The Classification Program II: Tractable Classes and Hardness Proof

Jin-Yi Cai (University of Wisconsin-Madison)

January 27, 2016

Previously ...

By a Pfaffian orientation, one can compute $\text{PerfMatch}(G)$ in polynomial time.

Definition

A matchgate is an undirected weighted plane graph G with a subset of distinguished nodes on its outer face, called the external nodes, ordered in a clockwise order.

Let G be a matchgate with k external nodes. For each $\alpha \in \{0,1\}^k$, G defines a subgraph G^α obtained from G by moving all external nodes i (and incident edges) such that $\alpha_i = 1$.

Definition

We define the signature of a matchgate G as the vector $\Gamma_G = (\Gamma_G^{\alpha})$, indexed by $\alpha \in \{0,1\}^k$ in lexicographic order, as follows:

$$
\Gamma_G^{\alpha} = \text{PerfMatch}(G^{\alpha}) = \sum_{M \in \mathcal{M}(G^{\alpha})} \prod_{e \in M} w(e). \tag{1}
$$

Counting the number of Perfect Matchings can be viewed as follows:

$$
\operatorname{Holant}(G) = \sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v(\sigma \mid_{E(v)}).
$$

where every vertex v is labeled by an EXACT-ONE function f_v of arity $deg(v)$. We then consider

$$
\operatorname{Holant}(G) = \sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v(\sigma \mid_{E(v)}).
$$

Each product term gives a one if $\sigma^{-1}(1)$ is a Perfect Matching, and zero otherwise.

Definition

Let $\mathcal F$ be a set of constraint functions (signatures). A signature grid is a tuple $\Omega = (G, \pi)$ where π assigns a function $f \in \mathcal{F}$ to each vertex of G.

Definition

For a set of signatures \mathcal{F} , Holant (\mathcal{F}) is the following class of problems: Input: A signature grid $\Omega = (G, \pi)$ over F; Output:

$$
\operatorname{Holant}(\Omega;\mathcal{F})=\sum_{\sigma:E\rightarrow\{0,1\}}\prod_{v\in V}f_v(\sigma\mid_{E(v)}),
$$

where

- \bullet $E(v)$ denotes the incident edges of v and
- $\sigma\mid_{E(v)}$ denotes the restriction of σ to $E(v)$, and $f_{\nu}(\sigma\mid_{E(v)})$ is the evaluation of f_{v} on the ordered input tuple $\sigma\mid_{E(\mathsf{v})}$.

INPUT: A planar graph $G = (V, E)$ of maximum degree 3.

Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

INPUT: A planar graph $G = (V, E)$ of maximum degree 3. Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose G is 3-regular.

INPUT: A planar graph $G = (V, E)$ of maximum degree 3. OUTPUT: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose G is 3-regular.

Let $f(x, y, z)$ be the NOT-ALL-EQUAL function. This is the constraint at every vertex.

INPUT: A planar graph $G = (V, E)$ of maximum degree 3. Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose G is 3-regular.

Let $f(x, y, z)$ be the NOT-ALL-EQUAL function. This is the constraint at every vertex.

If f is a symmetric function on $\{x_1, x_2, \ldots, x_n\}$, we can denote it as $[f_0, f_1, \ldots, f_n]$, where f_w is the value of f on input of Hamming weight w. Thus the ternary NOT-ALL-EQUAL function f is $[0, 1, 1, 0]$.

For every edge, we can replace it by a path of length 2, and assign the binary DISEQUALITY function $[0, 1, 0]$ at the new vertex.

For every edge, we can replace it by a path of length 2, and assign the binary DISEQUALITY function $[0, 1, 0]$ at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

For every edge, we can replace it by a path of length 2, and assign the binary \overline{D} ISEQUALITY function $[0, 1, 0]$ at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

Each edge DISEQUALITY function $[0, 1, 0]$ is 1 if the two ends are assigned a different value of $\{0, 1\}$, and is 0 otherwise. This corresponds to an orientation.

For every edge, we can replace it by a path of length 2, and assign the binary \overline{D} ISEQUALITY function $[0, 1, 0]$ at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

Each edge DISEQUALITY function $[0, 1, 0]$ is 1 if the two ends are assigned a different value of $\{0, 1\}$, and is 0 otherwise. This corresponds to an orientation.

Each vertex function $[0, 1, 1, 0]$ evaluates to 1 if the no-sink-no-source condition is satisfied, and it evaluates to 0 otherwise.

- This Holant Sum can be viewed as a (long) dot product of the following two vectors:
- On LHS: we take the tensor product of all $[0, 1, 0]$, one per each edge. On RHS: we take the tensor product of all $[0, 1, 1, 0]$, one per each vertex. The indices of the two (long) vectors (each of dimension $2^{2|E|}$) are matched up by the connection of the graph.

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $1 -1$.

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $1 -1$.

$$
[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]
$$

$$
[0, 1, 0](H^{-1})^{\otimes 2} \leftarrow [0, 1, 0]
$$

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $1 -1$.

$$
[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]
$$

$$
[0, 1, 0](H^{-1})^{\otimes 2} \leftarrow [0, 1, 0]
$$

$$
\begin{array}{rcl} [0,1,1,0] & = & \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes 3} \\ & \mapsto H^{\otimes 3}[0,1,1,0] & = & \begin{bmatrix} 2 \\ 0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\otimes 3} = [6,0,-2,0], \end{array}
$$

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $1 -1$.

$$
[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]
$$

$$
[0, 1, 0](H^{-1})^{\otimes 2} \leftarrow [0, 1, 0]
$$

$$
[0,1,1,0] = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{\otimes 3}
$$

\n
$$
\mapsto H^{\otimes 3}[0,1,1,0] = \begin{bmatrix} 2 \\ 0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\otimes 3} = [6,0,-2,0],
$$

and

$$
\leftarrow [0, 1, 0] = [1 \quad 1]^{\otimes 2} - [1 \quad 0]^{\otimes 2} - [0 \quad 1]^{\otimes 2}
$$

$$
[0, 1, 0](H^{-1})^{\otimes 2} = [\frac{1}{2}, 0, \frac{-1}{2}] = \frac{1}{2}[1, 0, -1].
$$

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω' , then Holant_{Ω} = Holant_{Ω'}.

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω' , then Holant $\Omega =$ Holant Ω .

Hence the same quantity is obtained for #PL-3-NAE-ICE if we use the signature $[6, 0, -2, 0] = H^{\otimes 3}[0, 1, 1, 0]$ for each vertex, And the signature $\frac{1}{2}[1,0,-1] = [0,1,0] (H^{-1})^{\otimes 2}$ for each edge.

Holographic Algorithms by Matchgates

Both $[6, 0, -2, 0]$ and $\frac{1}{2}[1, 0, -1]$ are matchgate signatures.

Holographic Algorithms by Matchgates

Both $[6, 0, -2, 0]$ and $\frac{1}{2}[1, 0, -1]$ are matchgate signatures.

Figure: A matchgate with signature $[6, 0, -2, 0]$

Figure: A matchgate with signature $\frac{1}{2}[1, 0, -1]$

Thus #PL-3-NAE-ICE is computable in P.

Theorem

A symmetric signature is the signature of a matchgate iff it has the following form, for some a, $b \in \mathbb{C}$ and integer k (we take the convention that $0^0=1$):

 $\textbf{D} \ \ [a^k \, b^0, 0, a^{k-1} b, 0, a^{k-2} b^2, 0, \ldots, a^0 b^k \]$ (arity $2k > 2$) ${\bf 2} \ \ [{\mathsf{a}}^k \, {\mathsf{b}}^0, 0, {\mathsf{a}}^{k-1} \, {\mathsf{b}}, 0, {\mathsf{a}}^{k-2} \, {\mathsf{b}}^2, 0, \ldots, {\mathsf{a}}^0 \, {\mathsf{b}}^k$ (arity $2k + 1 \geq 1$) $\textbf{3} \ \ [0, a^k b^0, 0, a^{k-1} b, 0, a^{k-2} b^2, 0, \ldots, a^0 b^k \$ (arity $2k + 1 > 1$) ● $[0, a^k b^0, 0, a^{k-1} b, 0, a^{k-2} b^2, 0, \ldots, a^0 b^k]$ (arity $2k + 2 \geq 2$). Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Consider the signature $f = [1, 0, 1, 1]$.

Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Consider the signature $f = [1, 0, 1, 1]$.

Definition

For any $n \geq 1$, a signature $f = [f_0, f_1, \ldots, f_n]$ is a Fibonacci gate if

$$
f_{k+2} = f_{k+1} + f_k, \quad 0 \le k \le n-2.
$$

A set of signatures $\cal F$ is called Fibonacci if every signature in $\cal F$ is a Fibonacci gate.

Recall

$$
\operatorname{Holant}(\Omega;\mathcal{F})=\sum_{\sigma:\mathcal{E}\to\{0,1\}}\prod_{v\in V}f_v(\sigma\mid_{E(v)}),
$$

Recall

$$
\operatorname{Holant}(\Omega;\mathcal{F})=\sum_{\sigma:E\rightarrow\{0,1\}}\prod_{v\in V}f_v(\sigma\mid_{E(v)}),
$$

Theorem

For any finite set of Fibonacci gates F , the Holant problem Holant(F) is computable in polynomial time.

Figure: First operation.

Figure: Second operation.

Definition

For any $n \geq 1$, and a parameter $\lambda \in \mathbb{C}$, a signature $f = [f_0, f_1, \ldots, f_n]$ is a generalized Fibonacci gate (with parameter λ) if

$$
f_{k+2} = \lambda f_{k+1} + f_k, \quad 0 \le k \le n-2. \tag{2}
$$

A set of signatures F is called generalized Fibonacci if for some $\lambda \in \mathbb{C}$, every signature in $\mathcal F$ is a generalized Fibonacci gate with parameter λ .

Definition

For any $n \geq 1$, and a parameter $\lambda \in \mathbb{C}$, a signature $f = [f_0, f_1, \ldots, f_n]$ is a generalized Fibonacci gate (with parameter λ) if

$$
f_{k+2} = \lambda f_{k+1} + f_k, \quad 0 \le k \le n-2. \tag{2}
$$

A set of signatures F is called generalized Fibonacci if for some $\lambda \in \mathbb{C}$, every signature in $\mathcal F$ is a generalized Fibonacci gate with parameter λ .

GEN-EQ are Generalized Equalities: $[*, 0, \ldots, 0, *]$.

Define

$$
\mathscr{F} = \{ f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i \} \cup \text{GEN-EQ.}
$$
 (3)

Define

 $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ}.$ $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ}.$ $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ}.$ (3)

Theorem

For any $f \in \mathscr{F}$ in [\(3\)](#page-31-0),

- **1** There exists an orthogonal T such that Tf is a $GEN-EQ$.
- **2** There exists an orthogonal T such that Tf is a Fibonacci gate satisfying Definition [7.](#page-23-0)
- **3** For all orthogonal T, Tf $\in \mathcal{F}$.

Define

 $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ.}$ $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ.}$ $\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{GEN-EQ.}$ (3)

Theorem

For any $f \in \mathscr{F}$ in [\(3\)](#page-31-0),

- **1** There exists an orthogonal T such that Tf is a $GEN-EQ$.
- **2** There exists an orthogonal T such that Tf is a Fibonacci gate satisfying Definition [7.](#page-23-0)
- **3** For all orthogonal T, Tf $\in \mathcal{F}$.

Remark: In [\(3\)](#page-31-0), when $\lambda = \pm 2i$, f is a vanishing signature.

Theorem

A symmetric signature $[f_0, f_1, \ldots, f_n]$ can be transformed by some invertible holographic transformation to a Fibonacci gate according to Definition [7](#page-23-0) (equivalently to a signature in $\mathscr F$ defined in [\(3\)](#page-31-0)) iff there exist three constants a, b and c, such that $b^2 - 4ac \neq 0$, and for all $0 \leq k \leq n-2$,

$$
af_k + bf_{k+1} + cf_{k+2} = 0.
$$
 (4)

Theorem

A symmetric signature $[f_0, f_1, \ldots, f_n]$ can be transformed by some invertible holographic transformation to a Fibonacci gate according to Definition [7](#page-23-0) (equivalently to a signature in $\mathscr F$ defined in [\(3\)](#page-31-0)) iff there exist three constants a, b and c, such that $b^2 - 4ac \neq 0$, and for all $0 \leq k \leq n-2$,

$$
af_k + bf_{k+1} + cf_{k+2} = 0.
$$
 (4)

 $\operatorname{Holant}^*({\mathcal F})$ is the problem $\operatorname{Holant}({\mathcal F}\cup {\mathcal U}),$ where ${\mathcal U}$ is the set of all unary signatures.
A signature is degenrate if it is a tensor product of unary signatures.

This includes all unary signatures.

If F consists of degenrate signatures, then $\text{Holant}(\mathcal{F})$ is tractable.

A function has product type if it can be expressed as a product of unary functions, binary EQUALITY functions $((-_2) = [1, 0, 1])$ and binary DISEQUALITY functions $((\neq_2) = [0, 1, 0])$, on not necessarily disjoint subsets of variables.

We denote by $\mathscr P$ the set of all functions of product type.

Theorem

Let $\mathcal F$ be a set of non-degenerate symmetric signatures over $\mathbb C$. Then $\operatorname{Holant}^*({\mathcal F})$ is $\#P\text{-}$ hard, unless ${\mathcal F}$ satisfies the following conditions, in which case it is computable in polynomial time.

- \bullet All signatures in F have arity at most 2.
- **2** There exists some $M \in GL_2(\mathbb{C})$ such that $(=_2)M^{\otimes 2} \in \mathcal{P}$ and $F \subseteq M \mathscr{P}$.
- **3** There exists $\lambda \in \{2i, -2i\}$, such that every signature $f \in \mathcal{F}$ of arity n satisfies the recurrence

$$
f_{k+2} = \lambda f_{k+1} + f_k, \quad \text{for} \quad 0 \leq k \leq n-2.
$$

The counting constraint satisfaction problem $\#\text{CSP}(\mathcal{F})$ is defined as follows: The input I is a finite sequence of constraints on variables x_1, x_2, \ldots, x_n of the form $F(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$, where $F \in \mathcal{F}$. The output is called the partition function

$$
Z(I) = \sum_{x_1, x_2, ..., x_n \in \{0,1\}} \prod F(x_{i_1}, x_{i_2}, ..., x_{i_k}),
$$

where the product is over all constraints occurring in *I*. For now we will restrict to the Boolean domain.

A function is of affine type if it can be expressed as

$$
\lambda \cdot \chi_{\mathcal{A}X} \cdot \mathfrak{i}^{\mathcal{L}_1(X) + \mathcal{L}_2(X) + \cdots + \mathcal{L}_n(X)},
$$

where $X = (x_1, x_2, \ldots, x_k, 1)$ $\lambda \in \mathbb{C}$, $i = \sqrt{-1}$, each L_j is an integer 0-1 indicator function of the form $\langle \alpha_j, X \rangle$, where α_j is a $k+1$ dimensional vector over \mathbb{Z}_2 and the dot product $\langle \cdot, \cdot \rangle$ is computed over \mathbb{Z}_2 . The set of all functions of *affine type* is denoted by $\mathscr A$.

Theorem

A function f belongs to $\mathscr A$ iff it can be expressed as $\lambda\chi_{\mathcal A X} \mathfrak i^{\mathcal Q({x_1,...,x_k})}$ where Q is a homogeneous quadratic polynomial over $\mathbb Z$ with the additional requirement that every cross term $x_{s}x_{t}$ has an even coefficient, where $s \neq t$. We may also use all, not necessarily homogeneous, polynomials over $\mathbb Z$ of degree at most 2, with the same requirement on cross terms.

$$
\mathscr{F}_1 = \{ \lambda([1,0]^{\otimes k} + i^{r}[0,1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \},
$$

$$
\mathscr{F}_2 = {\{\lambda([1,1]^{\otimes k} + i'[1,-1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1,2,\ldots, \text{ and } r = 0,1,2,3\},}
$$

$$
\mathscr{F}_3 = \{ \lambda([1,i]^{\otimes k} + i^r[1,-i]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \}.
$$

$$
\mathcal{F}_1 = \{ \lambda([1,0]^{\otimes k} + i'[0,1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \},
$$

\n
$$
\mathcal{F}_2 = \{ \lambda([1,1]^{\otimes k} + i'[1,-1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \},
$$

\n
$$
\mathcal{F}_2 = \{ \lambda([1,1]^{\otimes k} + i'[1,-1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \},
$$

$$
\mathscr{F}_3 = \{ \lambda([1,i]^{\otimes k} + i^r[1,-i]^{\otimes k}) \mid \lambda \in \mathbb{C}, k = 1, 2, ..., \text{ and } r = 0, 1, 2, 3 \}.
$$

We note that expressions in complex numbers appear naturally, even for real-valued functions. The special case where $r = 1$, $k = 2$ and $\lambda = (1+\frak{i})^{-1}$ in \mathscr{F}_3 is noteworthy. In this case we get a real-valued binary symmetric function $H = [1, 1, -1]$. In other words, $H(0, 0) = H(0, 1) = H(1, 0) = 1$ and $H(1, 1) = -1$. The matrix form of this function is the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

Theorem

Suppose $\mathscr F$ is a set of functions mapping Boolean inputs to complex numbers. If $\mathcal{F} \subseteq \mathcal{A}$ or $\mathcal{F} \subseteq \mathcal{P}$, then $\#CSP(\mathcal{F})$ is computable in polynomial time. Otherwise, $\#CSP(\mathscr{F})$ is $\#P$ -hard.

- **1** Graph Homomorphisms
- 2 Constraint Satisfaction Problems (#CSP)
- **3** Holant Problems

In each framework, there has been remarkable progress in the classification program of the complexity of counting problems.

L. Lovász:

Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

<http://www.cs.elte.hu/~lovasz/hom-paper.html>

Let $\mathbf{A} = (A_{i,j}) \in \mathbb{C}^{\kappa \times \kappa}$ be a symmetric complex matrix.

The Graph Homomorphism problem is: INPUT: An undirected graph $G = (V, E)$. OUTPUT:

$$
Z_{\mathbf{A}}(G)=\sum_{\xi: V\to[\kappa]} \prod_{(u,v)\in E} A_{\xi(u),\xi(v)}.
$$

Theorem

 $[C, X]$ Chen and Pinyan Lul For any symmetric complex valued matrix $A \in \mathbb{C}^{\kappa \times \kappa}$, the problem of computing $Z_{\mathsf{A}}(G)$, for any input G, is either in P or $#P$ -hard. Given **A**, whether $Z_{\mathbf{A}}(\cdot)$ is in P or #P-hard can be decided in polynomial time in the size of A.

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Many partial results: Dyer, Greenhill, Bulatov, Grohe, Goldberg, Jerrum, Thurley, \dots

[C., Xi Chen]

Theorem

Every finite set F of complex valued constraint functions on any finite domain set $[\kappa]$ defines a counting CSP problem $\#CSP(\mathcal{F})$ that is either computable in P or $#P$ -hard.

[C., Xi Chen]

Theorem

Every finite set F of complex valued constraint functions on any finite domain set $[\kappa]$ defines a counting CSP problem $\#\text{CSP}(\mathcal{F})$ that is either computable in P or $#P$ -hard.

The decision version of this is open. The decidability of this $#CSP$ Dichotomy is open.

Creignou, Hermann, . . ., Bulatov, Dalmau, Dyer, Richerby, Lu . . . Creignou, Khanna, Sudan: Complexity Classifications of Boolean Constraint Satisfaction Problems, SIAM.

A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures $\mathcal F$, we define the counting problem Holant($\mathcal F$) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant $(\Omega; \mathcal{F})$.

A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures $\mathcal F$, we define the counting problem Holant($\mathcal F$) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant $(\Omega; \mathcal{F})$.

The problem Pl-Holant($\mathcal F$) is defined similarly using a planar signature grid.

A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures $\mathcal F$, we define the counting problem Holant($\mathcal F$) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant $(\Omega; \mathcal{F})$.

The problem PI-Holant(F) is defined similarly using a planar signature grid.

Definition

We say a signature set F is C-transformable for Holant(F), if there exists $T \in GL_2(\mathbb{C})$ such that $(=_2) \mathcal{T}^{\otimes 2} \in \mathscr{C}$ and $\mathcal{T}^{-1}f \in \mathscr{C}$ for all $f \in \mathcal{F}$.

[C., Heng Guo, Tyson Williams]

Theorem

Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then Holant (F) is $\#P$ -hard unless F satisfies one of the following conditions, in which case the problem is in P:

- \bullet All non-degenerate signatures in F have arity ≤ 2 ;
- \bullet \circ *F* is *A*-transformable:
- \bullet \circ F is P-transformable:
- **3** $\mathcal{F} \subseteq \mathcal{V}^{\sigma} \cup \{f \in \mathcal{R}_2^{\sigma} | \text{arity}(f) = 2\}$ for $\sigma \in \{+, -\};$
- **3** All non-degenerate signatures in $\mathcal F$ are in $\mathcal R_2^{\sigma}$ for $\sigma\in\{+,-\}.$

A planar matchgate $\Gamma = (G, X)$ is a weighted graph $G = (V, E, W)$ with a planar embedding, having external nodes, placed on the outer face.

Define $\operatorname{PerfMatch}(\mathsf{G}) = \sum_{\mathsf{\mathcal{M}}} \prod_{(i,j) \in \mathsf{\mathcal{M}}} w_{ij}$, where the sum is over all perfect matchings M. A matchgate Γ is assigned a Matchgate Signature

$$
G=(G^S),
$$

where

$$
G^S = \mathrm{PerfMatch}(G-S).
$$

The matchgate signatures are characterized by: (1) Parity Condition: either all even entries are 0 or all odd entries are 0. (2) Matchgate Identities (MGI): For any patterns $\alpha, \beta \in \{0,1\}^n$, let bitwise XOR $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 < p_2 < \ldots < p_\ell \leq n$. Then

$$
\sum_{i=1}^{\ell}(-1)^{i}f_{\alpha\oplus e_{p_{i}}}f_{\beta\oplus e_{p_{i}}}=0.
$$
 (5)

Valiant first proved MGI for arity at most 4. General proofs are given in [C., Choudhary, Lu][C., Lu]. See also Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Valiant first proved MGI for arity at most 4. General proofs are given in [C., Choudhary, Lu][C., Lu]. See also Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7),

2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 \leq p_2 \leq \ldots \leq p_\ell \leq n$. Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 \leq p_2 \leq \ldots \leq p_\ell \leq n$.

Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M\oplus M'$. Since $\alpha_{p_i}\neq \beta_{p_i},\ M\oplus M'$ has an alternating path from p_i to some p_j .

Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 \leq p_2 \leq \ldots \leq p_\ell \leq n$.

Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M\oplus M'$. Since $\alpha_{p_i}\neq \beta_{p_i},\ M\oplus M'$ has an alternating path from p_i to some p_j .

Planarity \implies *j* has the opposite parity as *i*.

Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 < p_2 < \ldots < p_\ell \leq n$.

Take
$$
M \in \mathcal{M}^{\alpha \oplus e_{p_i}}
$$
, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M\oplus M'$. Since $\alpha_{p_i}\neq \beta_{p_i},\ M\oplus M'$ has an alternating path from p_i to some p_j .

Planarity \implies *j* has the opposite parity as *i*.

Now flipping edges along the alternating path, we get

$$
M \Longrightarrow \widehat{M} \in \mathcal{M}^{\alpha \oplus e_{p_j}} \quad M' \Longrightarrow \widehat{M'} \in \mathcal{M}^{\beta \oplus e_{p_j}}
$$

Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 < p_2 < \ldots < p_\ell \leq n$.

Take
$$
M \in \mathcal{M}^{\alpha \oplus e_{p_i}}
$$
, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M\oplus M'$. Since $\alpha_{p_i}\neq \beta_{p_i},\ M\oplus M'$ has an alternating path from p_i to some p_j .

Planarity \implies *j* has the opposite parity as *i*. Now flipping edges along the alternating path, we get

$$
M \Longrightarrow \widehat{M} \in \mathcal{M}^{\alpha \oplus e_{p_j}} \quad M' \Longrightarrow \widehat{M'} \in \mathcal{M}^{\beta \oplus e_{p_j}}
$$

This sets up a bijective mapping

$$
\bigcup_{\textit{ieven}} \left[\mathcal{M}^{\alpha + \mathbf{e}_{p_i}} \times \mathcal{M}^{\beta + \mathbf{e}_{p_i}}\right] \leftrightarrow \bigcup_{\textit{jodd}} \left[\mathcal{M}^{\alpha + \mathbf{e}_{p_j}} \times \mathcal{M}^{\beta + \mathbf{e}_{p_j}}\right]
$$

maintaining weights.

Matchgate-Transformable

$$
\text{Let } H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.
$$

Matchgate-Transformable

Let
$$
H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$
. $H^{-1} = \frac{1}{2}H$.

Let
$$
H = \begin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}
$$
. $H^{-1} = \frac{1}{2}H$.
\n
$$
(=_k)H^{\otimes k} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\otimes k} + \begin{bmatrix} 1 & -1 \end{bmatrix}^{\otimes k} = 2[1, 0, 1, 0, \ldots] \in \mathcal{M}.
$$
\nLet $\widehat{\mathcal{M}} = H\mathcal{M}$.
\nThen for any $\mathcal{F} \subseteq \widehat{\mathcal{M}}$, Pl-#CSP(\mathcal{F}) is tractable.

Heng Guo, Tyson Williams

Theorem

Let F be any set of symmetric, complex-valued signatures in Boolean variables. Then PI-#CSP(F) is #P-hard unless $\mathcal{F} \subseteq \mathcal{A}$, $\mathcal{F} \subseteq \mathcal{P}$, or $\mathcal{F} \subseteq \mathcal{M}$, in which case the problem is computable in polynomial time.

A set of signatures F is called vanishing if the value Holant $_{\Omega}(\mathcal{F})$ is zero for every signature grid $Ω$. A signature f is called vanishing if the singleton set $\{f\}$ is vanishing.

A set of signatures F is called vanishing if the value Holant_O (F) is zero for every signature grid Ω . A signature f is called vanishing if the singleton set $\{f\}$ is vanishing.

Definition

Let S_n be the symmetric group of degree n. Then for positive integers t and *n* with $t \leq n$ and unary signatures v, v_1, \ldots, v_{n-t} , we define

$$
\operatorname{Sym}_n^t(v; v_1,\ldots,v_{n-t})=\sum_{\pi\in S_n} u_{\pi(1)}\otimes u_{\pi(2)}\cdots\otimes u_{\pi(k)},\qquad \qquad (6)
$$

where the ordered sequence $(u_1,u_2,\ldots,u_n)=(\nu,\ldots,\nu,\nu_1,\ldots,\nu_{n-t}).$ t copies

A nonzero symmetric signature f of arity n has positive vanishing degree $k > 1$, denoted by vd⁺ $(f) = k$, if $k < n$ is the largest positive integer such that there exists $n - k$ unary signatures v_1, \ldots, v_{n-k} satisfying

$$
f=\mathsf{Sym}_{n}^{k}([1,\mathfrak{i}];v_{1},\ldots,v_{n-k}).
$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$.
A nonzero symmetric signature f of arity n has positive vanishing degree $k > 1$, denoted by vd⁺ $(f) = k$, if $k < n$ is the largest positive integer such that there exists $n - k$ unary signatures v_1, \ldots, v_{n-k} satisfying

$$
f=\mathsf{Sym}_{n}^{k}([1,\mathfrak{i}];v_{1},\ldots,v_{n-k}).
$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$. We define negative vanishing degree vd⁻ similarly, using $-i$.

A nonzero symmetric signature f of arity n has positive vanishing degree $k \geq 1$, denoted by vd⁺ $(f) = k$, if $k \leq n$ is the largest positive integer such that there exists $n - k$ unary signatures v_1, \ldots, v_{n-k} satisfying

$$
f=\mathsf{Sym}_{n}^{k}([1,i];\,v_1,\ldots,v_{n-k}).
$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$. We define negative vanishing degree vd⁻ similarly, using $-i$.

Definition

For
$$
\sigma \in \{+, -\}
$$
, we define $\mathcal{V}^{\sigma} = \{f \mid 2 \text{vd}^{\sigma}(f) > \text{arity}(f)\}.$

An arity n symmetric signature of the form $f=[f_0,f_1,\ldots,f_n]$ is in \mathscr{R}^+_t for a nonnegative integer $t \geq 0$ if $t > n$; or for any $0 \leq k \leq n-t$, f_k, \ldots, f_{k+t} satisfy the recurrence relation of order t

$$
\begin{pmatrix} t \\ t \end{pmatrix} i^t f_{k+t} + \begin{pmatrix} t \\ t-1 \end{pmatrix} i^{t-1} f_{k+t-1} + \cdots + \begin{pmatrix} t \\ 0 \end{pmatrix} i^0 f_k = 0.
$$
 (7)

We define \mathscr{R}_{t}^{-} similarly but with $-i$ in place of i in [\(7\)](#page-74-0).

Theorem

Let F be a set of symmetric signatures. Then F is vanishing if and only if $\mathcal{F} \subseteq \mathscr{V}^+$ or $\mathcal{F} \subseteq \mathscr{V}^-$.

Theorem

Let $\mathcal F$ be a set of symmetric signatures. Then $\mathcal F$ is vanishing if and only if $\mathcal{F} \subseteq \mathscr{V}^+$ or $\mathcal{F} \subseteq \mathscr{V}^-$.

Let $Z = \frac{1}{\sqrt{2}}$ $\frac{1}{2} \left[\begin{array}{cc} 1 & 1 \\ 1 & -i \end{array} \right]$

Theorem

Suppose f is a symmetric signature of arity n. Let $\hat{f}=(Z^{-1})^{\otimes n}f$. If $\mathsf{v}\mathsf{d}^+(f) = n-d$, then $\hat{f} = [\hat{f}_0, \hat{f}_1, \dots, \hat{f}_d, 0, \dots, 0]$ and $\hat{f}_d \neq 0$.

Note that $[1, 0, 1]Z^{\otimes 2} = [0, 1, 0].$

Let $G = (V, E)$ be an undirected graph, the Tutte polynomial of G is defined as

$$
T(G; x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|},
$$
 (8)

where $k(A)$ denotes the number of connected components of the graph (V, A) .

Jaeger, Vertigan and Welsh

Theorem

For x, $y \in \mathbb{C}$, evaluating the Tutte polynomial at (x, y) is #P-hard over graphs unless

$$
(x-1)(y-1)=1
$$

or

 $(x, y) \in \{ (1, 1), (-1, -1), (0, -1), (-1, 0), (i, -i), (-i, i), (\omega, \omega^2), (\omega^2, \omega) \},$ where $\omega = e^{2\pi i/3}$. In each exceptional case, the problem is in polynomial time.

Theorem

For $x, y \in \mathbb{C}$, evaluating the Tutte polynomial at (x, y) is #P-hard over planar graphs unless

 $(x-1)(y-1) \in \{1,2\}$ or $(x,y) \in \{(1,1),(-1,-1),(\omega,\omega^2),(\omega^2,\omega)\},$ where $\omega = e^{2\pi i/3}$. In each exceptional case, the problem is in polynomial time.

Given a connected plane graph G , its *medial graph* G_m has a vertex e' for each edge e of G , and vertices e'_1 and e'_2 in G_{m} are joined by an edge for each face of G in which their corresponding edges e_1 and e_2 in G occur consecutively.

Figure: A plane graph, its medial graph, and the two graphs superimposed.

Given a graph G, an orientation is an Eulerian orientation if for each vertex v of G , the number of incoming edges of v equals the number of outgoing edges of v.

Given a graph G, an orientation is an Eulerian orientation if for each vertex v of G , the number of incoming edges of v equals the number of outgoing edges of v.

Michel Las Vergnas

Theorem

Let G be a connected plane graph and let $\mathcal{O}(G_m)$ be the set of all Eulerian orientations in the medial graph G_m of G. Then

$$
2 \cdot \mathsf{T}(G; 3,3) = \sum_{O \in \mathscr{O}(G_m)} 2^{\beta(O)}, \tag{9}
$$

where β (O) is the number of saddle vertices in the orientation O, i.e. the number of vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Theorem

 $\#$ EULERIAN-ORIENTATIONS is $#P$ -hard for planar 4-regular graphs.

Proof: 1. The Tutte Polynomial problem (right-hand side of [\(9\)](#page-81-0)) is the bipartite planar Holant problem Pl-Holant (\neq ₂ | f), where the signature matrix of f is

$$
M_f = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}
$$

.

2. By $Z = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\left[\begin{smallmatrix} 1 & 1 \ i & -i \end{smallmatrix}\right]$, the Tutte Polynomial problem becomes

$$
\text{PI-Holant}(\neq_2 \mid f) \equiv_T \text{PI-Holant}([0, 1, 0](Z^{-1})^{\otimes 2} \mid Z^{\otimes 4}f)
$$
\n
$$
\equiv_T \text{PI-Holant}([1, 0, 1] \mid \hat{f})
$$
\n
$$
\equiv_T \text{PI-Holant}(\hat{f}),
$$

where the signature matrix of \hat{f} is

$$
M_{\hat{f}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.
$$

3. On the other side, the Eulerian Orientation problem is

Pl-Holant (≠₂ | [0, 0, 1, 0, 0])
\n≡_T Pl-Holant ([0, 1, 0] (Z⁻¹)^{®2} | Z^{®4}[0, 0, 1, 0, 0])
\n≡_T Pl-Holant ([1, 0, 1] |
$$
\frac{1}{2}
$$
[3, 0, 1, 0, 3])
\n≡_T Pl-Holant([3, 0, 1, 0, 3]).

4. Moreover, by assigning the transformed Eulerian Orientation signature $[3, 0, 1, 0, 3]$ at every vertex

Figure: The planar tetrahedron gadget. Each vertex is assigned $[3, 0, 1, 0, 3]$.

Eulerian Orientation

We have

Pl-Holant $(\hat{g}) \leq_T P$ l-Holant $([3, 0, 1, 0, 3])$

with

$$
M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.
$$

Eulerian Orientation

We have

Pl-Holant $(\hat{g}) \leq_T P$ l-Holant $([3, 0, 1, 0, 3])$

with

$$
M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.
$$

5. Finally, we finish the proof by reducing the Tutte Polynomial problem \hat{f} to the Eulerian Orientation problem via \hat{g} :

Interpolate \hat{f} using \hat{g} .

$$
M_{\hat{r}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}
$$

.

Eulerian Orientation

We have

Pl-Holant $(\hat{g}) \leq_T P$ l-Holant $([3, 0, 1, 0, 3])$

with

$$
M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.
$$

5. Finally, we finish the proof by reducing the Tutte Polynomial problem \hat{f} to the Eulerian Orientation problem via \hat{g} :

Interpolate \hat{f} using \hat{g} .

$$
M_{\hat{r}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}
$$

.

Now we show how to reduce PI-Holant(\hat{f}) (TUTTE) to PI-Holant(\hat{g}) (\#EO) by interpolation.

Let Ω be an instance of PI-Holant $(\hat{f}),\ \hat{f}$ appears n times.

We construct from Ω a sequence of instances $\Omega_{\rm s}$ of Holant(\hat{g}) indexed by $s \geq 1$.

We obtain Ω_s from Ω by replacing each occurrence of \hat{f} with the gadget N_s with \hat{g} assigned to all vertices..

Notice that \hat{f} and \hat{g} are rotationally symmetric.

To obtain Ω_s from Ω , we effectively replace $M_{\widehat{f}}$ with $M_{N_s}=(M_{\widehat{g}})^s.$

Interpolation

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$. Let п× -7

$$
T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}
$$

$$
\Lambda_{\hat{f}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ and } \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}
$$

Then

$$
M_{\hat{f}} = T \Lambda_{\hat{f}} T^{-1} \qquad \text{and} \qquad M_{\hat{g}} = T \Lambda_{\hat{g}} T^{-1}
$$

We can view our construction of Ω_s as first replacing each $M_{\widehat{f}}$ by $\tau\Lambda_{\widehat{f}}\,T^{-1}$ to obtain a signature grid Ω^{\prime} , which does not change the Holant value,

We can view our construction of Ω_s as first replacing each $M_{\widehat{f}}$ by $\tau\Lambda_{\widehat{f}}\,T^{-1}$ to obtain a signature grid Ω^{\prime} , which does not change the Holant value, and then replacing each $\Lambda_{\hat{\mathbf{f}}}$ with $\Lambda_{\hat{\mathbf{g}}}^{\mathbf{s}}$.

We can view our construction of Ω_s as first replacing each $M_{\widehat{f}}$ by $\tau\Lambda_{\widehat{f}}\,T^{-1}$ to obtain a signature grid Ω^{\prime} , which does not change the Holant value, and then replacing each $\Lambda_{\hat{f}}$ with $\Lambda_{\hat{g}}^{s}$. We stratify the assignments in Ω' based on the assignment to $\Lambda_{\hat{f}}$. Recall

that the rows of $\Lambda_{\hat{r}}$ and $\Lambda_{\hat{g}}$ are indexed by 00, 01, 10, 11 and the columns are indexed by 00, 10, 01, 11, in their respective orders.

$$
\Lambda_{\hat{r}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}
$$

$$
\Lambda_{\hat{f}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}
$$

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- \bullet (00, 00) j many times,
- \bullet (01, 10) or (11, 11) k many times, and
- \bullet (10, 01) ℓ many times,

where $j + k + \ell = n$, the total number of occurrences of $\Lambda_{\widehat{f}}$ in $\Omega'.$

Let $c_{ik\ell}$ be the sum over all such assignments of the products of evaluations from $\mathcal T$ and $\mathcal T^{-1}$ but excluding $\Lambda_{\hat{\mathcal F}}$ on $\Omega'.$ Then

$$
\text{PI-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}
$$

Let $c_{ik\ell}$ be the sum over all such assignments of the products of evaluations from $\mathcal T$ and $\mathcal T^{-1}$ but excluding $\Lambda_{\hat{\mathcal F}}$ on $\Omega'.$ Then

$$
\text{PI-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}
$$

and the value of the Holant on Ω_s , for $s\geq 1$, is

$$
\text{Pl-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}. \tag{10}
$$

Let $c_{ik\ell}$ be the sum over all such assignments of the products of evaluations from $\mathcal T$ and $\mathcal T^{-1}$ but excluding $\Lambda_{\hat{\mathcal F}}$ on $\Omega'.$ Then

$$
\text{Pl-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}
$$

and the value of the Holant on Ω_s , for $s\geq 1$, is

$$
\text{Pl-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}.
$$
 (10)

This is a linear equation system with unknowns $c_{jk\ell}$, and a coefficient matrix whose rows are indexed by s and columns are indexed by (j, k) , where $0 \leq j, k$ and $j + k \leq n$.

$$
\text{Pl-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}.
$$
 (11)

We take $1 \leq s \leq {n+2 \choose 2}$ $\binom{+2}{2}$. Then the coefficient matrix in the linear system is Vandermonde

$$
\text{Pl-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}.
$$
 (11)

We take $1 \leq s \leq {n+2 \choose 2}$ $\binom{+2}{2}$. Then the coefficient matrix in the linear system is Vandermonde and has full rank since for any $j, k, j', k' \ge 0$, if $(j, k) \neq (j', k')$ then $13^{j}6^{k} \neq 13^{j'}6^{k'}$.

Therefore, after obtaining the values of Pl-Holant_{Ωs} by oracle calls to $\#\mathrm{EO}$, for $1 \leq s \leq {n+2 \choose 2}$ $\binom{+2}{2}$, we can solve the linear system for the unknown $c_{jk\ell}$'s and obtain the value of Pl-Holant $_{\Omega}$ (TUTTE).

<http://www.cs.wisc.edu/~jyc/dichotomy-book.pdf>

Some papers can be found on my web site <http://www.cs.wisc.edu/~jyc>

THANK YOU!