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Kasteleyn’s Algorithm and Matchgates

Previously . . .
By a Pfaffian orientation, one can compute PerfMatch(G ) in polynomial
time.

Definition

A matchgate is an undirected weighted plane graph G with a subset of
distinguished nodes on its outer face, called the external nodes, ordered in
a clockwise order.

Let G be a matchgate with k external nodes. For each α ∈ {0, 1}k , G
defines a subgraph Gα obtained from G by moving all external nodes i
(and incident edges) such that αi = 1.

Definition

We define the signature of a matchgate G as the vector ΓG = (ΓαG ),
indexed by α ∈ {0, 1}k in lexicographic order, as follows:

ΓαG = PerfMatch(Gα) =
∑

M∈M(Gα)

∏
e∈M

w(e). (1)
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Perfect Matchings as a Holant Sum

Counting the number of Perfect Matchings can be viewed as follows:

Holant(G ) =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)).

where every vertex v is labeled by an Exact-One function fv of arity
deg(v).
We then consider

Holant(G ) =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)).

Each product term gives a one if σ−1(1) is a Perfect Matching, and zero
otherwise.
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Holant Sum

Definition

Let F be a set of constraint functions (signatures). A signature grid is a
tuple Ω = (G , π) where π assigns a function f ∈ F to each vertex of G .

Definition

For a set of signatures F , Holant(F) is the following class of problems:
Input: A signature grid Ω = (G , π) over F ;
Output:

Holant(Ω;F) =
∑

σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

where

E (v) denotes the incident edges of v and

σ |E(v) denotes the restriction of σ to E (v), and fv (σ |E(v)) is the
evaluation of fv on the ordered input tuple σ |E(v).

4 / 104



Some Problems

#PL-3-NAE-ICE
Input: A planar graph G = (V ,E ) of maximum degree 3.
Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations.
For simplicity suppose G is 3-regular.

Let f (x , y , z) be the Not-All-Equal function. This is the constraint at
every vertex.

If f is a symmetric function on {x1, x2, . . . , xn}, we can denote it as
[f0, f1, . . . , fn], where fw is the value of f on input of Hamming weight w .
Thus the ternary Not-All-Equal function f is [0, 1, 1, 0].

5 / 104



Some Problems

#PL-3-NAE-ICE
Input: A planar graph G = (V ,E ) of maximum degree 3.
Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations.
For simplicity suppose G is 3-regular.

Let f (x , y , z) be the Not-All-Equal function. This is the constraint at
every vertex.

If f is a symmetric function on {x1, x2, . . . , xn}, we can denote it as
[f0, f1, . . . , fn], where fw is the value of f on input of Hamming weight w .
Thus the ternary Not-All-Equal function f is [0, 1, 1, 0].

6 / 104



Some Problems

#PL-3-NAE-ICE
Input: A planar graph G = (V ,E ) of maximum degree 3.
Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations.
For simplicity suppose G is 3-regular.

Let f (x , y , z) be the Not-All-Equal function. This is the constraint at
every vertex.

If f is a symmetric function on {x1, x2, . . . , xn}, we can denote it as
[f0, f1, . . . , fn], where fw is the value of f on input of Hamming weight w .
Thus the ternary Not-All-Equal function f is [0, 1, 1, 0].

7 / 104



Some Problems

#PL-3-NAE-ICE
Input: A planar graph G = (V ,E ) of maximum degree 3.
Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations.
For simplicity suppose G is 3-regular.

Let f (x , y , z) be the Not-All-Equal function. This is the constraint at
every vertex.

If f is a symmetric function on {x1, x2, . . . , xn}, we can denote it as
[f0, f1, . . . , fn], where fw is the value of f on input of Hamming weight w .
Thus the ternary Not-All-Equal function f is [0, 1, 1, 0].

8 / 104



#PL-3-NAE-ICE continued

For every edge, we can replace it by a path of length 2, and assign the
binary Disequality function [0, 1, 0] at the new vertex.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a
sum over 22|E | terms.

Each edge Disequality function [0, 1, 0] is 1 if the two ends are assigned
a different value of {0, 1}, and is 0 otherwise.
This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source
condition is satisfied, and it evaluates to 0 otherwise.
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Holant Sum as a Dot Product

This Holant Sum can be viewed as a (long) dot product of the following
two vectors:
On LHS: we take the tensor product of all [0, 1, 0], one per each edge.
On RHS: we take the tensor product of all [0, 1, 1, 0], one per each vertex.
The indices of the two (long) vectors (each of dimension 22|E |) are
matched up by the connection of the graph.
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Holographic Transformation

We can perform a local transformation by H =

[
1 1
1 −1

]
.

[0, 1, 1, 0] 7→ H⊗3[0, 1, 1, 0]

[0, 1, 0](H−1)⊗2 7→[0, 1, 0]

[0, 1, 1, 0] =

[
1
1

]⊗3

−
[

1
0

]⊗3

−
[

0
1

]⊗3

7→ H⊗3[0, 1, 1, 0] =

[
2
0

]⊗3

−
[

1
1

]⊗3

−
[

1
−1

]⊗3

= [6, 0,−2, 0],

and

7→[0, 1, 0] =
[
1 1

]⊗2 −
[
1 0

]⊗2 −
[
0 1

]⊗2

[0, 1, 0](H−1)⊗2 = [
1

2
, 0,
−1

2
] =

1

2
[1, 0,−1].
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Valiant’s Holant Theorem

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω′,
then HolantΩ = HolantΩ′ .

Hence the same quantity is obtained for #PL-3-NAE-ICE if we use the
signature [6, 0,−2, 0] = H⊗3[0, 1, 1, 0] for each vertex,
And the signature 1

2 [1, 0,−1] = [0, 1, 0](H−1)⊗2 for each edge.
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Holographic Algorithms by Matchgates

Both [6, 0,−2, 0] and 1
2 [1, 0,−1] are matchgate signatures.

23

1

− 1
3− 1

3

− 1
3

11

1

6

Figure: A matchgate with signature [6, 0,−2, 0]
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Another Matchgate

1

2

1
2

1
2

1

Figure: A matchgate with signature 1
2 [1, 0,−1]

Thus #PL-3-NAE-ICE is computable in P.
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A list of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the
following form, for some a, b ∈ C and integer k (we take the convention
that 00 = 1):

1 [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk ] (arity 2k ≥ 2)

2 [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk , 0] (arity 2k + 1 ≥ 1)

3 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk ] (arity 2k + 1 ≥ 1)

4 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk , 0] (arity 2k + 2 ≥ 2).
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Fibonacci Gates

Recall symmetric signatures are denoted as [f0, f1, . . . , fn].

Consider the signature f = [1, 0, 1, 1].

Definition

For any n ≥ 1, a signature f = [f0, f1, . . . , fn] is a Fibonacci gate if

fk+2 = fk+1 + fk , 0 ≤ k ≤ n − 2.

A set of signatures F is called Fibonacci if every signature in F is a
Fibonacci gate.
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Fibonacci are Tractable

Recall
Holant(Ω;F) =

∑
σ:E→{0,1}

∏
v∈V

fv (σ |E(v)),

Theorem

For any finite set of Fibonacci gates F , the Holant problem Holant(F) is
computable in polynomial time.
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Fibonacci Gates
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Figure: First operation.
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Figure: Second operation.
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Generalized Fibonacci Gates

Definition

For any n ≥ 1, and a parameter λ ∈ C, a signature f = [f0, f1, . . . , fn] is a
generalized Fibonacci gate (with parameter λ) if

fk+2 = λfk+1 + fk , 0 ≤ k ≤ n − 2. (2)

A set of signatures F is called generalized Fibonacci if for some λ ∈ C,
every signature in F is a generalized Fibonacci gate with parameter λ.

Gen-Eq are Generalized Equalities: [∗, 0, . . . , 0, ∗].
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Fibonacci Gates Under Holographic Transformation

Define

F = {f | f satisfies (2) for some λ 6= ±2i} ∪Gen-Eq. (3)

Theorem

For any f ∈ F in (3),

1 There exists an orthogonal T such that Tf is a Gen-Eq.

2 There exists an orthogonal T such that Tf is a Fibonacci gate
satisfying Definition 7.

3 For all orthogonal T , Tf ∈ F .

Remark: In (3), when λ = ±2i, f is a vanishing signature.
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Fibonacci Gates Under Holographic Transformation

Theorem

A symmetric signature [f0, f1, . . . , fn] can be transformed by some invertible
holographic transformation to a Fibonacci gate according to Definition 7
(equivalently to a signature in F defined in (3)) iff there exist three
constants a, b and c, such that b2 − 4ac 6= 0, and for all 0 ≤ k ≤ n − 2,

afk + bfk+1 + cfk+2 = 0. (4)

Holant∗(F) is the problem Holant(F ∪ U), where U is the set of all unary
signatures.
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Degeneracy

A signature is degenrate if it is a tensor product of unary signatures.

This includes all unary signatures.

If F consists of degenrate signatures, then Holant(F) is tractable.
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The Signatures of Product Type

Definition

A function has product type if it can be expressed as a product of unary
functions, binary Equality functions ((=2) = [1, 0, 1]) and binary
Disequality functions (( 6=2) = [0, 1, 0]), on not necessarily disjoint
subsets of variables.
We denote by P the set of all functions of product type.
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A Dichotomy Theorem for Holant∗(F)

Theorem

Let F be a set of non-degenerate symmetric signatures over C. Then
Holant∗(F) is #P-hard, unless F satisfies the following conditions, in
which case it is computable in polynomial time.

1 All signatures in F have arity at most 2.

2 There exists some M ∈ GL2(C) such that (=2)M⊗2 ∈P and
F ⊆ MP.

3 There exists λ ∈ {2i,−2i}, such that every signature f ∈ F of arity n
satisfies the recurrence

fk+2 = λfk+1 + fk , for 0 ≤ k ≤ n − 2.
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#CSP

The counting constraint satisfaction problem #CSP(F) is defined as
follows: The input I is a finite sequence of constraints on variables
x1, x2, . . . , xn of the form F (xi1 , xi2 , . . . , xik ), where F ∈ F . The output is
called the partition function

Z (I ) =
∑

x1,x2,...,xn∈{0,1}

∏
F (xi1 , xi2 , . . . , xik ),

where the product is over all constraints occurring in I .
For now we will restrict to the Boolean domain.
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The Signatures of Affine Type

Definition

A function is of affine type if it can be expressed as

λ · χAX · iL1(X )+L2(X )+···+Ln(X ),

where X = (x1, x2, . . . , xk , 1) λ ∈ C, i =
√
−1, each Lj is an integer 0-1

indicator function of the form 〈αj ,X 〉, where αj is a k + 1 dimensional
vector over Z2 and the dot product 〈·, ·〉 is computed over Z2.
The set of all functions of affine type is denoted by A .
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Another Definition of Affine Signatures

Theorem

A function f belongs to A iff it can be expressed as λχAX i
Q(x1,...,xk ) where

Q is a homogeneous quadratic polynomial over Z with the additional
requirement that every cross term xsxt has an even coefficient, where
s 6= t. We may also use all, not necessarily homogeneous, polynomials
over Z of degree at most 2, with the same requirement on cross terms.
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Symmetric Affine Signatures

F1 = {λ([1, 0]⊗k + ir [0, 1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3},
F2 = {λ([1, 1]⊗k + ir [1,−1]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3},
F3 = {λ([1, i]⊗k + ir [1,−i]⊗k) | λ ∈ C, k = 1, 2, . . . , and r = 0, 1, 2, 3}.

We note that expressions in complex numbers appear naturally, even for
real-valued functions. The special case where r = 1, k = 2 and
λ = (1 + i)−1 in F3 is noteworthy. In this case we get a real-valued binary
symmetric function H = [1, 1,−1]. In other words,
H(0, 0) = H(0, 1) = H(1, 0) = 1 and H(1, 1) = −1. The matrix form of

this function is the Hadamard matrix H =
[

1 1
1 −1

]
.
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Explicit list of F1 ∪F2 ∪F3

1 [1, 0, . . . , 0,±1]; (F1, r = 0, 2)

2 [1, 0, . . . , 0,±i]; (F1, r = 1, 3)

3 [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)

4 [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)

5 [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)

6 [1, i, 1, i, . . . , i or 1]; (F2, r = 3)

7 [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)

8 [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)

9 [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10 [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)
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A Dichotomy Theorem of #CSP over Boolean Domain

Theorem

Suppose F is a set of functions mapping Boolean inputs to complex
numbers. If F ⊆ A or F ⊆P, then #CSP(F ) is computable in
polynomial time. Otherwise, #CSP(F ) is #P-hard.
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Three Frameworks for Counting Problems

1 Graph Homomorphisms

2 Constraint Satisfaction Problems (#CSP)

3 Holant Problems

In each framework, there has been remarkable progress in the classification
program of the complexity of counting problems.
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Graph Homomorphism

L. Lovász:
Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Let A = (Ai ,j) ∈ Cκ×κ be a symmetric complex matrix.

The Graph Homomorphism problem is:
Input: An undirected graph G = (V ,E ).
Output:

ZA(G ) =
∑

ξ:V→[κ]

∏
(u,v)∈E

Aξ(u),ξ(v).
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Dichotomy Theorem for Graph Homomorphism

Theorem

[C., Xi Chen and Pinyan Lu] For any symmetric complex valued matrix
A ∈ Cκ×κ, the problem of computing ZA(G ), for any input G , is either in
P or #P-hard.
Given A, whether ZA(·) is in P or #P-hard can be decided in polynomial
time in the size of A.

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Many partial results: Dyer, Greenhill, Bulatov, Grohe, Goldberg, Jerrum,
Thurley, . . .
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Dichotomy for #CSP

[C., Xi Chen]

Theorem

Every finite set F of complex valued constraint functions on any finite
domain set [κ] defines a counting CSP problem #CSP(F) that is either
computable in P or #P-hard.

The decision version of this is open.
The decidability of this #CSP Dichotomy is open.

Creignou, Hermann, . . ., Bulatov, Dalmau, Dyer, Richerby, Lu . . .
Creignou, Khanna, Sudan: Complexity Classifications of Boolean
Constraint Satisfaction Problems, SIAM.
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Holant Problems

A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures F , we define the counting problem Holant(F) as:
Input: A signature grid Ω = (G , π);
Output: Holant(Ω;F).

The problem Pl-Holant(F) is defined similarly using a planar signature
grid.

Definition

We say a signature set F is C -transformable for Holant(F), if there exists
T ∈ GL2(C) such that (=2)T⊗2 ∈ C and T−1f ∈ C for all f ∈ F .
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Dichotomy Theorem for Holant Problems

[C., Heng Guo, Tyson Williams]

Theorem

Let F be any set of symmetric, complex-valued signatures in Boolean
variables. Then Holant(F) is #P-hard unless F satisfies one of the
following conditions, in which case the problem is in P:

1 All non-degenerate signatures in F have arity ≤ 2;

2 F is A-transformable;

3 F is P-transformable;

4 F ⊆ Vσ ∪ {f ∈ Rσ2 | arity(f ) = 2} for σ ∈ {+,−};
5 All non-degenerate signatures in F are in Rσ2 for σ ∈ {+,−}.
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Matchgate Signatures

A planar matchgate Γ = (G ,X ) is a weighted graph G = (V ,E ,W ) with
a planar embedding, having external nodes, placed on the outer face.

Define PerfMatch(G ) =
∑

M

∏
(i ,j)∈M wij , where the sum is over all

perfect matchings M.
A matchgate Γ is assigned a Matchgate Signature

G = (GS),

where
GS = PerfMatch(G − S).
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Matchgate-Identities

The matchgate signatures are characterized by: (1) Parity Condition:
either all even entries are 0 or all odd entries are 0.
(2) Matchgate Identities (MGI): For any patterns α, β ∈ {0, 1}n, let
bitwise XOR α⊕ β have bit 1 at 1 ≤ p1 < p2 < . . . < p` ≤ n. Then

∑̀
i=1

(−1)i fα⊕epi fβ⊕epi = 0. (5)
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Matchgate-Identities

Valiant first proved MGI for arity at most 4. General proofs are given in
[C., Choudhary, Lu][C., Lu]. See also
Cai, Gorenstein: Matchgates Revisited. Theory of Computing 10 (7),
2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.
Suppose α⊕ β have bit 1 at 1 ≤ p1 < p2 < . . . < p` ≤ n.
Take M ∈Mα⊕epi , and M ′ ∈Mβ⊕epi .
Consider M ⊕M ′. Since αpi 6= βpi , M ⊕M ′ has an alternating path from
pi to some pj .
Planarity =⇒ j has the opposite parity as i .
Now flipping edges along the alternating path, we get

M =⇒ M̂ ∈Mα⊕epj M ′ =⇒ M̂ ′ ∈Mβ⊕epj

This sets up a bijective mapping⋃
ieven

[
Mα+epi ×Mβ+epi

]
↔
⋃
jodd

[
Mα+epj ×Mβ+epj

]
maintaining weights.
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Matchgate-Transformable

Let H =

[
1 1
1 −1

]
. H−1 = 1

2 H.

(=k)H⊗k =
[
1 1

]⊗k
+
[
1 −1

]⊗k
= 2[1, 0, 1, 0, . . .] ∈M .

Let M̂ = HM .
Then for any F ⊆ M̂ , Pl-#CSP(F) is tractable.
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Dichotomy Theorem for Planar #CSP

Heng Guo, Tyson Williams

Theorem

Let F be any set of symmetric, complex-valued signatures in Boolean
variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆P, or

F ⊆ M̂ , in which case the problem is computable in polynomial time.
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Vanishing Signatures

Definition

A set of signatures F is called vanishing if the value HolantΩ(F) is zero
for every signature grid Ω. A signature f is called vanishing if the singleton
set {f } is vanishing.

Definition

Let Sn be the symmetric group of degree n. Then for positive integers t
and n with t ≤ n and unary signatures v , v1, . . . , vn−t , we define

Symt
n(v ; v1, . . . , vn−t) =

∑
π∈Sn

uπ(1) ⊗ uπ(2) · · · ⊗ uπ(k), (6)

where the ordered sequence (u1, u2, . . . , un) = (v , . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).
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Vanishing Signatures

Definition

A nonzero symmetric signature f of arity n has positive vanishing degree
k ≥ 1, denoted by vd+(f ) = k, if k ≤ n is the largest positive integer such
that there exists n − k unary signatures v1, . . . , vn−k satisfying

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define
vd+(f ) = 0. If f is the all zero signature, define vd+(f ) = n + 1.

We define negative vanishing degree vd− similarly, using −i.

Definition

For σ ∈ {+,−}, we define V σ = {f | 2 vdσ(f ) > arity(f )}.
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Vanishing Signatures

Definition

An arity n symmetric signature of the form f = [f0, f1, . . . , fn] is in R+
t for

a nonnegative integer t ≥ 0 if t > n; or for any 0 ≤ k ≤ n− t, fk , . . . , fk+t

satisfy the recurrence relation of order t(
t

t

)
it fk+t +

(
t

t − 1

)
it−1fk+t−1 + · · ·+

(
t

0

)
i0fk = 0. (7)

We define R−t similarly but with −i in place of i in (7).
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Vanishing Signatures

Theorem

Let F be a set of symmetric signatures. Then F is vanishing if and only if
F ⊆ V + or F ⊆ V −.

Let Z = 1√
2

[
1 1
i −i
]
,

Theorem

Suppose f is a symmetric signature of arity n. Let f̂ = (Z−1)⊗nf . If
vd+(f ) = n − d, then f̂ = [f̂0, f̂1, . . . , f̂d , 0, . . . , 0] and f̂d 6= 0.

Note that [1, 0, 1]Z⊗2 = [0, 1, 0].
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Tutte Polynomial

Definition

Let G = (V ,E ) be an undirected graph, the Tutte polynomial of G is
defined as

T(G ; x , y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |, (8)

where k(A) denotes the number of connected components of the graph
(V ,A).
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Tutte Polynomial

Jaeger, Vertigan and Welsh

Theorem

For x , y ∈ C, evaluating the Tutte polynomial at (x , y) is #P-hard over
graphs unless

(x − 1)(y − 1) = 1

or
(x , y) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (ω, ω2), (ω2, ω)},
where ω = e2πi/3. In each exceptional case, the problem is in polynomial
time.
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Tutte Polynomial

Theorem
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Medial Graph

Definition

Given a connected plane graph G , its medial graph Gm has a vertex e ′ for
each edge e of G , and vertices e ′1 and e ′2 in Gm are joined by an edge for
each face of G in which their corresponding edges e1 and e2 in G occur
consecutively.

Figure: A plane graph, its medial graph, and the two graphs
superimposed.
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Tutte Polynomial and Eulerian Orientation

Definition

Given a graph G , an orientation is an Eulerian orientation if for each
vertex v of G , the number of incoming edges of v equals the number of
outgoing edges of v .

Michel Las Vergnas

Theorem

Let G be a connected plane graph and let O(Gm) be the set of all Eulerian
orientations in the medial graph Gm of G . Then

2 · T(G ; 3, 3) =
∑

O∈O(Gm)

2β(O), (9)

where β(O) is the number of saddle vertices in the orientation O, i.e. the
number of vertices in which the edges are oriented “in, out, in, out” in
cyclic order.
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Eulerian Orientation

Theorem

#Eulerian-Orientations is #P-hard for planar 4-regular graphs.

Proof: 1. The Tutte Polynomial problem (right-hand side of (9)) is the
bipartite planar Holant problem Pl-Holant ( 6=2 | f ), where the signature
matrix of f is

Mf =


0 0 0 1
0 1 2 0
0 2 1 0
1 0 0 0

 .
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Eulerian Orientation

2. By Z = 1√
2

[
1 1
i −i
]
, the Tutte Polynomial problem becomes

Pl-Holant (6=2 | f ) ≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4f

)
≡T Pl-Holant

(
[1, 0, 1] | f̂

)
≡T Pl-Holant(f̂ ),

where the signature matrix of f̂ is

Mf̂ =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

 .
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Eulerian Orientation

3. On the other side, the Eulerian Orientation problem is

Pl-Holant (6=2 | [0, 0, 1, 0, 0])

≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4[0, 0, 1, 0, 0]

)
≡T Pl-Holant

(
[1, 0, 1] | 1

2 [3, 0, 1, 0, 3]
)

≡T Pl-Holant([3, 0, 1, 0, 3]).
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Eulerian Orientation

4. Moreover, by assigning the transformed Eulerian Orientation signature
[3, 0, 1, 0, 3] at every vertex

Figure: The planar tetrahedron gadget. Each vertex is assigned
[3, 0, 1, 0, 3].
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Eulerian Orientation

We have
Pl-Holant(ĝ) ≤T Pl-Holant([3, 0, 1, 0, 3])

with

Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

 .

5. Finally, we finish the proof by reducing the Tutte Polynomial problem f̂
to the Eulerian Orientation problem via ĝ :

Interpolate f̂ using ĝ .

Mf̂ =


2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2

 Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

 .

(a) N0 (b) N1

Ns

(c) Nk+1

Figure: Recursive construction to interpolate f̂ . The vertices are
assigned ĝ .
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0 0 1 0
1 0 0 2

 Mĝ =
1

2


19 0 0 7
0 7 5 0
0 5 7 0
7 0 0 19

 .

(d) N0 (e) N1

Ns

(f) Nk+1

Figure: Recursive construction to interpolate f̂ . The vertices are
assigned ĝ .
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(g) N0 (h) N1
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Figure: Recursive construction to interpolate f̂ . The vertices are
assigned ĝ .
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Interpolation

Now we show how to reduce Pl-Holant(f̂ ) (Tutte) to Pl-Holant(ĝ)
(#EO) by interpolation.

Let Ω be an instance of Pl-Holant(f̂ ), f̂ appears n times.

We construct from Ω a sequence of instances Ωs of Holant(ĝ) indexed by
s ≥ 1.

We obtain Ωs from Ω by replacing each occurrence of f̂ with the gadget
Ns with ĝ assigned to all vertices. .

Notice that f̂ and ĝ are rotationally symmetric.
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Interpolation

To obtain Ωs from Ω, we effectively replace Mf̂ with MNs = (Mĝ )s .

Let

T =


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1



Λf̂ =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , and Λĝ =


13 0 0 0
0 6 0 0
0 0 1 0
0 0 0 6


Then

Mf̂ = T Λf̂ T−1 and Mĝ = T ΛĝT−1
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Interpolation

We can view our construction of Ωs as first replacing each Mf̂ by T Λf̂ T−1

to obtain a signature grid Ω′, which does not change the Holant value,

and then replacing each Λf̂ with Λs
ĝ .

We stratify the assignments in Ω′ based on the assignment to Λf̂ . Recall
that the rows of Λf̂ and Λĝ are indexed by 00, 01, 10, 11 and the columns
are indexed by 00, 10, 01, 11, in their respective orders.
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Interpolation

Λf̂ =


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , and Λĝ =


13 0 0 0
0 6 0 0
0 0 1 0
0 0 0 6



We only need to consider the assignments to Λf̂ that assign

(00, 00) j many times,

(01, 10) or (11, 11) k many times, and

(10, 01) ` many times,

where j + k + ` = n, the total number of occurrences of Λf̂ in Ω′.
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Interpolation

Let cjk` be the sum over all such assignments of the products of
evaluations from T and T−1 but excluding Λf̂ on Ω′. Then

Pl-HolantΩ =
∑

j+k+`=n

3jcjk`

and the value of the Holant on Ωs , for s ≥ 1, is

Pl-HolantΩs =
∑

j+k+`=n

(13j6k)scjk`. (10)

This is a linear equation system with unknowns cjk`, and a coefficient
matrix whose rows are indexed by s and columns are indexed by (j , k),
where 0 ≤ j , k and j + k ≤ n.
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Interpolation

Pl-HolantΩs =
∑

j+k+`=n

(13j6k)scjk`. (11)

We take 1 ≤ s ≤
(n+2

2

)
. Then the coefficient matrix in the linear system is

Vandermonde

and has full rank since for any j , k , j ′, k ′ ≥ 0, if
(j , k) 6= (j ′, k ′) then 13j6k 6= 13j

′
6k

′
.

Therefore, after obtaining the values of Pl-HolantΩs by oracle calls to
#EO, for 1 ≤ s ≤

(n+2
2

)
, we can solve the linear system for the unknown

cjk`’s and obtain the value of Pl-HolantΩ (Tutte).
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http://www.cs.wisc.edu/~jyc/dichotomy-book.pdf

Some papers can be found on my web site
http://www.cs.wisc.edu/~jyc

THANK YOU!
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