfect Matchings in Planar Graphs

@ Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general
graphs.
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Counting Perfect Matchings in Planar Graphs

@ Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general
graphs.

@ However, for planar graphs, there is a polynomial time algorithm
[Kastelyn 61 & 67, Temperley and Fisher 61].
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Counting Perfect Matchings in Planar Graphs

@ Counting Perfect Matchings (#PM) is #P-hard [Valiant 79] in general
graphs.

@ However, for planar graphs, there is a polynomial time algorithm
[Kastelyn 61 & 67, Temperley and Fisher 61].

» The FKT algorithm is via Pfaffian orientations of planar graphs.
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Holographic Algorithms

Valiant introduced holographic algorithms to extend the reach of FKT
algorithms [Valiant 04]:
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Holographic Algorithms

Valiant introduced holographic algorithms to extend the reach of FKT

algorithms [Valiant 04]:

@ Matchgates: functions expressible by perfect matchings (via planar

gadgets).
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Holographic Algorithms

Valiant introduced holographic algorithms to extend the reach of FKT

algorithms [Valiant 04]:

@ Matchgates: functions expressible by perfect matchings (via planar

gadgets).

@ Holographic Transformation: a change of basis.

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 9/54



Holographic Transformation

For a 2-by-2 nonsingular matrix T, two functions f and g of arities mand n

respectively, Valiant’s Holant theorem states

Holant(f | g) = Holant(fT™ | (T~ ")®"g).

Note that Holant(f) = Holant(f |=2).
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Ising Model

Edge interaction [ B H
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Ising Model

Edge interaction [ B H

1 1
B d

B 1
1 B

Configuration o: V — {0, 1}
w(o) = p*

Pr(o) ~ w(o)
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Ising Model

Edge interaction [ E’ H

1 1
B B

B 1
1 B

Partition function (normalizing factor):

o:V—{0,1}

where w(o) = B™°), m(c) is the number of monochromatic edges under o.
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Planar Ising is Tractable

@ Recall that [fy, f1,. .., f4] is a symmetric function f where entries are
listed according to Hamming weights.
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Planar Ising is Tractable

@ Recall that [fy, f1,. .., f4] is a symmetric function f where entries are
listed according to Hamming weights.
» =4:[1,0,...,0,1];
» EO4:[0,1,0,...,0];
» lIsing function : [3,1, B].
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» =4:[1,0,...,0,1];
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» lIsing function : [3,1, B].
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Planar Ising is Tractable

@ Recall that [fy, f1,. .., f4] is a symmetric function f where entries are
listed according to Hamming weights.
» =4:[1,0,...,0,1];
» EO4:[0,1,0,...,0];
» lIsing function : [3,1, B].

@ Vertices can be viewed as =4 functions (d is the degree).

@ Ising is then

Holant(:1,:2, sy =gy | [6,1, B])
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Planar Ising is Tractable (Cont.)

@ Do a transformation of H = ﬁ [1]. (Notice that H = H~".)
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Planar Ising is Tractable (Cont.)

@ Do a transformation of H = ﬁ [1]. (Notice that H = H~".)

» On the vertex side:
(=a)H®? = ([1,01%¢ +[0,1]%%) H®*
= ([1,01H)®? + ([0, 1]H)®% = [1,1]®9 + [1, —1]®¢

=[1,0,1,0,...,0,1]
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Planar Ising is Tractable (Cont.)

@ Do a transformation of H = ﬁ [1]. (Notice that H = H~".)

» On the vertex side:

(=a)H®? = ([1,01%¢ +[0,1]%7) H*
= ([1,01H)** + (10, 1]H)® = [1,1)% 4 [1, 1]

—[1,0,1,0,...,0,1]
» On the edge side:
Ho2 (([571)[3}®2+(B—1)[?]®2+[1]®2) —[B=1,0,p —1]+[2,0,0]
—B+1,0,p—1]

Both of the two functions above are matchgates.
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Complexity Classifications

Counting problems with local constraints are usually classified into:
1. P-time solvable over general graphs;
2. #P-hard over general graphs but P-time solvable over planar graphs;

3. #P-hard over planar graphs.
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Complexity Classifications

Counting problems with local constraints are usually classified into:
1. P-time solvable over general graphs;

2. #P-hard over general graphs but P-time solvable over planar graphs;

3. #P-hard over planar graphs.

Category (2) is always captured by holographic algorithms with matchgates.

Examples include:
@ Tutte polynomials [Vertigan 91], [Vertigan 05].
@ 2-Spin systems [Kowalczyk 10], [Cai, Kowalczyk, Williams 12].

@ Boolean #CSP [Cai, Lu, Xia 10], [G. and Williams 13], [Cai, Fu 16].
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Pl-Holant is different

Let F be a set of symmetric complex-weighted Boolean functions.

Pl-Holant(F) is #P-hard unless [Cai, Fu, G., Williams 15]
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Pl-Holant is different

Let F be a set of symmetric complex-weighted Boolean functions.

Pl-Holant(F) is #P-hard unless [Cai, Fu, G., Williams 15]

1. Holant(J) is tractable;
2. there exists a holographic transformation under which J is matchgate,

3. J defines a special class of problems to count orientations.

Category (1) is characterized in [Cai, G., Williams 13].
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Pl-Holant is different

Let F be a set of symmetric complex-weighted Boolean functions.

Pl-Holant(F) is #P-hard unless [Cai, Fu, G., Williams 15]
1. Holant(J) is tractable;
2. there exists a holographic transformation under which J is matchgate,
3. J defines a special class of problems to count orientations.

Category (1) is characterized in [Cai, G., Williams 13].

Category (3) is not captured by holographic algorithms with matchgates!
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e Tractable Cases
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Tractable Cases

o Affine A: xxa_o - iXBX".
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Tractable Cases

o Affine A: xxa_o - iXBX".

@ Product-type P: products of weighted equalities and disequalities.
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Tractable Cases

o Affine A: yxa_o - iXBX".
@ Product-type P: products of weighted equalities and disequalities.

@ Matchgates M. (Only tractable on planar graphs.)
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Tractable Cases

o Affine A: yxa_o - iXBX".
@ Product-type P: products of weighted equalities and disequalities.
@ Matchgates M. (Only tractable on planar graphs.)

@ Vanishing V: always return 0.
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Vanishing
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Vanishing

@ [1,i] is vanishing.
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Vanishing

@ [1,i] is vanishing.
@ Any degenerate signature containing more than half [1,1i]’s is

vanishing. For example,

f=0,il®0,il®[0,1].
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Vanishing

@ [1,i] is vanishing.
@ Any degenerate signature containing more than half [1,1i]’s is

vanishing. For example,

f=0,il®0,il®[0,1].

@ However, such signatures are not symmetric. We need to introduce

an operation of symmetrization.
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Symmetrization

Let S, be the symmetric group of degree n. Then for positive integers ¢

and nwith t < nand unary signatures v, vi, ..., Vo—t, we define
n
ti,.
Symn(V1 V11 LI | ant) - Z ® uT[(k)s
eSSy k=1

where the ordered sequence

(U‘|1U21---,Un):(Vy---sV1V1,---7ant)-
SN——

t copies
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Examples

For example,

Sym3([1,i];[0,1]) =2[0,1] ® [1,i] ® [1,i] + 2[1,i] ® [0,1] ® [1,i] + 2[1,i] ® [1,i] ® [0,1]

=2[0,1,2i,—3].
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Examples

For example,

Sym3([1,i];[0,1]) =2[0,1] ® [1,i] ® [1,i] + 2[1,i] ® [0,1] ® [1,i] + 2[1,i] ® [1,i] ® [0,1]

=2[0,1,2i,—3].

[0, 1]

(1,1] (1,1]

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 20/54



Examples

For example,

Sym3([1,i];[0,1]) =2[0,1] ® [1,i] ® [1,i] + 2[1,i] ® [0,1] ® [1,i] + 2[1,i] ® [1,i] ® [0,1]

=2[0,1,2i,—3].

(1, 1]

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 20/54



Examples

For example,

Sym3([1,i];[0,1]) =2[0,1] ® [1,i] ® [1,i] + 2[1,i] ® [0,1] ® [1,i] + 2[1,i] ® [1,i] ® [0,1]

=2[0,1,2i,—3].

(1, 1]

(1,1] (0, 1]
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Gadget Construction

X4

A
R

Xo X3

glxi,x2,X3) = > fH(x,y1.2) - Boxe, y1.y3) - f3(X3, Y2, s)
Yi,.Y2,)3
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Gadget Construction

X4

A
R

Xo X3

9x, %2, %) = ) (X1, y1,¥2) - fo(Xe, Y1, ¥3) - fa(xa, Y, ¥a)
Yi,.Y2,)3

Maximal tractable cases should be closed under gadget construction.

Allof A, P, M, 'V do.
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A Universal Approach

Indeed, algorithms for A, P, M, V can be described in a uniform way:
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A Universal Approach

Indeed, algorithms for A, P, M, V can be described in a uniform way:

1. There exists a succinct representation (polynomial size) of any function in
F.
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A Universal Approach

Indeed, algorithms for A, P, M, V can be described in a uniform way:

1. There exists a succinct representation (polynomial size) of any function in
F.

v

Affine A: xxa_o - iXBX".

v

Product-type P: products of weighted equalities and disequalities.

v

Matchgates M. (Only tractable on planar graphs.)

v

Vanishing V: always return 0.
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A Universal Approach

Indeed, algorithms for A, P, M, V can be described in a uniform way:

1. There exists a succinct representation (polynomial size) of any function in
F.

2. This representation can be updated efficiently with the following two basic

operations:
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A Universal Approach

Indeed, algorithms for A, P, M, V can be described in a uniform way:

1. There exists a succinct representation (polynomial size) of any function in
F.

2. This representation can be updated efficiently with the following two basic

operations:

Repeat above until one vertex is left.

The resulting nullary function is the Holant value.
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F-transformable

Holant(f) = Holant(f |=;)
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F-transformable

Holant(f) = Holant(f |=;)

= Holant(fT*" | (T 1)%2 =,)
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F-transformable

Holant(f) = Holant(f |=;)
= Holant(fT%" | (T~")%? =)

< Holant(FT®7, (T )92 =)
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F-transformable

Holant(f) = Holant(f |=>)
= Holant(fT%" | (T~")%? =)

< Holant(FT97, (T 1)¥2 =)

@ fis F-transformable if there exists T such that {fT®", (T 1)®2 =} c 7.
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F-transformable

Holant(f) = Holant(f |=)
= Holant(fT%" | (T~")%? =)
< Holant(FT®7, (T )92 =)

<t Holant(F)

@ fis F-transformable if there exists T such that {fT®", (T 1)®2 =} c 7.
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F-transformable

Holant(f) = Holant(f |=5)
= Holant(fT%" | (T~")%? =)
< Holant(FT®7, (T )92 =)
<t Holant(F)
@ fis F-transformable if there exists T such that {fT®", (T 1)®2 =} c 7.

@ If Fis tractable, then so is F-transformable.
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F-transformable

Holant(f) = Holant(f |=5)
= Holant(fT®" | (T )% =)
<r Holant(F 797, (T~ 1)%2 =)
<t Holant(F)
@ fis J-transformable if there exists T such that {fT®", (T 1)¥? =,} C 7.
@ [f Fis tractable, then so is F-transformable.

@ Vs closed under such transformations, but A, P, M are not.
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F-transformable

Holant(f) = Holant(f |=5)
= Holant(fT%" | (T~1)%% =)
<r Holant(F 797, (T~ 1)%2 =)
<t Holant(F)
@ fis J-transformable if there exists T such that {fT®", (T 1)¥? =,} C 7.
@ [f Fis tractable, then so is F-transformable.
@ Vis closed under such transformations, but A, P, M are not.

@ A, P, M-transformables and V are the main tractable classes for Pl-Holant.
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New Planar Tractable Case

Counting Orientations, (equivalent to normal Holant via [1 1, T)
where two types of nodes are allowed:

1. Exactly one edge coming in;

2. All edges coming in or going out (either a sink or a source).

Moreover, we require that the gcd of the degrees of type 2 nodes is at

least 5.

Then the problem is tractable for planar graphs.
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e Hardness Proofs
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General Proof Strategy

@ Prove the dichotomy for a single function first.

Induction on the arity.
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General Proof Strategy

@ Prove the dichotomy for a single function first.

Induction on the arity.

» Base cases: arity-3 or 4.

> Arity-reduction.

@ Prove that different tractable cases cannot mix together.
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General Proof Strategy

@ Prove the dichotomy for a single function first.

Induction on the arity.

» Base cases: arity-3 or 4.

> Arity-reduction.

@ Prove that different tractable cases cannot mix together.

@ We will show next that most arity-4 functions are #P-hard.
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Signature Matrices
The signature matrix of a symmetric arity 4 signature f = [fy, fi, >, f3, f4] is

fofi fi fo
_ | hkhkh
Mi=1\rnnnn|-

fo f3 f3 fy
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Signature Matrices

The signature matrix of a symmetric arity 4 signature f = [fy, fi, >, f3, f4] is

fofi fi fo

_ | hkhkh
Mi=1rtnn
> % % fa

For asymmetric signatures,

0000
0100
1000
1100

0010
0110
1010
1110

0001
0101
1001
1101

0011
0111
1011 ’
1111

Mg:

Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q

rows indexed by (x1, x2) € {0, 1% and columns by (xs, x3) € {0, 112
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Signature Matrices

g gooto
0110

—_ |9 g
Mg = | gtovo gtoto
g g'°

0001
0101
1001
1101

Q Q@QQ

rows indexed by (xy, x2) € {0,1}? and

columns by (x4, x3) € {0, 1}2.

Heng Guo (QMUL)

g
g
g

Q

0011
0111
1011
1111

X1 X4

X2 X3
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Signature Matrices

We wrote the signature matrices in

this way so that

My, = My, M,
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Redundant signature matrices

@ RM4(C): 4-by-4 redundant matrices

b f hE
! fg fg f3
bbb
YO

M; =
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Redundant signature matrices

@ RM4(C): 4-by-4 redundant matrices

fo £ £ 8]

!
fg fg f3

— 1
M; = £ 6
AT A
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Redundant signature matrices

@ RM4(C): 4-by-4 redundant matrices

b f hE
! f2 fg f3
bbb
B

M; =
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Redundant signature matrices

@ RM4(C): 4-by-4 redundant matrices

b f hE

| ehf
M; = £l b
AT A

@ Compressed signature matrix 7\/7,

o fif)

f2” fal fal fy

This operation is a semi-group isomorphism between RM,(C) and C3*3,

Heng Guo (QMUL) Planar Dichotomy

f 2f f
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1 f2” 2f3/ f4

|
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Redundant signature matrices

@ RM4(C): 4-by-4 redundant matrices

o i f
_ ! f2 fg f3
M; = £l b
AT A

@ Compressed signature matrix M
fo fi h 1y ,
fhh fc: 2f £
/ — | ff 2 £
f1 R ff3 £ of! f,
f2” fal fal f4 2 3 14

This operation is a semi-group isomorphism between RM,(C) and C3*3,

@ If My = My, M, then My, = My, My,.

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 30/54



Non-singular Compressed Matrix means Hardness

Lemma
Let f be an arity 4 signature with complex weights. If M is redundant and

Mf is nonsingular, then Pl-Holant(f) is #P-hard.
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Outline

We will show the lemma in 3 steps.
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Outline

We will show the lemma in 3 steps.

#PL-4-REG-EO is #P-hard.

#PL-4-REG-EO < PIl-Holant(id)

Pl-Holant(id) < Pl-Holant(f)
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The identity of RM4(C)

The identity element of RM4(C) corresponds to an arity 4 signature id with

and
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The identity is hard.

Recall that PI-Holant([3, 0, 1,0, 3]) is equivalent to counting Eulerian

Orientations in planar 4-regular graphs (via [1 1, 1), which is #P-hard.
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The identity is hard.

Recall that PI-Holant([3, 0, 1,0, 3]) is equivalent to counting Eulerian

Orientations in planar 4-regular graphs (via [1 1, 1), which is #P-hard.

We will show next Pl-Holant([3, 0, 1,0, 3]) <7 PIl-Holant(id).
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Approximating [1,0, 1,0, 1]

N i

Nii1

Figure: Recursive construction to approximate [1, 0, % 0, 1]. Vertices

are assigned id.
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Approximating [1,0, 1,0, 1]

No N,

We claim that the signature matrix My, of Gadget N is

1 0 0 ag

0 a a 0
My k+1 k-1 ’

0 a1 a1 0

ak 0 0 1

k
where ax =3 — 1 (-1)".
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Rotation of the Signature Matrix

X — X

(d) Counterclockwise Rotation (e) Movement of Entries

Entires of Hamming weight 1 are in the dotted cycle.
Entires of Hamming weight 2 are in the two solid cycles.

Entries of Hamming weight 3 are in the dashed cycle.
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Approximating [1,0, 1,0, 1]

No N,

1 0 0 k1| |1 0 0 O

0 1/2 1/2 0
0 k11 ED 0 0o 1/2 1/2 0
8x+1 0 0 1 0

M _ A k1 0
N1 —

0 0o 1

ltis easy to verify that 2241 = g, .
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Approximating [1,0, 1,0, 1]

1 0 0 ax

0 aky1 ak41 O 1 1/
0 aris 2y 0 | Where ax = 3 — 3 (
a 0 0o 1

@ We can realize My, =

=
SN—
B

1.0 0 1/3
, 0 1/31/3 0

and our targetis | 4 173173 0
1/3 0 0 1
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Approximating [1,0, 1,0, 1]

1 0 0 ax

0 aki1 a1 0 _1_1(_
0 e ass 0 | Where ak = 3 — 3 (
ax O 0o 1

@ We can realize My, =

=
~—
=

1.0 0 1/3
, 0 1/31/3 0

and our targetis | 4 173173 0
1/3 0 0 1

@ If we can reduce the error below 377,

then we can recover the exact value.
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Approximating [1,0, 1,0, 1]

1 0 0 ak
@ We can realize My, = 8 2’;11 :ﬂ 8 where ax = % — % (—%)ka
a O 0o 1
1.0 0 1/3
and our target is 8 Kg}fg 8
1/3 0 0 1

@ If we can reduce the error below 377,

then we can recover the exact value.

@ It suffices to do k = 4n.
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Back to the Lemma

Lemma
Let f be an arity 4 signature with complex weights. If M¢ is redundant and

Mg is nonsingular, then we have

Holant(id) <7 Holant(f).

Therefore Holant(f) is #P-hard.

We will show it by interpolation.
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Sequential Construction

Ns+1

Figure: Recursive construction to interpolate id. The vertices are
assigned f. My, = (My)®. Diamonds indicates the most significant

bit and the bits are ordered counterclockwise.
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Interpolation

Suppose that id appears ntimes in Q.

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 42 /54



Interpolation

Suppose that id appears ntimes in Q.
Replace id by Ns to get Q.
Mn, = (Mf)*.

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 42 /54



Interpolation

Suppose that id appears ntimes in Q.
Replace id by Ns to get Q.
Mn, = (Mf)*.
By the Jordan normal form of My, there exists T, A € C3*3 such that
— » Abr 0]
Mi=TAT '=T|0xb | T,
0 0 Az

where by, b € {0, 1}.
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Interpolation

Suppose that id appears ntimes in Q.

Replace id by Ns to get Q.

Mn, = (Mf)*.

By the Jordan normal form of M;, there exists T, A € C3*3 such that

— L[N0
M =TAT ' =T |0 aab | T,
0 0 A3

where by, b € {0, 1}.
Here we will only deal with the case that A = A2 = A3 # 0 and

by =by = 1.
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Sleight of Hand

We have
(M)* = T(APT,
where
A=[349).
00A
Notice
Mg = TMgT .

We will consider new instances where each occurrence of id (or N;) is
replaced by three signatures whose compressed matrices are T, My (or

AS), and T~ respectively.
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Stratification

We stratify all assignments to AS according to:
@ (0,0) or (2,2) i many times;
@ (1,1) j many times;
@ (0,1) k many times;
@ (1,2) £ many times;
@ (0,2) mmany times.

Any other assignment contributes a factor 0.

In Q only (0,0), (1,1) (2,2) contributes a 1.
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Stratification

Let cjkem be the sum over all such assignments of the products of

evaluations (including the contributions from T and T—') on Q.

Holantq = ) &%
i+j=n

The value of the Holant on Qg, for s > 1, is

C..
Holanta, = Y AU (1) (s(s— 12 ()
i+j+k+L€+m=n
— \"S k+€+m m Cijkem
=2 Z s (s—1) ()\k+€+2m2j+k+m>'

i+j+k+L€+m=n
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Rank Deficiency

However, the linear system is rank deficient.

Heng Guo (QMUL) Planar Dichotomy Counting Bootcamp 46 /54



Rank Deficiency

However, the linear system is rank deficient.

A simple example:

X+y+z=1

X+y+2z=2

Heng Guo (QMUL) Planar Dichotomy

Counting Bootcamp

46 /54



Rank Deficiency

However, the linear system is rank deficient.

A simple example:

X+y+z=1

X+y+2z=2

Heng Guo (QMUL) Planar Dichotomy

Counting Bootcamp

46 /54



Rank Deficiency

However, the linear system is rank deficient.

A simple example:

X+y+z=1 x+y=0
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Rank Deficiency

However, the linear system is rank deficient.

A simple example:

X+y+z=1 x+y=0
=
Our system:

C..
Holantg, = ANS Z Sk+€+m(s_ 1)m ( ijkm ) .

Ak+L+2moj+k+m
i+j+k+L+m=n
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Rank Deficiency

We define new unknowns for any g, m > 0 and g + m < n,

P Z Cijkem
qm — Ak+C+2moj+k+m
i+j=n—m—q,k+0=q

, e
The Holant of Q, which equals to }_;, ;_, =57, now becomes xo 0.

This new linear system is

Holanto, =A™ ) s9"7(s—1)"Xqm.
q-+m<n

Let xgm = s97" (s — 1) be the coefficients.
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Rank Deficiency

The new system is still rank deficient.

Observe that
sq+m(s _ 1)m _ sq—1+m(s _ 1)m + Sq—2+m+1 (S— 1)m+1_

Therefore

Xgq,mXgm = Xg—1,mXgm + Xg—2,m+1Xq,m-
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More new unknowns

We recursively define new variables

qu‘],m(* Xq,m + qu‘]’m

Xq—2,m+1$— Xg,m + Xg—2,m+1

from g = ndown to 2.
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X0,0 X0,1 Xo,2 Xo,n—2  X0,n—1 Xo,n

X1,0 X1, X1,2 s Xi,n—2 X1,n—1

X2,0 X2.1 X2,2 R Xo,n—2

Xn—2,0 Xn—21 Xpn—22

Xn—1,0 Xn—11
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X0,0

X1,0

X2,0

X3,0

X4,0

X5,0

X6,0

Heng Guo (QMUL)

X0,1

X1,

X2.1

X3,1

X4,1

X5.1

Xo,2

X1,2

X2,2

X3,2

X4,2

X0,3

X1,3

X23

X33
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X1,4 X1,5
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X0,0 X0,1

X1,0 X1,
X2,0 X2,1
X3,0 X3,1
X4,0 X4,1
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X6,0
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X1,2
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X0,0

X1,0

X2,0

X3,0

X4,0

X5,0

X6,0

X0,1

X1,
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X4,2
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X0,0 X0,1 Xo,2 X0,3 X0,4

X1,0 X1,1 X1,2 X1,3 X1,4

X2,0 X2.1 X2,2 X23 X2.4

X3,0 X3,1 X3,2 X33

X6,0

Xo0,5

X1,5

X0,6



X0,0 Xo0,1 Xo,2 X0,3 X0,4 Xo0,5

X1,0 X11 X1,2 X1,3 X1,4 X1,5
Xz,r/(m X2,2 X2,3 X2,4

3,1 X3,2 X33

X0,6



X0,0 X0,1 Xo,2 X0,3 X0,4 Xo0,5 X0,6

X1,/(11/(1,2 X1,3 X1,4 X1,5

2,2 X23 X2.4

X6
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Concluding Remarks

@ Guessing tractable cases is usually the first step towards a dichotomy.
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extend our setting. Is there more?
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Concluding Remarks

@ Guessing tractable cases is usually the first step towards a dichotomy.

» The next step is trying to show anything different is hard.

@ However, there always are some new tractable cases each time we
extend our setting. Is there more?
@ Future directions:

» H-minor free graphs.

» Higher domains.

L
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Thank You!
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