Dichotomy Theorems for Counting Constraint Satisfaction Problems

Xi Chen Columbia University

- Let $D = \{1, \ldots, d\}$ be a domain.
- A language is a finite set of relations $\Gamma = \{\Theta_1, \ldots, \Theta_h\}.$ An instance of CSP(Γ) consists of a set of variables x_1, \ldots, x_n and a set of constraints from Γ. It defines an n-ary relation $R \subseteq D^n$, where $(x_1, \ldots, x_n) \in R$ if all constraints are satisfied.

$$
R\subseteq D^4:\Theta_1(x_1,x_3,x_2)\wedge\Theta_2(x_4,x_3)\wedge\Theta_2(x_2,x_3)
$$

 \bullet Decide if R is empty or not.

Examples

- d-COLORING: $D = \{1, \ldots, d\}$ and $\Gamma = \{\Theta\}$, where $\Theta = \bigl\{(i, j): i, j \in D \text{ and } i \neq j\bigr\}$
- INDEPENDENT SET: $D = \{1, 2\}$ and $\Gamma = \{\Theta\}$, where

$$
\Theta=\big\{(1,1),(1,2),(2,1)\big\}
$$

• 2-SAT: $D = \{0, 1\}$ and

$$
\Gamma=\big\{x_1\vee x_2,\,\overline{x_1}\vee x_2,\,x_1\vee\overline{x_2},\,\overline{x_1}\vee\overline{x_2}\big\}
$$

 \bullet 3-SAT \ldots

 2990

重

∢何 ▶ イヨ ▶ イヨ ▶ │

One of the most important classes of problems in TCS:

- **•** Decision: whether a solution exists? The CSP dichotomy conjecture of Feder and Vardi is open.
- Optimization: satisfy as many constraints as possible, and more generally, the valued constraint satisfaction problem to find an assignment to maximize the total weight.
- **Counting: This talk.**

Counting Constraint Satisfaction Problem

- Let $D = \{1, \ldots, d\}$ be a domain.
- A language is a finite set of relations $\Gamma = {\phi_1, \ldots, \phi_h}.$ An instance of $\#\text{CSP}(\Gamma)$ consists of variables x_1, \ldots, x_n and a set of constraints from Γ . It defines an *n*-ary relation $R \subseteq D^n$, where $(x_1, \ldots, x_n) \in R$ if all constraints are satisfied.
- \bullet Compute $|R|$.

Examples

\n- $$
\# d
$$
-COLORING: $D = \{1, \ldots, d\}$ and $\Gamma = \{\Theta\}$, where $\Theta = \{(i, j) : i, j \in D \text{ and } i \neq j\}$.
\n

 \bullet # INDEPENDENT SET: $D = \{1, 2\}$ and $\Gamma = \{\Theta\}$, where

$$
\Theta=\big\{(1,1),(1,2),(2,1)\big\}.
$$

 $\bullet \# 2\text{-SAT: } D = \{0,1\}$ and

$$
\Gamma=\left\{x_1\vee x_2,\,\overline{x_1}\vee x_2,\,x_1\vee\overline{x_2},\,\overline{x_1}\vee\overline{x_2}\right\}
$$

 \bullet #3-SAT ...

and in

イ何 メ ミ メ イヨ メ

 299

重

- A weighted language $\mathcal{L} = \{g_1, \ldots, g_h\}$ with $g_i : D^{r_i} \to \mathbb{C}$.
- An instance of $\#\text{CSP}(\mathcal{L})$ consists of variables x_1, \ldots, x_n over D and a set of functions from \mathcal{L} . It defines an *n*-ary function F: for any assignment $\mathbf{x} = (x_1, \ldots, x_n) \in D^n$, $F(\mathbf{x})$ is the product of the constraint function evaluations. E.g.,

$$
F(x_1, x_2, x_3, x_4) = g_1(x_1, x_3, x_2) \cdot g_2(x_2, x_4) \cdot g_2(x_3, x_2)
$$

Compute $\sum_{\mathbf{x}\in D^n} F(\mathbf{x})$.

The special case when $\mathcal L$ consists of a single symmetric binary function [Dyer and Greenhill 00], [Bulatov and Grohe 05], [Goldberg, Grohe, Jerrum and Thurley 09], [Cai, C and Lu 11].

つへへ

Theorem (Bulatov 08)

 $\#CSP(\Gamma)$ either can be solved in P-time or is $\#P$ -complete.

Theorem (Dyer and Richerby 10)

An alternative proof; the tractability criterion is decidable in NP.

Further extended to nonnegative rational languages [Bulatov, Dyer, Goldberg, Jalsenius, Jerrum and Richerby 10], and nonnegative algebraic languages [Cai, C and Lu 11].

Theorem (Cai and C 12)

A dichotomy for $\#CSP(L)$ with complex weights.

- ④ 伊 ト ④ ヨ ト ④ ヨ ト

- \bullet Dichotomy for Unweighted $\#CSP$:
	- Tractability criterion: Strong balance
	- Mal'tsev polymorphisms and Witness functions
	- The main counting algorithm.
- **2** Dichotomy for Nonnegative and Complex #CSP

医毛囊 医牙骨

 Ω

Definition

An $n \times m$ nonnegative matrix is rectangular if $A_{i,k}, A_{i,\ell}, A_{i,k} > 0$ imply $A_{i,\ell} > 0$ (or block-diagonal where every block is all positive).

- 4 国家 4 国家 -

Definition

A nonnegative matrix is block-rank-1 if one can permute its rows and columns to make it block-diagonal and every block is rank 1.

- Let $\Gamma = \{ \Theta_1, \ldots, \Theta_h \}$ be a language over D.
- Given an *n*-ary relation $R \subseteq D^n$ derived by an instance of $\#\text{CSP}(\Gamma)$ and integers k, ℓ, r such that $k + \ell + r = n$, we are interested in the following $|D|^k \times |D|^\ell$ matrix $\boldsymbol{\mathsf{M}}$:

$$
M(\mathbf{u},\mathbf{v})=\Big|\{\mathbf{w}\in D^r:(\mathbf{u},\mathbf{v},\mathbf{w})\in R\}\Big|,
$$

with rows indexed by $\mathbf{u}\in D^k$, columns indexed by $\mathbf{v}\in D^\ell.$

Definition (Dyer and Richerby 10)

Γ is strongly rectangular if every such matrix M is rectangular; Γ is strongly balanced if every such matrix M is block-rank-1.

Strong balance implies strong rectangularity. equivalent to congruence singularity [Bulatov 08].

Theorem (Bulatov 08)

If Γ is congruence singular, then $\#CSP(\Gamma)$ is solvable in P-time; otherwise $\#CSP(\Gamma)$ is $\#P$ -hard.

Theorem (Dyer and Richerby 10)

If Γ is strongly balanced, then $\#CSP(\Gamma)$ is solvable in P-time; otherwise $\#CSP(\Gamma)$ is $\#P$ -hard.

Proof of the Hardness Part:

Gadget construction: A reduction from EVAL(A) to $\#CSP(\Gamma)$ for a nonnegative A that violates the condition of [Bulatov-Grohe 05].

母 ▶ ヨ ヨ ▶ ヨ ヨ

つくへ

Definition

Let $\Theta \subseteq D^r$ be an r-ary relation, and $\psi : D^3 \to D$ be a map. Then we say ψ is a polymorphism of Θ if $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Theta$ implies

$$
\Bigl(\psi(u_1,v_1,w_1),\psi(u_2,v_2,w_2),\ldots,\psi(u_r,v_r,w_r)\Bigr)\in\Theta.
$$

人名英格兰人姓氏

Definition

Map ψ is a Mal'tsev polymorphism of Θ if it also satisfies

$$
\psi(a, b, b) = \psi(b, b, a) = a, \text{ for all } a, b \in D.
$$

We say ψ is a Mal'tsev polymorphism of $\Gamma = \{\Theta_1, \ldots, \Theta_h\}$ if ψ is a Mal'tsev polymorphism of every relation Θ_i .

人名英格兰人姓氏

Observation

If ψ is a Mal'tsev polymorphism of Γ , then it is also a Mal'tsev polymorphism of every relation R derived by a $\#CSP(\Gamma)$ instance.

$$
R\subseteq D^4:\Theta_1(x_1,x_2,x_3)\wedge\Theta_2(x_3,x_4)\wedge\Theta_2(x_4,x_2)
$$

医间距的间距

 2990

э

Theorem

 $Γ$ is strongly rectangular iff it has a Mal'tsev polymorphism $ψ$.

Proof of the easier direction \Leftarrow .

Let R be a relation derived by a $\#\mathsf{CSP}(\mathsf{\Gamma})$ instance. Let $\mathsf{u},\mathsf{u}'\in D^k$ ${\sf v},{\sf v}'\in D^\ell$. If the $({\sf u}',{\sf v}),({\sf u},{\sf v}),({\sf u},{\sf v}')$ entries of ${\sf M}$ are positive:

$$
u'_1 \quad \dots \quad u'_k \quad v_1 \quad \dots \quad v_\ell \quad w_1 \quad \dots \quad w_r \in R
$$
\n
$$
u_1 \quad \dots \quad u_k \quad v_1 \quad \dots \quad v_\ell \quad w'_1 \quad \dots \quad w'_r \in R
$$
\n
$$
u_1 \quad \dots \quad u_k \quad v'_1 \quad \dots \quad v'_\ell \quad w''_1 \quad \dots \quad w''_r \in R
$$
\n
$$
u'_1 \quad \dots \quad u'_k \quad v'_1 \quad \dots \quad v'_\ell \quad w''_1 \quad \dots \quad w''_r \in R
$$

This implies that the (u', v') entry of M is also positive.

Assume that ψ is given.

ഹൈ

Let ψ be a Mal'tsev polymorphism of $R \subseteq D^n$. For $i \in [n]$:

 \bullet Pr; R: the projection of R on the *i*th coordinate, i.e., $a \in Pr_i R$ if there exists $u \in R$ with $u_i = a$ (called a witness).

? \sim_i over Pr $_i$ R: a \sim_i b if there exist $\mathbf{u}\in D^{i-1}$, $\mathbf{w},\mathbf{w}'\in D^{n-i}$:

$$
(\mathbf{u}, a, \mathbf{w}) \in R \quad \text{and} \quad (\mathbf{u}, b, \mathbf{w}') \in R.
$$

Lemma

If R has a Mal'tsev polymorphism, \sim _i is an equivalence relation.

Proof.

Goal: $a \sim_i b$ and $b \sim_i c$ imply $a \sim_i c$.

a \sim_i b \Rightarrow there exist **u**, **v**, **v**' such that $(\mathbf{u}, a, \mathbf{v}), (\mathbf{u}, b, \mathbf{v}') \in R$. $b \sim_i c \Rightarrow$ there exist **u'**, **w**, **w'** such that $(\mathbf{u}', b, \mathbf{w}), (\mathbf{u}', c, \mathbf{w}') \in R$.

Since $(\mathbf{u}', c, \mathbf{w}') \in R$, we have $a \sim_i c$.

つくへ

Definition (Dyer and Richerby 10)

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . We say

 $\omega : [n] \times D \to D^n \cup \{ \text{NIL} \}$

is a witness function of R if for every $i \in [n]$:

$$
a \notin \Pr_i R \implies \omega(i, a) = \text{NIL};
$$

9
$$
a \in Pr_i R
$$
, $\omega(i, a) \in R$ and its *i*th entry is a;

3 If a \sim_i b, $\omega(i, a)$ and $\omega(i, b)$ share the same $(i - 1)$ -prefix.

Similar to the compact representation of [Bulatov and Dalmau 06]. A witness function ω of $R \subseteq D^n$ is of polynomial length.

Lemma

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . Given ω and a tuple $u \in D^n$, one can decide if $u \in D^n$ or not in P-time.

Lemma

Suppose $R \subseteq D^n$ has a Mal'tsev polymorphism ψ . Given ω and $\mathbf{u}\in D^t$ for some $t\leq n$, one can decide if $\mathbf{u}\in \mathsf{Pr}_{[t]}$ R in P-time.

Round 1: Check if $u_1 \in Pr_1 R$; if so find a witness.

\n- If
$$
\omega(1, u_1) = \text{NIL}
$$
, reject.
\n- Otherwise, let $\omega(1, u_1) = (u_1, v_2, \mathbf{w}) \in R$ (a witness).
\n

 4.17

 \sim

- 4 重 8 34 重 8

 299

重

Let $\omega(1, u_1) = (u_1, v_2, \mathbf{w}) \in R$.

Round 2: Check if $(u_1, u_2) \in Pr_{[2]} R$; if so find a witness.

• If
$$
\omega(2, u_2) = \text{NIL}
$$
, reject.

- **2** If $\omega(2, u_2)$ and $\omega(2, v_2)$ have different first entries, reject. As $(u_1, u_2) \in Pr_{[2]}$ R would imply that $u_2 \sim_2 v_2$.
- 3 Otherwise, let $\omega(2, u_2) = (w_1, u_2, \mathbf{w}')$, $\omega(2, v_2) = (w_1, v_2, \mathbf{w}^*)$.

The result (u_1, u_2, \mathbf{w}'') is a witness for $(u_1, u_2) \in \text{Pr}_{[2]} R$.

Repeat for t rounds \dots

Lemma (Dyer and Richerby 10)

Suppose Γ has a Mal'tsev polymorphism ψ . Given an $\#\textsf{CSP}$ instance, a witness function for its relation can be built in P-time.

医毛毛 医三角

 Ω

Assume that $\Gamma = \{ \Theta_1, \ldots, \Theta_h \}$ is strongly balanced and thus, has a Mal'tsev polymorphism ψ .

Given a $\#\textsf{CSP}(\Gamma)$ instance with *n* variables that defines $R \subseteq D^n$:

• For each
$$
t = 1, \ldots, n
$$
, let

$$
\mathcal{F}^{[t]}(x_1,\ldots,x_t)=\Big|\{\mathbf{w}\in D^{n-t}:(x_1,\ldots,x_t,\mathbf{w})\in R\}\Big|.
$$

View each $\mathcal{F}^{[t]}$, $t\geq 2$, as a $d^{t-1}\times d$ matrix.

伊 ト イヨ ト イヨ ト

 QQ

4 0 8

目

∢ 御 ▶ (≮ 唐 ▶ (≮ 唐 ▶

 \leftarrow

4 重

D.

 \sim

- 4 三 ト

 299

重

For each $t \geq 2$, access to a data structure for $\mathcal{F}^{[t]}$:

One can send a $(t-1)$ -tuple $\mathbf{x} \in D^{t-1}$ to the data structure. If $F^{[t]}(\mathbf{x},*) = \mathbf{0}$, return $\mathbf{v} = \mathbf{0}$; otherwise, return a nonzero vector **v** linearly dependent with $F^{[t]}(\mathbf{x},*)$, in P-time.

Given access to such data structures, compute

$$
|R|=\sum_{a_1\in D}F^{[1]}(a_1).
$$

To compute $F^{[1]}(a_1)$ for some $a_1 \in D$:

 $\textbf{\textit{I}}$ send (a_1) to the $\tt data$ structure for ${\cal F}^{[2]}$

 \bullet receive **v** that is linearly dependent with $\mathcal{F}^{[2]}(a_1,*)$

• if
$$
\mathbf{v} = \mathbf{0}
$$
, $F^{[2]}(a_1, *) = \mathbf{0} \Rightarrow F^{[1]}(a_1) = 0$

4 otherwise, let v_{a} be a nonzero entry of **v**, $a_2 \in D$:

$$
\digamma^{[1]}(a_1) = \sum_{b \in D} \digamma^{[2]}(a_1, b) = \digamma^{[2]}(a_1, a_2) \left(\frac{1}{v_{a_2}} \sum_{b \in D} v_b \right)
$$

To compute $F^{[2]}(a_1, a_2)$:

 $\textbf{\textit{I}}$ send (a_1, a_2) to the data structure for $\mathcal{F}^{[3]}$

 \bullet receive **w** that is linearly dependent with $\mathcal{F}^{[3]}((a_1,a_2),\ast)$ **3** if $w = 0$, then $F^{[2]}(a_1, a_2) = 0$

4 so $w \neq 0$; let w_{a_2} be a nonzero entry of w , $a_3 \in D$:

$$
F^{[2]}(a_1, a_2) = F^{[3]}(a_1, a_2, a_3) \left(\frac{1}{w_{a_3}} \sum_{b \in D} w_b\right)
$$

After $n-1$ steps, the algorithm reduces ${\cal F}^{[1]}(a_1)$ to

 $F^{[n]}(a_1, a_2, \ldots, a_n)$

for some appropriate $a_2,\ldots,a_n\in D$. $\mathcal{F}=\mathcal{F}^{[n]}$ is easy to evaluate.

Rest of the tractability proof: How to build the data structures?

Strong balance \Rightarrow $\mathcal{F}^{[t]}$ is a block-rank-1 matrix.

Each equivalence class \mathcal{E}_i of \sim_t corresponds to a block:

$$
\mathsf{a} \sim_\mathsf{t} \mathsf{b} \ \Rightarrow \ \mathsf{F}^{[\mathsf{t}]}(\mathsf{x},\mathsf{a}) > 0 \text{ and } \mathsf{F}^{[\mathsf{t}]}(\mathsf{x},\mathsf{b}) > 0 \text{ for some } \mathsf{x}
$$

 QQ

To build the data structure for $\mathcal{F}^{[t]}$, it suffices to compute a representative vector v_j for each block (equivalently, each equivalence class \mathcal{E}_{j} of $\sim_{t}.$

For a query $\mathbf{x}\in D^{t-1}$, \mathbf{x} is in the block of \mathcal{E}_j

$$
\mathcal{F}^{[t]}(\mathbf{x}, a) > 0 \text{ for some } a \in \mathcal{E}_j
$$

$$
\updownarrow
$$

$$
(\mathbf{x}, a) \in \Pr_{[t]} R \text{ for some } a \in \mathcal{E}_j
$$

Return v_j if x is in the block of \mathcal{E}_j ; return $\mathsf{0}$ if it does not belong to any block.

 Ω

Initialization: The data structure for $\mathcal{F}^{[n]}.$

• For each equivalence class \mathcal{E}_i of \sim_n , pick an ${\sf a} \in \mathcal{E}_{j}.$ Let $\omega(n,{\sf a}) = ({\sf x}, {\sf a}) \in R.$ Set the representative vector \mathbf{v}_j of \mathcal{E}_j to be $\mathcal{F}^{[n]}(\mathbf{x},\ast).$

Induction: The data structure for $F^[t]$.

- For each equivalence class \mathcal{E}_{j} of \sim_{i} , pick an ${\sf a} \in \mathcal{E}_{j}.$ Let $\omega(t,{\sf a})=({\sf x},{\sf a},{\sf v})\in R.$ Set the representative vector \mathbf{v}_j to be $\mathcal{F}^{[t]}(\mathbf{x},\ast).$
- Use data structures for $\mathcal{F}^{[t+1]}, \ldots, \mathcal{F}^{[n]}$ and the main counting algorithm to evaluate $\mathcal{F}^{[t]}$.

- Let $\mathcal{L} = \{g_1, \ldots, g_h\}$ be a nonnegative language.
- Given an *n*-ary function F derived by an instance of $\#\text{CSP}(\mathcal{L})$ and integers k, ℓ, r such that $k + \ell + r = n$, we are interested in the following $|D|^k \times |D|^\ell$ matrix $\boldsymbol{\mathsf{M}}$:

$$
M(\mathbf{u},\mathbf{v})=\sum_{\mathbf{w}\in D^r}F(\mathbf{u},\mathbf{v},\mathbf{w}).
$$

Definition

 $\mathcal L$ is strongly balanced if every such matrix **M** is block-rank-1.

Theorem (Cai, C and Lu)

If a nonnegative language $\mathcal L$ is strongly balanced, then $\#\text{CSP}(\mathcal L)$ is solvable in P-time; otherwise, it is $#P$ -hard.

医阿里氏阿里

 \bullet Dichotomy for Unweighted $\#CSP$:

- Tractability criterion: Strong balance
- Mal'tsev polymorphisms and Witness functions
- The counting algorithm
- Generalization to Nonnegative $\#\textsf{CSP}$

2 Dichotomy for #CSP with Complex Values

Cancellations ($\{\pm 1\}$ or even roots of unity) may sometimes lead to efficient algorithms and more tractable cases (e.g., Permanent vs Determinant and Holographic algorithms [Valiant 04]).

Let $\mathcal L$ be a complex-valued language, and $F: D^n \to D$ be an *n*-ary function derived by a $\#\textsf{CSP}(\mathcal{L})$ instance. Let $R \subseteq D^n$:

$$
\mathbf{x} \in R \iff F(\mathbf{x}) \neq 0.
$$

Even with a witness function ω of R, not clear how to use ω to decide efficiently if $\mathcal{F}^{[t]}(x_1,\ldots,x_t)=0$ or not, where

$$
F^{[t]}(x_1,\ldots,x_t)=\sum_{\mathbf{w}\in D^{n-t}}F(x_1,\ldots,x_t,\mathbf{w}).
$$

 Ω

For each $t \geq 2$, build a data structure for $F^{[t]}$:

One can send a $(t-1)$ -tuple $\mathbf{x} \in D^{t-1}$ to the data structure. If $F^{[t]}(\mathbf{x},*) = \mathbf{0}$, return $\mathbf{v} = \mathbf{0}$; otherwise, return a nonzero vector **v** linearly dependent with $F^{[t]}(\mathbf{x},*)$, in P-time.

Then a similar main counting algorithm can compute efficiently

$$
\sum_{\mathbf{x}\in D^n}F(\mathbf{x}).
$$

The First Difficulty

 \bullet An $d^{t-1}\times d$ matrix may have d^{t-1} pairwise linearly independent rows. Cannot even afford to store this many representative vectors.

伊 ▶ イヨ ▶ イヨ ▶

Real matrices [Goldberg, Grohe, Jerrum and Thurley 09] and complex matrices [Cai, C and Lu 11]

$$
\begin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ 1 & -1 & 1 & -1 \ 1 & -1 & -1 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \ 1 & \zeta & \zeta^2 & \zeta^3 & \zeta^4 \ 1 & \zeta^2 & \zeta^4 & \zeta & \zeta^3 \ 1 & \zeta^3 & \zeta & \zeta^4 & \zeta^2 \ 1 & \zeta^4 & \zeta^3 & \zeta^2 & \zeta^1 \end{pmatrix}
$$

Wishful thinking: What if any two rows of $\mathcal{F}^{[t]}$ are either linearly dependent or orthogonal \Rightarrow At most d representative vectors.

ഹൈ

The Block Orthogonality condition

Let F be a function defined by a $\#CSP(\mathcal{L})$ instance. Then every two rows of $\mathcal{F}^{[t]}$ are either linearly dependent or orthogonal.

Lemma

If L violates this condition, then $\#CSP(L)$ is $\#P$ -hard.

何) (三) (三)

The Second Difficulty

 \bullet Let $\{ {\sf v}_i \}$ be the representative vectors of ${\cal F}^{[t]}$. Let S_j denote the set of rows $\mathbf{u} \in D^{t-1}$ that are linearly dependent with \mathbf{v}_i . Given a query $\mathbf{u} \in D^{t-1}$, how to decide if $\mathbf{u} \in S_i$ or not?

A witness function for R no longer helps!

Wishful thinking: Every $S_j \subseteq D^{t-1}$ has a Mal'tsev polymorphism. If so, one can hope to build a witness function for each \mathcal{S}_{j} .

The Mal'tsev condition

Let F be a function defined by a $\#\text{CSP}(\mathcal{L})$ instance. Then all such sets $S_j\subseteq D^{t-1}$ share a Mal'tsev polymorphism $\psi.$

Lemma

If $\mathcal L$ violates this condition, then $\#CSP(\mathcal L)$ is $\#P$ -hard.

ഹൈ

 \bullet How to build the data structures for $\mathcal{F}^{[t]}$ inductively? Need to compute the representative vectors (at most d many) and to compute a witness function ω_j for each $\mathcal{S}_j \subseteq D^{t-1}.$

Type Partition condition

Manipulate relations that share a Mal'tsev polymorphism.

Lemma

If L violates the Type Partition condition, $\#CSP(L)$ is $\#P$ -hard.

つへい

For $t = n, \ldots, 2$, build inductively a data structure for $F^{[t]}$:

- **1** Compute the representative vectors. Number of representative vectors is at most d: the Block Orthogonality condition.
- ? Compute a witness function ω_j of $\mathcal{S}_j \subseteq D^{t-1}$ for each representative vector \mathbf{v}_j . Existence: the Mal'tsev condition.
- Computation of these objects uses the Type Partition condition.

Theorem

If L satisfies all these three conditions, $\#CSP(L)$ can be solved in polynomial time; otherwise, $\#CSP(\mathcal{L})$ is $\#P$ -hard.

A . . 2 . . 2 .

1 Determine the decidability of the tractability criterion:

- Given a finite set of complex-valued functions \mathcal{L} , decide whether $\mathcal L$ satisfies the tractability criterion.
- Counting graph homomorphisms: in P.
- Dichotomy for nonnegative $\#CSP$: in NP.
- Dichotomy for complex $\#CSP$: decidable?

Jin-Yi's take: The land is logically conquered, but one does not really know what treasures lie within.

2 Possibility to apply the ideas elsewhere?

Thanks!

Xi Chen [Dichotomy Theorems for Counting Problems](#page-0-0)

4. 0. 8. 1

す 御 メ イ 君 メ イ 君 メ

目