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Constraint Satisfaction Problem

Let D = {1, . . . , d} be a domain.

A language is a finite set of relations Γ = {Θ1, . . . ,Θh}.
An instance of CSP(Γ) consists of a set of variables x1, . . . , xn
and a set of constraints from Γ. It defines an n-ary relation

R ⊆ Dn, where (x1, . . . , xn) ∈ R if all constraints are satisfied.

R ⊆ D4 : Θ1(x1, x3, x2) ∧Θ2(x4, x3) ∧Θ2(x2, x3)

Decide if R is empty or not.
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Examples

d-Coloring: D = {1, . . . , d} and Γ = {Θ}, where

Θ =
{

(i , j) : i , j ∈ D and i 6= j
}

Independent Set: D = {1, 2} and Γ = {Θ}, where

Θ =
{

(1, 1), (1, 2), (2, 1)
}

2-Sat: D = {0, 1} and

Γ =
{
x1 ∨ x2, x1 ∨ x2, x1 ∨ x2, x1 ∨ x2

}
3-Sat . . .
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One of the most important classes of problems in TCS:

Decision: whether a solution exists?

The CSP dichotomy conjecture of Feder and Vardi is open.

Optimization: satisfy as many constraints as possible, and

more generally, the valued constraint satisfaction problem to

find an assignment to maximize the total weight.

Counting: This talk.
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Counting Constraint Satisfaction Problem

Let D = {1, . . . , d} be a domain.

A language is a finite set of relations Γ = {Φ1, . . . ,Φh}.
An instance of #CSP(Γ) consists of variables x1, . . . , xn and a

set of constraints from Γ. It defines an n-ary relation R ⊆ Dn,

where (x1, . . . , xn) ∈ R if all constraints are satisfied.

Compute |R|.
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Examples

#d-Coloring: D = {1, . . . , d} and Γ = {Θ}, where

Θ =
{

(i , j) : i , j ∈ D and i 6= j
}
.

#Independent set: D = {1, 2} and Γ = {Θ}, where

Θ =
{

(1, 1), (1, 2), (2, 1)
}
.

#2-Sat: D = {0, 1} and

Γ =
{
x1 ∨ x2, x1 ∨ x2, x1 ∨ x2, x1 ∨ x2

}
#3-Sat . . .
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Weighted #CSP

A weighted language L = {g1, . . . , gh} with gi : Dri → C.

An instance of #CSP(L) consists of variables x1, . . . , xn over

D and a set of functions from L. It defines an n-ary function
F : for any assignment x = (x1, . . . , xn) ∈ Dn, F (x) is the

product of the constraint function evaluations. E.g.,

F (x1, x2, x3, x4) = g1(x1, x3, x2) · g2(x2, x4) · g2(x3, x2)

Compute
∑

x∈Dn F (x).
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Counting Graph Homomorphisms

The special case when L consists of a single symmetric binary

function [Dyer and Greenhill 00], [Bulatov and Grohe 05],

[Goldberg, Grohe, Jerrum and Thurley 09], [Cai, C and Lu 11].
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Complexity Dichotomies Arise for #CSP

Theorem (Bulatov 08)

#CSP(Γ) either can be solved in P-time or is #P-complete.

Theorem (Dyer and Richerby 10)

An alternative proof; the tractability criterion is decidable in NP.

Further extended to nonnegative rational languages [Bulatov, Dyer,
Goldberg, Jalsenius, Jerrum and Richerby 10], and nonnegative
algebraic languages [Cai, C and Lu 11].

Theorem (Cai and C 12)

A dichotomy for #CSP(L) with complex weights.
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Plan of the Talk

1 Dichotomy for Unweighted #CSP:

Tractability criterion: Strong balance

Mal’tsev polymorphisms and Witness functions

The main counting algorithm.

2 Dichotomy for Nonnegative and Complex #CSP
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Definition

An n ×m nonnegative matrix is rectangular if Ai ,k ,Ai ,`,Aj ,k > 0
imply Aj ,` > 0 (or block-diagonal where every block is all positive).



1 2 0 0 0
2 1 0 0 0
0 0 1 1 0
0 0 2 2 0
0 0 3 3 0
0 0 0 0 0
0 0 0 0 0


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Definition

A nonnegative matrix is block-rank-1 if one can permute its rows
and columns to make it block-diagonal and every block is rank 1.



1 2 0 0 0
2 1 0 0 0
0 0 1 1 0
0 0 2 2 0
0 0 3 3 0
0 0 0 0 0
0 0 0 0 0


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Strong Rectangularity and Strong Balance

Let Γ = {Θ1, . . . ,Θh} be a language over D.

Given an n-ary relation R ⊆ Dn derived by an instance of

#CSP(Γ) and integers k , `, r such that k + `+ r = n, we

are interested in the following |D|k × |D|` matrix M:

M(u, v) =
∣∣∣{w ∈ Dr : (u, v,w) ∈ R

}∣∣∣,
with rows indexed by u ∈ Dk , columns indexed by v ∈ D`.
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Strong Rectangularity and Strong Balance

Definition (Dyer and Richerby 10)

Γ is strongly rectangular if every such matrix M is rectangular;
Γ is strongly balanced if every such matrix M is block-rank-1.

Strong balance implies strong rectangularity.

equivalent to congruence singularity [Bulatov 08].
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Theorem (Bulatov 08)

If Γ is congruence singular, then #CSP(Γ) is solvable in P-time;
otherwise #CSP(Γ) is #P-hard.

Theorem (Dyer and Richerby 10)

If Γ is strongly balanced, then #CSP(Γ) is solvable in P-time;
otherwise #CSP(Γ) is #P-hard.

Proof of the Hardness Part:

Gadget construction: A reduction from EVAL(A) to #CSP(Γ) for
a nonnegative A that violates the condition of [Bulatov-Grohe 05].
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Polymorphisms

Definition

Let Θ ⊆ Dr be an r-ary relation, and ψ : D3 → D be a map.
Then we say ψ is a polymorphism of Θ if u, v,w ∈ Θ implies(

ψ(u1, v1,w1), ψ(u2, v2,w2), . . . , ψ(ur , vr ,wr )
)
∈ Θ.

u1 u2 . . . ur
v1 v2 . . . vr
w1 w2 . . . wr

ψ(u1, v1,w1) ψ(u2, v2,w2) . . . ψ(ur , vr ,wr )
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Mal’tsev Polymorphisms

Definition

Map ψ is a Mal’tsev polymorphism of Θ if it also satisfies

ψ(a, b, b) = ψ(b, b, a) = a, for all a, b ∈ D.

We say ψ is a Mal’tsev polymorphism of Γ = {Θ1, . . . ,Θh} if ψ
is a Mal’tsev polymorphism of every relation Θi .
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Observation

If ψ is a Mal’tsev polymorphism of Γ, then it is also a Mal’tsev
polymorphism of every relation R derived by a #CSP(Γ) instance.

R ⊆ D4 : Θ1(x1, x2, x3) ∧Θ2(x3, x4) ∧Θ2(x4, x2)

u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

ψ(u1, v1,w1) ψ(u2, v2,w2) ψ(u3, v3,w3) ψ(u4, v4,w4)
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Theorem

Γ is strongly rectangular iff it has a Mal’tsev polymorphism ψ.

Proof of the easier direction ⇐.

Let R be a relation derived by a #CSP(Γ) instance. Let u,u′ ∈ Dk

v, v′ ∈ D`. If the (u′, v), (u, v), (u, v′) entries of M are positive:

u′1 . . . u′k v1 . . . v` w1 . . . wr ∈ R

u1 . . . uk v1 . . . v` w ′1 . . . w ′r ∈ R

u1 . . . uk v ′1 . . . v ′` w ′′1 . . . w ′′r ∈ R

u′1 . . . u′k v ′1 . . . v ′` w∗1 . . . w∗r ∈ R

This implies that the (u′, v′) entry of M is also positive.

Assume that ψ is given.
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Let ψ be a Mal’tsev polymorphism of R ⊆ Dn. For i ∈ [n]:

1 Pri R: the projection of R on the ith coordinate, i.e.,
a ∈ Pri R if there exists u ∈ R with ui = a (called a witness).

2 ∼i over Pri R: a ∼i b if there exist u ∈ D i−1, w,w′ ∈ Dn−i :

(u, a,w) ∈ R and (u, b,w′) ∈ R.

Lemma

If R has a Mal’tsev polymorphism, ∼i is an equivalence relation.
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Proof.

Goal: a ∼i b and b ∼i c imply a ∼i c.
a ∼i b ⇒ there exist u, v, v′ such that (u, a, v), (u, b, v′) ∈ R.
b ∼i c ⇒ there exist u′,w,w′ such that (u′, b,w), (u′, c ,w′) ∈ R.

u a v ∈ R
u b v′ ∈ R
u′ b w ∈ R

u′ a w∗ ∈ R

Since (u′, c ,w′) ∈ R, we have a ∼i c .
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Witness Function: A Succinct Representation

Definition (Dyer and Richerby 10)

Suppose R ⊆ Dn has a Mal’tsev polymorphism ψ. We say

ω : [n]× D → Dn ∪ {nil}

is a witness function of R if for every i ∈ [n]:

1 a /∈ Pri R ⇒ ω(i , a) = nil;

2 a ∈ Pri R, ω(i , a) ∈ R and its ith entry is a;

3 If a ∼i b, ω(i , a) and ω(i , b) share the same (i − 1)-prefix.

Similar to the compact representation of [Bulatov and Dalmau 06].

A witness function ω of R ⊆ Dn is of polynomial length.
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Witness Function: A Succinct Representation

Lemma

Suppose R ⊆ Dn has a Mal’tsev polymorphism ψ. Given ω and a
tuple u ∈ Dn, one can decide if u ∈ Dn or not in P-time.

Lemma

Suppose R ⊆ Dn has a Mal’tsev polymorphism ψ. Given ω and
u ∈ Dt for some t ≤ n, one can decide if u ∈ Pr[t] R in P-time.
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Round 1: Check if u1 ∈ Pr1 R; if so find a witness.

If ω(1, u1) = nil, reject.

Otherwise, let ω(1, u1) = (u1, v2,w) ∈ R (a witness).
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Let ω(1, u1) = (u1, v2,w) ∈ R.

Round 2: Check if (u1, u2) ∈ Pr[2] R; if so find a witness.

1 If ω(2, u2) = nil, reject.

2 If ω(2, u2) and ω(2, v2) have different first entries, reject.
As (u1, u2) ∈ Pr[2] R would imply that u2 ∼2 v2.

3 Otherwise, let ω(2, u2) = (w1, u2,w′), ω(2, v2) = (w1, v2,w∗).

u1 v2 w ∈ R
w1 v2 w∗ ∈ R
w1 u2 w′ ∈ R

u1 u2 w′′ ∈ R

The result (u1, u2,w′′) is a witness for (u1, u2) ∈ Pr[2] R.

Repeat for t rounds . . .
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Lemma (Dyer and Richerby 10)

Suppose Γ has a Mal’tsev polymorphism ψ. Given an #CSP
instance, a witness function for its relation can be built in P-time.
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Tractability

Assume that Γ = {Θ1, . . . ,Θh} is strongly balanced
and thus, has a Mal’tsev polymorphism ψ.

Given a #CSP(Γ) instance with n variables that defines R ⊆ Dn:

For each t = 1, . . . , n, let

F [t](x1, . . . , xt) =
∣∣∣{w ∈ Dn−t : (x1, . . . , xt ,w) ∈ R

}∣∣∣.
View each F [t], t ≥ 2, as a d t−1 × d matrix.
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F [2]

. . .

F [t]

. . .

F [n]

(x1, . . . , xt−1) ∈ Dt−1

xt ∈ D

F [t](x1, . . . , xt−1, xt)
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F [2]

. . .

F [t]

. . .

F [n]

x = (x1, . . . , xt−1) ∈ Dt−1

F [t](x, ∗) = (F [t](x, 1), . . . ,F [t](x, d))
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For each t ≥ 2, access to a data structure for F [t]:

One can send a (t − 1)-tuple x ∈ Dt−1 to the data structure.

If F [t](x, ∗) = 0, return v = 0; otherwise, return a nonzero

vector v linearly dependent with F [t](x, ∗), in P-time.

Given access to such data structures, compute

|R| =
∑
a1∈D

F [1](a1).
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The Main Counting Algorithm

To compute F [1](a1) for some a1 ∈ D:

1 send (a1) to the data structure for F [2]

2 receive v that is linearly dependent with F [2](a1, ∗)
3 if v = 0, F [2](a1, ∗) = 0 ⇒ F [1](a1) = 0

4 otherwise, let va2 be a nonzero entry of v, a2 ∈ D:

F [1](a1) =
∑
b∈D

F [2](a1, b) = F [2](a1, a2)

(
1

va2

∑
b∈D

vb

)
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The Main Counting Algorithm

To compute F [2](a1, a2):

1 send (a1, a2) to the data structure for F [3]

2 receive w that is linearly dependent with F [3]((a1, a2), ∗)
3 if w = 0, then F [2](a1, a2) = 0

4 so w 6= 0; let wa3 be a nonzero entry of w, a3 ∈ D:

F [2](a1, a2) = F [3](a1, a2, a3)

(
1

wa3

∑
b∈D

wb

)
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The Main Counting Algorithm

After n − 1 steps, the algorithm reduces F [1](a1) to

F [n](a1, a2, . . . , an)

for some appropriate a2, . . . , an ∈ D. F = F [n] is easy to evaluate.

Rest of the tractability proof: How to build the data structures?
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Strong balance ⇒ F [t] is a block-rank-1 matrix.

x

{1,2,3}

Each equivalence class Ei of ∼t corresponds to a block:

a ∼t b ⇒ F [t](x, a) > 0 and F [t](x, b) > 0 for some x
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To build the data structure for F [t], it suffices to

compute a representative vector vj for each block

(equivalently, each equivalence class Ej of ∼t .

For a query x ∈ Dt−1, x is in the block of Ej
m

F [t](x, a) > 0 for some a ∈ Ej
m

(x, a) ∈ Pr[t] R for some a ∈ Ej

Return vj if x is in the block of Ej ; return 0 if
it does not belong to any block.

x

{1,2,3}
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Building the Data Structures Backwards

Initialization: The data structure for F [n].

For each equivalence class Ej of ∼n, pick an

a ∈ Ej . Let ω(n, a) = (x, a) ∈ R. Set the

representative vector vj of Ej to be F [n](x, ∗).
x

a∈Ej
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Induction: The data structure for F [t].

For each equivalence class Ej of ∼i , pick an

a ∈ Ej . Let ω(t, a) = (x, a, v) ∈ R. Set the

representative vector vj to be F [t](x, ∗).

Use data structures for F [t+1], . . . ,F [n] and

the main counting algorithm to evaluate F [t].
x

a∈Ej
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Strong Balance for Nonnegative Languages

Let L = {g1, . . . , gh} be a nonnegative language.

Given an n-ary function F derived by an instance of #CSP(L)

and integers k , `, r such that k + `+ r = n, we are interested

in the following |D|k × |D|` matrix M:

M(u, v) =
∑
w∈Dr

F (u, v,w).
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Definition

L is strongly balanced if every such matrix M is block-rank-1.

Theorem (Cai, C and Lu)

If a nonnegative language L is strongly balanced, then #CSP(L)
is solvable in P-time; otherwise, it is #P-hard.
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Plan of the Talk

1 Dichotomy for Unweighted #CSP:

Tractability criterion: Strong balance

Mal’tsev polymorphisms and Witness functions

The counting algorithm

Generalization to Nonnegative #CSP

2 Dichotomy for #CSP with Complex Values
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Cancellations ({±1} or even roots of unity) may sometimes lead

to efficient algorithms and more tractable cases (e.g., Permanent

vs Determinant and Holographic algorithms [Valiant 04]).
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Let L be a complex-valued language, and F : Dn → D be an
n-ary function derived by a #CSP(L) instance. Let R ⊆ Dn:

x ∈ R ⇐⇒ F (x) 6= 0.

Even with a witness function ω of R, not clear how to use
ω to decide efficiently if F [t](x1, . . . , xt) = 0 or not, where

F [t](x1, . . . , xt) =
∑

w∈Dn−t

F (x1, . . . , xt ,w).
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The Same Data Structures

For each t ≥ 2, build a data structure for F [t]:

One can send a (t − 1)-tuple x ∈ Dt−1 to the data structure.

If F [t](x, ∗) = 0, return v = 0; otherwise, return a nonzero

vector v linearly dependent with F [t](x, ∗), in P-time.

Then a similar main counting algorithm can compute efficiently∑
x∈Dn

F (x).
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The First Difficulty

1 An d t−1 × d matrix may have d t−1 pairwise linearly
independent rows. Cannot even afford to store this many

representative vectors.

...
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A Hint from Counting Graph Homomorphisms

Real matrices [Goldberg, Grohe, Jerrum and Thurley 09 ]

and complex matrices [ Cai, C and Lu 11 ]


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 and


1 1 1 1 1
1 ζ ζ2 ζ3 ζ4

1 ζ2 ζ4 ζ ζ3

1 ζ3 ζ ζ4 ζ2

1 ζ4 ζ3 ζ2 ζ1



Wishful thinking: What if any two rows of F [t] are either linearly

dependent or orthogonal ⇒ At most d representative vectors.
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The Block Orthogonality condition

Let F be a function defined by a #CSP(L) instance. Then every
two rows of F [t] are either linearly dependent or orthogonal.

Lemma

If L violates this condition, then #CSP(L) is #P-hard.
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The Second Difficulty

2 Let {vi} be the representative vectors of F [t]. Let Sj denote
the set of rows u ∈ Dt−1 that are linearly dependent with vi .
Given a query u ∈ Dt−1, how to decide if u ∈ Si or not?

A witness function for R no longer helps!

S1

S2

S3

all zero
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Wishful thinking: Every Sj ⊆ Dt−1 has a Mal’tsev polymorphism.

If so, one can hope to build a witness function for each Sj .

The Mal’tsev condition

Let F be a function defined by a #CSP(L) instance. Then all such
sets Sj ⊆ Dt−1 share a Mal’tsev polymorphism ψ.

Lemma

If L violates this condition, then #CSP(L) is #P-hard.
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The Last Difficulty

3 How to build the data structures for F [t] inductively? Need

to compute the representative vectors (at most d many) and

to compute a witness function ωj for each Sj ⊆ Dt−1.

Type Partition condition

Manipulate relations that share a Mal’tsev polymorphism.

Lemma

If L violates the Type Partition condition, #CSP(L) is #P-hard.
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Putting the Pieces Together . . .

For t = n, . . . , 2, build inductively a data structure for F [t]:

1 Compute the representative vectors. Number of representative
vectors is at most d : the Block Orthogonality condition.

2 Compute a witness function ωj of Sj ⊆ Dt−1 for each
representative vector vj . Existence: the Mal’tsev condition.

Computation of these objects uses the Type Partition condition.

Theorem

If L satisfies all these three conditions, #CSP(L) can be solved
in polynomial time; otherwise, #CSP(L) is #P-hard.
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Open Problem

1 Determine the decidability of the tractability criterion:

Given a finite set of complex-valued functions L, decide

whether L satisfies the tractability criterion.

Counting graph homomorphisms: in P.

Dichotomy for nonnegative #CSP: in NP.

Dichotomy for complex #CSP: decidable ?

Jin-Yi’s take: The land is logically conquered, but one does

not really know what treasures lie within.

2 Possibility to apply the ideas elsewhere?

Xi Chen Dichotomy Theorems for Counting Problems



Thanks!
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