Dichotomy Theorems for Counting Constraint Satisfaction Problems

Xi Chen Columbia University

- Let $D = \{1, \ldots, d\}$ be a domain.
- A language is a finite set of relations Γ = {Θ₁,...,Θ_h}. An instance of CSP(Γ) consists of a set of variables x₁,..., x_n and a set of constraints from Γ. It defines an *n*-ary relation R ⊆ Dⁿ, where (x₁,..., x_n) ∈ R if all constraints are satisfied.

$$R \subseteq D^4: \Theta_1(x_1, x_3, x_2) \land \Theta_2(x_4, x_3) \land \Theta_2(x_2, x_3)$$

• Decide if *R* is empty or not.

Examples

- *d*-COLORING: $D = \{1, ..., d\}$ and $\Gamma = \{\Theta\}$, where $\Theta = \{(i, j) : i, j \in D \text{ and } i \neq j\}$
- INDEPENDENT SET: $D = \{1,2\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \big\{(1,1),(1,2),(2,1)\big\}$$

• 2-SAT: $D = \{0, 1\}$ and

$$\mathsf{F} = \left\{ x_1 \lor x_2, \overline{x_1} \lor x_2, x_1 \lor \overline{x_2}, \overline{x_1} \lor \overline{x_2} \right\}$$

• 3-Sat ...

• • = • • = •

э

One of the most important classes of problems in TCS:

- Decision: whether a solution exists? The CSP dichotomy conjecture of Feder and Vardi is open.
- Optimization: satisfy as many constraints as possible, and more generally, the valued constraint satisfaction problem to find an assignment to maximize the total weight.
- Counting: This talk.

Counting Constraint Satisfaction Problem

- Let $D = \{1, \ldots, d\}$ be a domain.
- A language is a finite set of relations Γ = {Φ₁,...,Φ_h}. An instance of #CSP(Γ) consists of variables x₁,..., x_n and a set of constraints from Γ. It defines an *n*-ary relation R ⊆ Dⁿ, where (x₁,...,x_n) ∈ R if all constraints are satisfied.
- Compute |R|.

Examples

• # d-COLORING: $D = \{1, \dots, d\}$ and $\Gamma = \{\Theta\}$, where $\Theta = \{(i, j) : i, j \in D \text{ and } i \neq j\}.$

• #INDEPENDENT SET: $D = \{1,2\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \big\{(1,1),(1,2),(2,1)\big\}.$$

• $#2\text{-SAT: } D = \{0,1\}$ and

$$\mathsf{\Gamma} = \left\{ x_1 \lor x_2, \overline{x_1} \lor x_2, x_1 \lor \overline{x_2}, \overline{x_1} \lor \overline{x_2} \right\}$$

• #3-Sat ...

伺 と く ヨ と く ヨ と …

3

- A weighted language $\mathcal{L} = \{g_1, \ldots, g_h\}$ with $g_i : D^{r_i} \to \mathbb{C}$.
- An instance of #CSP(L) consists of variables x₁,..., x_n over D and a set of functions from L. It defines an n-ary function F: for any assignment x = (x₁,...,x_n) ∈ Dⁿ, F(x) is the product of the constraint function evaluations. E.g.,

$$F(x_1, x_2, x_3, x_4) = g_1(x_1, x_3, x_2) \cdot g_2(x_2, x_4) \cdot g_2(x_3, x_2)$$

• Compute $\sum_{\mathbf{x}\in D^n} F(\mathbf{x})$.

The special case when \mathcal{L} consists of a single symmetric binary function [Dyer and Greenhill 00], [Bulatov and Grohe 05], [Goldberg, Grohe, Jerrum and Thurley 09], [Cai, C and Lu 11].

Theorem (Bulatov 08)

 $\#CSP(\Gamma)$ either can be solved in P-time or is #P-complete.

Theorem (Dyer and Richerby 10)

An alternative proof; the tractability criterion is decidable in NP.

Further extended to nonnegative rational languages [Bulatov, Dyer, Goldberg, Jalsenius, Jerrum and Richerby 10], and nonnegative algebraic languages [Cai, C and Lu 11].

Theorem (Cai and C 12)

A dichotomy for $\#CSP(\mathcal{L})$ with complex weights.

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Dichotomy for Unweighted #CSP:
 - Tractability criterion: Strong balance
 - Mal'tsev polymorphisms and Witness functions
 - The main counting algorithm.
- **2** Dichotomy for Nonnegative and Complex #CSP

Definition

An $n \times m$ nonnegative matrix is rectangular if $A_{i,k}, A_{i,\ell}, A_{j,k} > 0$ imply $A_{j,\ell} > 0$ (or block-diagonal where every block is all positive).

Definition

A nonnegative matrix is block-rank-1 if one can permute its rows and columns to make it block-diagonal and every block is rank 1.

- Let $\Gamma = \{\Theta_1, \ldots, \Theta_h\}$ be a language over D.
- Given an n-ary relation R ⊆ Dⁿ derived by an instance of #CSP(Γ) and integers k, ℓ, r such that k + ℓ + r = n, we are interested in the following |D|^k × |D|^ℓ matrix M:

$$M(\mathbf{u},\mathbf{v})=\Big|\big\{\mathbf{w}\in D^r:(\mathbf{u},\mathbf{v},\mathbf{w})\in R\big\}\Big|,$$

with rows indexed by $\mathbf{u} \in D^k$, columns indexed by $\mathbf{v} \in D^\ell$.

Definition (Dyer and Richerby 10)

 Γ is strongly rectangular if every such matrix **M** is rectangular; Γ is strongly balanced if every such matrix **M** is block-rank-1.

Strong balance implies strong rectangularity. equivalent to congruence singularity [Bulatov 08].

Theorem (Bulatov 08)

If Γ is congruence singular, then $\#CSP(\Gamma)$ is solvable in P-time; otherwise $\#CSP(\Gamma)$ is #P-hard.

Theorem (Dyer and Richerby 10)

If Γ is strongly balanced, then $\#CSP(\Gamma)$ is solvable in P-time; otherwise $\#CSP(\Gamma)$ is #P-hard.

Proof of the Hardness Part:

Gadget construction: A reduction from EVAL(A) to $\#CSP(\Gamma)$ for a nonnegative A that violates the condition of [Bulatov-Grohe 05].

Definition

Let $\Theta \subseteq D^r$ be an r-ary relation, and $\psi : D^3 \to D$ be a map. Then we say ψ is a polymorphism of Θ if $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Theta$ implies

$$\Big(\psi(u_1,v_1,w_1),\psi(u_2,v_2,w_2),\ldots,\psi(u_r,v_r,w_r)\Big)\in\Theta_{\mathbb{R}}$$

$\psi(u_1, v_1, w_1)$	$\psi(u_2, v_2, w_2)$		$\psi(u_r, v_r, w_r)$
w ₁	W2	•••	Wr
<i>v</i> ₁	<i>v</i> ₂		Vr
u_1	<i>u</i> ₂	•••	Ur

- ∢ ≣ ▶

Definition

Map ψ is a Mal'tsev polymorphism of Θ if it also satisfies

$$\psi(\mathsf{a},\mathsf{b},\mathsf{b})=\psi(\mathsf{b},\mathsf{b},\mathsf{a})=\mathsf{a},\quad ext{for all }\mathsf{a},\mathsf{b}\in\mathsf{D}.$$

We say ψ is a Mal'tsev polymorphism of $\Gamma = \{\Theta_1, \dots, \Theta_h\}$ if ψ is a Mal'tsev polymorphism of every relation Θ_i .

I ≡ ▶ < </p>

Observation

If ψ is a Mal'tsev polymorphism of Γ , then it is also a Mal'tsev polymorphism of every relation R derived by a $\#CSP(\Gamma)$ instance.

$$R\subseteq D^4: \Theta_1(x_1,x_2,x_3)\wedge \Theta_2(x_3,x_4)\wedge \Theta_2(x_4,x_2)$$

u_1	<i>u</i> ₂	Uз	И4
<i>v</i> ₁	<i>V</i> ₂	V ₃	<i>V</i> 4
w ₁	<i>W</i> ₂	W3	<i>W</i> 4
$\psi(u_1,v_1,w_1)$	$\psi(u_2, v_2, w_2)$	$\psi(u_3,v_3,w_3)$	$\psi(u_4, v_4, w_4)$

→ 3 → < 3</p>

Theorem

 Γ is strongly rectangular iff it has a Mal'tsev polymorphism ψ .

Proof of the easier direction \Leftarrow .

Let *R* be a relation derived by a $\#CSP(\Gamma)$ instance. Let $\mathbf{u}, \mathbf{u}' \in D^k$ $\mathbf{v}, \mathbf{v}' \in D^{\ell}$. If the $(\mathbf{u}', \mathbf{v}), (\mathbf{u}, \mathbf{v}), (\mathbf{u}, \mathbf{v}')$ entries of **M** are positive:

This implies that the $(\mathbf{u}', \mathbf{v}')$ entry of **M** is also positive.

Assume that ψ is given.

Let ψ be a Mal'tsev polymorphism of $R \subseteq D^n$. For $i \in [n]$:

 Pr_i R: the projection of R on the *i*th coordinate, i.e., a ∈ Pr_i R if there exists u ∈ R with u_i = a (called a witness).

2 \sim_i over $\Pr_i R$: $a \sim_i b$ if there exist $\mathbf{u} \in D^{i-1}$, $\mathbf{w}, \mathbf{w}' \in D^{n-i}$:

$$(\mathbf{u}, a, \mathbf{w}) \in R$$
 and $(\mathbf{u}, b, \mathbf{w}') \in R$.

Lemma

If R has a Mal'tsev polymorphism, \sim_i is an equivalence relation.

Proof.

Goal: $a \sim_i b$ and $b \sim_i c$ imply $a \sim_i c$.

 $a \sim_i b \Rightarrow$ there exist $\mathbf{u}, \mathbf{v}, \mathbf{v}'$ such that $(\mathbf{u}, a, \mathbf{v}), (\mathbf{u}, b, \mathbf{v}') \in R$. $b \sim_i c \Rightarrow$ there exist $\mathbf{u}', \mathbf{w}, \mathbf{w}'$ such that $(\mathbf{u}', b, \mathbf{w}), (\mathbf{u}', c, \mathbf{w}') \in R$.

u	а	v	$\in R$
u	b	v ′	$\in R$
u′	Ь	w	$\in R$
u ′	а	w*	<i>∈ R</i>

Since $(\mathbf{u}', c, \mathbf{w}') \in R$, we have $a \sim_i c$.

Definition (Dyer and Richerby 10)

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . We say

 $\omega:[n]\times D\to D^n\cup\{\text{NIL}\}$

is a witness function of R if for every $i \in [n]$:

2
$$a \in \Pr_i R$$
, $\omega(i, a) \in R$ and its ith entry is a;

Solution If $a \sim_i b$, $\omega(i, a)$ and $\omega(i, b)$ share the same (i - 1)-prefix.

Similar to the compact representation of [Bulatov and Dalmau 06]. A witness function ω of $R \subseteq D^n$ is of polynomial length.

Lemma

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . Given ω and a tuple $\mathbf{u} \in D^n$, one can decide if $\mathbf{u} \in D^n$ or not in P-time.

Lemma

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . Given ω and $\mathbf{u} \in D^t$ for some $t \leq n$, one can decide if $\mathbf{u} \in \Pr_{[t]} R$ in P-time.

Round 1: Check if $u_1 \in \Pr_1 R$; if so find a witness.

• If
$$\omega(1, u_1) = \text{NIL}$$
, reject.
Otherwise, let $\omega(1, u_1) = (u_1, v_2, \mathbf{w}) \in R$ (a witness)

æ

(*) *) *) *)

Let $\omega(1, u_1) = (u_1, v_2, \mathbf{w}) \in R$.

Round 2: Check if $(u_1, u_2) \in \Pr_{[2]} R$; if so find a witness.

• If
$$\omega(2, u_2) = \text{NIL}$$
, reject.

- If ω(2, u₂) and ω(2, v₂) have different first entries, reject.
 As (u₁, u₂) ∈ Pr_[2] R would imply that u₂ ~₂ v₂.
- **3** Otherwise, let $\omega(2, u_2) = (w_1, u_2, \mathbf{w}'), \ \omega(2, v_2) = (w_1, v_2, \mathbf{w}^*).$

u_1	<i>v</i> ₂	w	$\in R$
w_1	<i>v</i> ₂	\mathbf{w}^*	$\in R$
W_1	u ₂	\mathbf{w}'	$\in R$
<i>u</i> 1	u 2	\mathbf{w}''	∈ <i>R</i>

The result (u_1, u_2, \mathbf{w}'') is a witness for $(u_1, u_2) \in \Pr_{[2]} R$.

Repeat for *t* rounds . . .

Lemma (Dyer and Richerby 10)

Suppose Γ has a Mal'tsev polymorphism ψ . Given an #CSP instance, a witness function for its relation can be built in P-time.

A B > A B >

Assume that $\Gamma = \{\Theta_1, \dots, \Theta_h\}$ is strongly balanced and thus, has a Mal'tsev polymorphism ψ .

Given a #CSP(Γ) instance with *n* variables that defines $R \subseteq D^n$:

• For each
$$t = 1, \ldots, n$$
, let

$$F^{[t]}(x_1,\ldots,x_t) = \left| \left\{ \mathbf{w} \in D^{n-t} : (x_1,\ldots,x_t,\mathbf{w}) \in R \right\} \right|.$$

View each $F^{[t]}$, $t \ge 2$, as a $d^{t-1} \times d$ matrix.

æ

▶ 《문▶ 《문▶

э

-

For each $t \ge 2$, access to a data structure for $F^{[t]}$:

 One can send a (t − 1)-tuple x ∈ D^{t−1} to the data structure. If F^[t](x,*) = 0, return v = 0; otherwise, return a nonzero vector v linearly dependent with F^[t](x,*), in P-time.

Given access to such data structures, compute

$$|R| = \sum_{a_1 \in D} F^{[1]}(a_1).$$

The Main Counting Algorithm

To compute $F^{[1]}(a_1)$ for some $a_1 \in D$:

• send (a_1) to the data structure for $F^{[2]}$

2 receive **v** that is linearly dependent with $F^{[2]}(a_1, *)$

3 if
$$\mathbf{v} = \mathbf{0}$$
, $F^{[2]}(a_1, *) = \mathbf{0} \Rightarrow F^{[1]}(a_1) = \mathbf{0}$

• otherwise, let v_{a_2} be a nonzero entry of \mathbf{v} , $a_2 \in D$:

$$F^{[1]}(a_1) = \sum_{b \in D} F^{[2]}(a_1, b) = F^{[2]}(a_1, a_2) \left(\frac{1}{v_{a_2}} \sum_{b \in D} v_b \right)$$

To compute $F^{[2]}(a_1, a_2)$:

• send (a_1, a_2) to the data structure for $F^{[3]}$

2 receive **w** that is linearly dependent with $F^{[3]}((a_1, a_2), *)$

$${f 3}$$
 if ${f w}={f 0}$, then ${F}^{[2]}(a_1,a_2)=0$

③ so $\mathbf{w} \neq \mathbf{0}$; let w_{a_3} be a nonzero entry of \mathbf{w} , $a_3 \in D$:

$$F^{[2]}(a_1, a_2) = F^{[3]}(a_1, a_2, a_3) \left(\frac{1}{w_{a_3}} \sum_{b \in D} w_b \right)$$

After n-1 steps, the algorithm reduces $F^{[1]}(a_1)$ to

 $F^{[n]}(a_1,a_2,\ldots,a_n)$

for some appropriate $a_2, \ldots, a_n \in D$. $F = F^{[n]}$ is easy to evaluate.

Rest of the tractability proof: How to build the data structures?

Strong balance $\Rightarrow F^{[t]}$ is a block-rank-1 matrix.

Each equivalence class \mathcal{E}_i of \sim_t corresponds to a block:

$$a\sim_t b \ \Rightarrow \ {\mathcal F}^{[t]}({\mathbf x},a)>0$$
 and ${\mathcal F}^{[t]}({\mathbf x},b)>0$ for some ${\mathbf x}$

To build the data structure for $F^{[t]}$, it suffices to compute a representative vector \mathbf{v}_j for each block (equivalently, each equivalence class \mathcal{E}_j of \sim_t .

• For a query $\mathbf{x} \in D^{t-1}$, \mathbf{x} is in the block of \mathcal{E}_i

 Return v_j if x is in the block of E_j; return 0 if it does not belong to any block.

Initialization: The data structure for $F^{[n]}$.

For each equivalence class *E_j* of ~_n, pick an a ∈ *E_j*. Let ω(n, a) = (**x**, a) ∈ R. Set the representative vector **v**_i of *E_i* to be *F*^[n](**x**, *).

Induction: The data structure for $F^{[t]}$.

- For each equivalence class *E_j* of ~_i, pick an a ∈ *E_j*. Let ω(t, a) = (x, a, v) ∈ R. Set the representative vector v_j to be F^[t](x, *).
- Use data structures for $F^{[t+1]}, \ldots, F^{[n]}$ and the main counting algorithm to evaluate $F^{[t]}$.

- Let $\mathcal{L} = \{g_1, \dots, g_h\}$ be a nonnegative language.
- Given an n-ary function F derived by an instance of #CSP(L) and integers k, ℓ, r such that k + ℓ + r = n, we are interested in the following |D|^k × |D|^ℓ matrix M:

$$M(\mathbf{u},\mathbf{v}) = \sum_{\mathbf{w}\in D^r} F(\mathbf{u},\mathbf{v},\mathbf{w}).$$

Definition

 \mathcal{L} is strongly balanced if every such matrix **M** is block-rank-1.

Theorem (Cai, C and Lu)

If a nonnegative language \mathcal{L} is strongly balanced, then $\#CSP(\mathcal{L})$ is solvable in P-time; otherwise, it is #P-hard.

→ Ξ →

Dichotomy for Unweighted #CSP:

- Tractability criterion: Strong balance
- Mal'tsev polymorphisms and Witness functions
- The counting algorithm
- Generalization to Nonnegative #CSP
- Obichotomy for #CSP with Complex Values

Cancellations ($\{\pm 1\}$ or even roots of unity) may sometimes lead to efficient algorithms and more tractable cases (e.g., Permanent vs Determinant and Holographic algorithms [Valiant 04]).

Let \mathcal{L} be a complex-valued language, and $F : D^n \to D$ be an *n*-ary function derived by a $\#CSP(\mathcal{L})$ instance. Let $R \subseteq D^n$:

$$\mathbf{x} \in R \iff F(\mathbf{x}) \neq 0.$$

Even with a witness function ω of R, not clear how to use ω to decide efficiently if $F^{[t]}(x_1, \ldots, x_t) = 0$ or not, where $F^{[t]}(x_1, \ldots, x_t) = \sum F(x_1, \ldots, x_t, \mathbf{w}).$

 $w \in D^{n-t}$

For each $t \ge 2$, build a data structure for $F^{[t]}$:

 One can send a (t − 1)-tuple x ∈ D^{t−1} to the data structure. If F^[t](x, *) = 0, return v = 0; otherwise, return a nonzero vector v linearly dependent with F^[t](x, *), in P-time.

Then a similar main counting algorithm can compute efficiently

$$\sum_{\mathbf{x}\in D^n}F(\mathbf{x}).$$

The First Difficulty

An d^{t-1} × d matrix may have d^{t-1} pairwise linearly independent rows. Cannot even afford to store this many representative vectors.

:

• • = • • = •

Real matrices [Goldberg, Grohe, Jerrum and Thurley 09] and complex matrices [Cai, C and Lu 11]

Wishful thinking: What if any two rows of $F^{[t]}$ are either linearly dependent or orthogonal \Rightarrow At most *d* representative vectors.

The Block Orthogonality condition

Let *F* be a function defined by a $\#CSP(\mathcal{L})$ instance. Then every two rows of $F^{[t]}$ are either linearly dependent or orthogonal.

Lemma

If \mathcal{L} violates this condition, then $\#CSP(\mathcal{L})$ is #P-hard.

伺 ト く ヨ ト く ヨ ト

The Second Difficulty

Q Let {v_i} be the representative vectors of F^[t]. Let S_j denote the set of rows u ∈ D^{t-1} that are linearly dependent with v_i. Given a query u ∈ D^{t-1}, how to decide if u ∈ S_i or not?

A witness function for R no longer helps!

Wishful thinking: Every $S_j \subseteq D^{t-1}$ has a Mal'tsev polymorphism. If so, one can hope to build a witness function for each S_i .

The Mal'tsev condition

Let *F* be a function defined by a $\#CSP(\mathcal{L})$ instance. Then all such sets $S_j \subseteq D^{t-1}$ share a Mal'tsev polymorphism ψ .

Lemma

If \mathcal{L} violates this condition, then $\#CSP(\mathcal{L})$ is #P-hard.

• How to build the data structures for $F^{[t]}$ inductively? Need to compute the representative vectors (at most *d* many) and to compute a witness function ω_j for each $S_j \subseteq D^{t-1}$.

Type Partition condition

Manipulate relations that share a Mal'tsev polymorphism.

Lemma

If \mathcal{L} violates the Type Partition condition, $\#CSP(\mathcal{L})$ is #P-hard.

For t = n, ..., 2, build inductively a data structure for $F^{[t]}$:

- Compute the representative vectors. Number of representative vectors is at most *d*: the Block Orthogonality condition.
- ② Compute a witness function ω_j of S_j ⊆ D^{t-1} for each representative vector v_j. Existence: the Mal'tsev condition.

Computation of these objects uses the Type Partition condition.

Theorem

If \mathcal{L} satisfies all these three conditions, $\#CSP(\mathcal{L})$ can be solved in polynomial time; otherwise, $\#CSP(\mathcal{L})$ is #P-hard.

伺 ト イ ヨ ト イ ヨ ト

Obtermine the decidability of the tractability criterion:

- Given a finite set of complex-valued functions \mathcal{L} , decide whether \mathcal{L} satisfies the tractability criterion.
- Counting graph homomorphisms: in P.
- Dichotomy for nonnegative #CSP: in NP.
- Dichotomy for complex #CSP: decidable?

Jin-Yi's take: The land is logically conquered, but one does not really know what treasures lie within.

Possibility to apply the ideas elsewhere?

Thanks!

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶