The Classification Program II: Tractable Classes and Hardness Proof

Jin-Yi Cai (University of Wisconsin-Madison)

January 27, 2016

Previously ...

By a Pfaffian orientation, one can compute $\operatorname{PerfMatch}(G)$ in polynomial time.

Definition

A matchgate is an undirected weighted plane graph G with a subset of distinguished nodes on its outer face, called the external nodes, ordered in a clockwise order.

Let G be a matchgate with k external nodes. For each $\alpha \in \{0,1\}^k$, G defines a subgraph G^{α} obtained from G by moving all external nodes i (and incident edges) such that $\alpha_i = 1$.

Definition

We define the signature of a matchgate G as the vector $\Gamma_G = (\Gamma_G^{\alpha})$, indexed by $\alpha \in \{0,1\}^k$ in lexicographic order, as follows:

$$\Gamma_{G}^{\alpha} = \operatorname{PerfMatch}(G^{\alpha}) = \sum_{M \in \mathcal{M}(G^{\alpha})} \prod_{e \in M} w(e). \tag{1}$$

Counting the number of Perfect Matchings can be viewed as follows:

$$\operatorname{Holant}(G) = \sum_{\sigma: E \to \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}).$$

where every vertex v is labeled by an EXACT-ONE function f_v of arity deg(v). We then consider

$$\operatorname{Holant}(G) = \sum_{\sigma: E \to \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}).$$

Each product term gives a one if $\sigma^{-1}(1)$ is a Perfect Matching, and zero otherwise.

Definition

Let \mathcal{F} be a set of constraint functions (signatures). A signature grid is a tuple $\Omega = (G, \pi)$ where π assigns a function $f \in \mathcal{F}$ to each vertex of G.

Definition

For a set of signatures \mathcal{F} , $\operatorname{Holant}(\mathcal{F})$ is the following class of problems: Input: A signature grid $\Omega = (G, \pi)$ over \mathcal{F} ; Output:

$$\operatorname{Holant}(\Omega; \mathcal{F}) = \sum_{\sigma: E \to \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

where

- E(v) denotes the incident edges of v and
- σ |_{E(v)} denotes the restriction of σ to E(v), and f_v(σ |_{E(v)}) is the evaluation of f_v on the ordered input tuple σ |_{E(v)}.

INPUT: A planar graph G = (V, E) of maximum degree 3.

OUTPUT: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

INPUT: A planar graph G = (V, E) of maximum degree 3. OUTPUT: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose *G* is 3-regular.

INPUT: A planar graph G = (V, E) of maximum degree 3. OUTPUT: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose *G* is 3-regular.

Let f(x, y, z) be the NOT-ALL-EQUAL function. This is the constraint at every vertex.

INPUT: A planar graph G = (V, E) of maximum degree 3. OUTPUT: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

So #PL-3-NAE-ICE counts the number of no-sink-no-source orientations. For simplicity suppose *G* is 3-regular.

Let f(x, y, z) be the NOT-ALL-EQUAL function. This is the constraint at every vertex.

If f is a symmetric function on $\{x_1, x_2, \ldots, x_n\}$, we can denote it as $[f_0, f_1, \ldots, f_n]$, where f_w is the value of f on input of Hamming weight w. Thus the ternary NOT-ALL-EQUAL function f is [0, 1, 1, 0].

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

Each edge DISEQUALITY function [0, 1, 0] is 1 if the two ends are assigned a different value of $\{0, 1\}$, and is 0 otherwise. This corresponds to an orientation.

The Holant sum on the bipartite Edge-Vertex incidence graph of G is a sum over $2^{2|E|}$ terms.

Each edge DISEQUALITY function [0, 1, 0] is 1 if the two ends are assigned a different value of $\{0, 1\}$, and is 0 otherwise. This corresponds to an orientation.

Each vertex function [0, 1, 1, 0] evaluates to 1 if the no-sink-no-source condition is satisfied, and it evaluates to 0 otherwise.

- This Holant Sum can be viewed as a (long) dot product of the following two vectors:
- On LHS: we take the tensor product of all [0, 1, 0], one per each edge. On RHS: we take the tensor product of all [0, 1, 1, 0], one per each vertex. The indices of the two (long) vectors (each of dimension $2^{2|E|}$) are matched up by the connection of the graph.

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

$$[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]$$
$$[0, 1, 0](H^{-1})^{\otimes 2} \leftarrow [0, 1, 0]$$

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

$$[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]$$

 $[0, 1, 0](H^{-1})^{\otimes 2} \longleftrightarrow [0, 1, 0]$

$$\begin{bmatrix} 0,1,1,0 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 0\\1 \end{bmatrix}^{\otimes 3}$$
$$\mapsto \mathcal{H}^{\otimes 3}[0,1,1,0] = \begin{bmatrix} 2\\0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\-1 \end{bmatrix}^{\otimes 3} = \begin{bmatrix} 6,0,-2,0 \end{bmatrix},$$

We can perform a local transformation by $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

$$[0, 1, 1, 0] \mapsto H^{\otimes 3}[0, 1, 1, 0]$$

 $[0, 1, 0](H^{-1})^{\otimes 2} \longleftrightarrow [0, 1, 0]$

$$\begin{bmatrix} 0,1,1,0 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 0\\1 \end{bmatrix}^{\otimes 3}$$

$$\mapsto H^{\otimes 3}[0,1,1,0] = \begin{bmatrix} 2\\0 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\1 \end{bmatrix}^{\otimes 3} - \begin{bmatrix} 1\\-1 \end{bmatrix}^{\otimes 3} = [6,0,-2,0],$$

and

$$\begin{array}{l} \leftarrow & [0,1,0] = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\otimes 2} - \begin{bmatrix} 1 & 0 \end{bmatrix}^{\otimes 2} - \begin{bmatrix} 0 & 1 \end{bmatrix}^{\otimes 2} \\ & [0,1,0](H^{-1})^{\otimes 2} = \begin{bmatrix} \frac{1}{2}, 0, \frac{-1}{2} \end{bmatrix} = \frac{1}{2}[1,0,-1]. \end{array}$$

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω' , then $Holant_{\Omega} = Holant_{\Omega'}$.

Theorem

If there is a holographic transformation mapping signature grid Ω to Ω' , then $Holant_{\Omega} = Holant_{\Omega'}$.

Hence the same quantity is obtained for #PL-3-NAE-ICE if we use the signature $[6, 0, -2, 0] = H^{\otimes 3}[0, 1, 1, 0]$ for each vertex, And the signature $\frac{1}{2}[1, 0, -1] = [0, 1, 0](H^{-1})^{\otimes 2}$ for each edge.

Holographic Algorithms by Matchgates

Both [6, 0, -2, 0] and $\frac{1}{2}[1, 0, -1]$ are matchgate signatures.

Holographic Algorithms by Matchgates

Both [6, 0, -2, 0] and $\frac{1}{2}[1, 0, -1]$ are matchgate signatures.

Figure: A matchgate with signature [6, 0, -2, 0]

Figure: A matchgate with signature $\frac{1}{2}[1,0,-1]$

Thus #PL-3-NAE-ICE is computable in P.

Theorem

A symmetric signature is the signature of a matchgate iff it has the following form, for some $a, b \in \mathbb{C}$ and integer k (we take the convention that $0^0 = 1$):

$$\begin{array}{l} \bullet & [a^{k}b^{0}, 0, a^{k-1}b, 0, a^{k-2}b^{2}, 0, \dots, a^{0}b^{k}] & (arity \ 2k \ge 2) \\ \bullet & [a^{k}b^{0}, 0, a^{k-1}b, 0, a^{k-2}b^{2}, 0, \dots, a^{0}b^{k}, 0] & (arity \ 2k+1 \ge 1) \\ \bullet & [0, a^{k}b^{0}, 0, a^{k-1}b, 0, a^{k-2}b^{2}, 0, \dots, a^{0}b^{k}] & (arity \ 2k+1 \ge 1) \\ \bullet & [0, a^{k}b^{0}, 0, a^{k-1}b, 0, a^{k-2}b^{2}, 0, \dots, a^{0}b^{k}, 0] & (arity \ 2k+2 \ge 2). \end{array}$$

Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Consider the signature f = [1, 0, 1, 1].

Recall symmetric signatures are denoted as $[f_0, f_1, \ldots, f_n]$.

Consider the signature f = [1, 0, 1, 1].

Definition

For any $n \ge 1$, a signature $f = [f_0, f_1, \dots, f_n]$ is a Fibonacci gate if

$$f_{k+2} = f_{k+1} + f_k, \quad 0 \le k \le n-2.$$

A set of signatures \mathcal{F} is called Fibonacci if every signature in \mathcal{F} is a Fibonacci gate.

Recall

$$\operatorname{Holant}(\Omega; \mathcal{F}) = \sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v(\sigma \mid_{E(v)}),$$

Recall

$$\operatorname{Holant}(\Omega; \mathcal{F}) = \sum_{\sigma: E \to \{0,1\}} \prod_{v \in V} f_v(\sigma \mid_{E(v)}),$$

Theorem

For any finite set of Fibonacci gates \mathcal{F} , the Holant problem Holant(\mathcal{F}) is computable in polynomial time.

Figure: First operation.

Figure: Second operation.

Definition

For any $n \ge 1$, and a parameter $\lambda \in \mathbb{C}$, a signature $f = [f_0, f_1, \dots, f_n]$ is a generalized Fibonacci gate (with parameter λ) if

$$f_{k+2} = \lambda f_{k+1} + f_k, \quad 0 \le k \le n-2.$$
 (2)

A set of signatures \mathcal{F} is called generalized Fibonacci if for some $\lambda \in \mathbb{C}$, every signature in \mathcal{F} is a generalized Fibonacci gate with parameter λ .

Definition

For any $n \ge 1$, and a parameter $\lambda \in \mathbb{C}$, a signature $f = [f_0, f_1, \dots, f_n]$ is a generalized Fibonacci gate (with parameter λ) if

$$f_{k+2} = \lambda f_{k+1} + f_k, \quad 0 \le k \le n-2.$$
 (2)

A set of signatures \mathcal{F} is called generalized Fibonacci if for some $\lambda \in \mathbb{C}$, every signature in \mathcal{F} is a generalized Fibonacci gate with parameter λ .

GEN-EQ are Generalized Equalities: $[*, 0, \ldots, 0, *]$.

Define

$$\mathscr{F} = \{f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i\} \cup \text{Gen-Eq.}$$
 (3)

Define

$$\mathscr{F} = \{ f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i \} \cup \text{Gen-Eq.}$$
(3)

Theorem

For any $f \in \mathscr{F}$ in (3),

- **1** There exists an orthogonal T such that Tf is a GEN-EQ.
- 2 There exists an orthogonal T such that Tf is a Fibonacci gate satisfying Definition 7.
- **3** For all orthogonal T, $Tf \in \mathscr{F}$.

Define

$$\mathscr{F} = \{ f \mid f \text{ satisfies (2) for some } \lambda \neq \pm 2i \} \cup \text{Gen-Eq.}$$
(3)

Theorem

For any $f \in \mathscr{F}$ in (3),

- **1** There exists an orthogonal T such that Tf is a GEN-EQ.
- There exists an orthogonal T such that Tf is a Fibonacci gate satisfying Definition 7.
- **③** For all orthogonal T, $Tf \in \mathscr{F}$.

Remark: In (3), when $\lambda = \pm 2i$, f is a vanishing signature.

Theorem

A symmetric signature $[f_0, f_1, ..., f_n]$ can be transformed by some invertible holographic transformation to a Fibonacci gate according to Definition 7 (equivalently to a signature in \mathscr{F} defined in (3)) iff there exist three constants a, b and c, such that $b^2 - 4ac \neq 0$, and for all $0 \le k \le n - 2$,

$$af_k + bf_{k+1} + cf_{k+2} = 0. (4)$$

Theorem

A symmetric signature $[f_0, f_1, ..., f_n]$ can be transformed by some invertible holographic transformation to a Fibonacci gate according to Definition 7 (equivalently to a signature in \mathscr{F} defined in (3)) iff there exist three constants a, b and c, such that $b^2 - 4ac \neq 0$, and for all $0 \le k \le n - 2$,

$$af_k + bf_{k+1} + cf_{k+2} = 0. (4)$$

 $\operatorname{Holant}^*(\mathcal{F})$ is the problem $\operatorname{Holant}(\mathcal{F} \cup \mathcal{U})$, where \mathcal{U} is the set of all unary signatures.
A signature is degenrate if it is a tensor product of unary signatures.

This includes all unary signatures.

If \mathcal{F} consists of degenrate signatures, then $\operatorname{Holant}(\mathcal{F})$ is tractable.

A function has product type if it can be expressed as a product of unary functions, binary EQUALITY functions $((=_2) = [1, 0, 1])$ and binary DISEQUALITY functions $((\neq_2) = [0, 1, 0])$, on not necessarily disjoint subsets of variables.

We denote by \mathscr{P} the set of all functions of *product type*.

Theorem

Let \mathcal{F} be a set of non-degenerate symmetric signatures over \mathbb{C} . Then $\operatorname{Holant}^*(\mathcal{F})$ is #P-hard, unless \mathcal{F} satisfies the following conditions, in which case it is computable in polynomial time.

- All signatures in F have arity at most 2.
- ② There exists some $M \in GL_2(\mathbb{C})$ such that $(=_2)M^{\otimes 2} \in \mathscr{P}$ and $\mathcal{F} \subseteq M \mathscr{P}$.
- **3** There exists $\lambda \in \{2i, -2i\}$, such that every signature $f \in \mathcal{F}$ of arity n satisfies the recurrence

$$f_{k+2} = \lambda f_{k+1} + f_k, \quad \text{for} \quad 0 \le k \le n-2.$$

The counting constraint satisfaction problem $\#CSP(\mathcal{F})$ is defined as follows: The input I is a finite sequence of constraints on variables x_1, x_2, \ldots, x_n of the form $F(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$, where $F \in \mathcal{F}$. The output is called the partition function

$$Z(I) = \sum_{x_1, x_2, \dots, x_n \in \{0, 1\}} \prod F(x_{i_1}, x_{i_2}, \dots, x_{i_k}),$$

where the product is over all constraints occurring in *I*. For now we will restrict to the Boolean domain.

A function is of affine type if it can be expressed as

$$\lambda \cdot \chi_{AX} \cdot \mathfrak{i}^{L_1(X) + L_2(X) + \dots + L_n(X)},$$

where $X = (x_1, x_2, ..., x_k, 1) \ \lambda \in \mathbb{C}$, $i = \sqrt{-1}$, each L_j is an integer 0-1 indicator function of the form $\langle \alpha_j, X \rangle$, where α_j is a k + 1 dimensional vector over \mathbb{Z}_2 and the dot product $\langle \cdot, \cdot \rangle$ is computed over \mathbb{Z}_2 . The set of all functions of *affine type* is denoted by \mathscr{A} .

Theorem

A function f belongs to \mathscr{A} iff it can be expressed as $\lambda \chi_{AX} \mathfrak{i}^{Q(x_1,...,x_k)}$ where Q is a homogeneous quadratic polynomial over \mathbb{Z} with the additional requirement that every cross term $x_s x_t$ has an even coefficient, where $s \neq t$. We may also use all, not necessarily homogeneous, polynomials over \mathbb{Z} of degree at most 2, with the same requirement on cross terms.

$$\mathscr{F}_1 \ = \ \{\lambda([1,0]^{\otimes k} + \mathfrak{i}^r[0,1]^{\otimes k}) \mid \lambda \in \mathbb{C}, \, k = 1, 2, \dots, \text{ and } r = 0, 1, 2, 3\},$$

$$\mathscr{F}_2 \hspace{0.2cm} = \hspace{0.2cm} \{\lambda([1,1]^{\otimes k}+\mathfrak{i}^r[1,-1]^{\otimes k}) \mid \lambda \in \mathbb{C}, k=1,2,\ldots, \hspace{0.2cm} \text{and} \hspace{0.2cm} r=0,1,2,3\},$$

$$\mathscr{F}_3 \hspace{0.2cm} = \hspace{0.2cm} \{\lambda([1,i]^{\otimes k}+\mathfrak{i}^r[1,-\mathfrak{i}]^{\otimes k}) \mid \lambda \in \mathbb{C}, \hspace{0.1cm} k=1,2,\ldots, \hspace{0.1cm} \text{and} \hspace{0.1cm} r=0,1,2,3\}.$$

$$\begin{split} \mathscr{F}_1 &= \{\lambda([1,0]^{\otimes k} + \mathfrak{i}^r[0,1]^{\otimes k}) \mid \lambda \in \mathbb{C}, \, k = 1, 2, \dots, \text{ and } r = 0, 1, 2, 3\}, \\ \mathscr{F}_2 &= \{\lambda([1,1]^{\otimes k} + \mathfrak{i}^r[1,-1]^{\otimes k}) \mid \lambda \in \mathbb{C}, \, k = 1, 2, \dots, \text{ and } r = 0, 1, 2, 3\}, \\ \mathscr{F}_3 &= \{\lambda([1,\mathfrak{i}]^{\otimes k} + \mathfrak{i}^r[1,-\mathfrak{i}]^{\otimes k}) \mid \lambda \in \mathbb{C}, \, k = 1, 2, \dots, \text{ and } r = 0, 1, 2, 3\}. \end{split}$$

We note that expressions in complex numbers appear naturally, even for real-valued functions. The special case where r = 1, k = 2 and $\lambda = (1 + i)^{-1}$ in \mathscr{F}_3 is noteworthy. In this case we get a real-valued binary symmetric function H = [1, 1, -1]. In other words, H(0, 0) = H(0, 1) = H(1, 0) = 1 and H(1, 1) = -1. The matrix form of this function is the Hadamard matrix $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

1	$[1,0,\ldots,0,\pm 1];$	$(\mathscr{F}_1, r=0,2)$
2	$[1,0,\ldots,0,\pm {\mathfrak i}];$	$(\mathscr{F}_1, r=1,3)$
3	$[1, 0, 1, 0, \dots, 0 \text{ or } 1];$	$(\mathscr{F}_2, r=0)$
4	$[1,-{\mathfrak i},1,-{\mathfrak i},\dots,(-{\mathfrak i}) \text{ or } 1];$	$(\mathscr{F}_2, r=1)$
5	$[0, 1, 0, 1, \dots, 0 \text{ or } 1];$	$(\mathscr{F}_2, r=2)$
6	$[1, i, 1, i, \dots, i \text{ or } 1];$	$(\mathscr{F}_2, r=3)$
7	$[1,0,-1,0,1,0,-1,0,\ldots,0 \text{ or } 1 \text{ or } (-1)];$	$(\mathcal{F}_3, r=0)$
8	$[1,1,-1,-1,1,1,-1,-1,\ldots,1 \text{ or } (-1)];$	$(\mathcal{F}_3, r=1)$
9	$[0,1,0,-1,0,1,0,-1,\ldots,0 \text{ or } 1 \text{ or } (-1)];$	$(\mathcal{F}_3, r=2)$
10	$[1, -1, -1, 1, 1, -1, -1, 1, \dots, 1 \text{ or } (-1)].$	$(\mathcal{F}_3, r=3)$

Theorem

Suppose \mathscr{F} is a set of functions mapping Boolean inputs to complex numbers. If $\mathscr{F} \subseteq \mathscr{A}$ or $\mathscr{F} \subseteq \mathscr{P}$, then $\#CSP(\mathscr{F})$ is computable in polynomial time. Otherwise, $\#CSP(\mathscr{F})$ is #P-hard.

- Graph Homomorphisms
- Constraint Satisfaction Problems (#CSP)
- Holant Problems

In each framework, there has been remarkable progress in the classification program of the complexity of counting problems.

L. Lovász:

Operations with structures, Acta Math. Hung. 18 (1967), 321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Let $\mathbf{A} = (A_{i,j}) \in \mathbb{C}^{\kappa \times \kappa}$ be a symmetric complex matrix.

The Graph Homomorphism problem is: INPUT: An undirected graph G = (V, E). OUTPUT:

$$Z_{\mathbf{A}}(G) = \sum_{\xi: V \to [\kappa]} \prod_{(u,v) \in E} A_{\xi(u),\xi(v)}.$$

Theorem

[C., Xi Chen and Pinyan Lu] For any symmetric complex valued matrix $\mathbf{A} \in \mathbb{C}^{\kappa \times \kappa}$, the problem of computing $Z_{\mathbf{A}}(G)$, for any input G, is either in P or #P-hard. Given \mathbf{A} , whether $Z_{\mathbf{A}}(\cdot)$ is in P or #P-hard can be decided in polynomial time in the size of \mathbf{A} .

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Many partial results: Dyer, Greenhill, Bulatov, Grohe, Goldberg, Jerrum, Thurley, . . .

[C., Xi Chen]

Theorem

Every finite set \mathcal{F} of complex valued constraint functions on any finite domain set $[\kappa]$ defines a counting CSP problem $\#CSP(\mathcal{F})$ that is either computable in P or #P-hard.

[C., Xi Chen]

Theorem

Every finite set \mathcal{F} of complex valued constraint functions on any finite domain set [κ] defines a counting CSP problem #CSP(\mathcal{F}) that is either computable in P or #P-hard.

The decision version of this is open. The decidability of this #CSP Dichotomy is open.

Creignou, Hermann, ..., Bulatov, Dalmau, Dyer, Richerby, Lu ... Creignou, Khanna, Sudan: Complexity Classifications of Boolean Constraint Satisfaction Problems, SIAM. A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures \mathcal{F} , we define the counting problem Holant(\mathcal{F}) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant($\Omega; \mathcal{F}$). A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures \mathcal{F} , we define the counting problem Holant(\mathcal{F}) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant($\Omega; \mathcal{F}$).

The problem PI-Holant(\mathcal{F}) is defined similarly using a planar signature grid.

A Holant problem is parametrized by a set of signatures.

Definition

Given a set of signatures \mathcal{F} , we define the counting problem Holant(\mathcal{F}) as: Input: A signature grid $\Omega = (G, \pi)$; Output: Holant($\Omega; \mathcal{F}$).

The problem Pl-Holant(\mathcal{F}) is defined similarly using a planar signature grid.

Definition

We say a signature set \mathcal{F} is \mathscr{C} -transformable for Holant(\mathcal{F}), if there exists $\mathcal{T} \in \mathbf{GL}_2(\mathbb{C})$ such that $(=_2)\mathcal{T}^{\otimes 2} \in \mathscr{C}$ and $\mathcal{T}^{-1}f \in \mathscr{C}$ for all $f \in \mathcal{F}$.

[C., Heng Guo, Tyson Williams]

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then $Holant(\mathcal{F})$ is #P-hard unless \mathcal{F} satisfies one of the following conditions, in which case the problem is in P:

- **1** All non-degenerate signatures in \mathcal{F} have arity ≤ 2 ;
- F is A-transformable;
- **③** *F* is *P*-transformable;
- $\mathcal{F} \subseteq \mathcal{V}^{\sigma} \cup \{f \in \mathcal{R}_2^{\sigma} | \operatorname{arity}(f) = 2\} \text{ for } \sigma \in \{+, -\};$
- Solution All non-degenerate signatures in \mathcal{F} are in \mathcal{R}_2^{σ} for $\sigma \in \{+, -\}$.

A planar matchgate $\Gamma = (G, X)$ is a weighted graph G = (V, E, W) with a planar embedding, having external nodes, placed on the outer face.

Define $\operatorname{PerfMatch}(G) = \sum_{M} \prod_{(i,j) \in M} w_{ij}$, where the sum is over all perfect matchings M. A matchgate Γ is assigned a Matchgate Signature

$$G=(G^S),$$

where

$$G^{S} = \operatorname{PerfMatch}(G - S).$$

The matchgate signatures are characterized by: (1) Parity Condition: either all even entries are 0 or all odd entries are 0. (2) Matchgate Identities (MGI): For any patterns $\alpha, \beta \in \{0, 1\}^n$, let bitwise XOR $\alpha \oplus \beta$ have bit 1 at $1 \le p_1 \le p_2 \le \ldots \le p_\ell \le n$. Then

$$\sum_{i=1}^{\ell} (-1)^i f_{\alpha \oplus e_{p_i}} f_{\beta \oplus e_{p_i}} = 0.$$
(5)

Valiant first proved MGI for arity at most 4. General proofs are given in [C., Choudhary, Lu][C., Lu]. See also Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Matchgate-Identities

Valiant first proved MGI for arity at most 4. General proofs are given in [C., Choudhary, Lu][C., Lu]. See also

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \le p_1 < p_2 < \ldots < p_\ell \le n$.

Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 < p_2 < \ldots < p_\ell \leq n$.

Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M \oplus M'$. Since $\alpha_{p_i} \neq \beta_{p_i}$, $M \oplus M'$ has an alternating path from p_i to some p_j .

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \leq p_1 < p_2 < \ldots < p_\ell \leq n$.

Take $M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M \oplus M'$. Since $\alpha_{p_i} \neq \beta_{p_i}$, $M \oplus M'$ has an alternating path from p_i to some p_j .

Planarity $\implies j$ has the opposite parity as *i*.

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \le p_1 < p_2 < \ldots < p_\ell \le n$.

Take
$$M\in\mathcal{M}^{lpha\oplus e_{p_i}}$$
, and $M'\in\mathcal{M}^{eta\oplus e_{p_i}}.$

Consider $M \oplus M'$. Since $\alpha_{p_i} \neq \beta_{p_i}$, $M \oplus M'$ has an alternating path from p_i to some p_j .

Planarity $\implies j$ has the opposite parity as *i*.

Now flipping edges along the alternating path, we get

$$M \Longrightarrow \widehat{M} \in \mathcal{M}^{\alpha \oplus e_{p_j}} \quad M' \Longrightarrow \widehat{M'} \in \mathcal{M}^{\beta \oplus e_{p_j}}$$

Cai, Gorenstein: Matchgates Revisited. **Theory of Computing** 10 (7), 2014, pp. 167-197

Let me outline a new proof by Jerrum that matchgates satisfy MGI.

Suppose $\alpha \oplus \beta$ have bit 1 at $1 \le p_1 < p_2 < \ldots < p_\ell \le n$.

Take
$$M \in \mathcal{M}^{\alpha \oplus e_{p_i}}$$
, and $M' \in \mathcal{M}^{\beta \oplus e_{p_i}}$.

Consider $M \oplus M'$. Since $\alpha_{p_i} \neq \beta_{p_i}$, $M \oplus M'$ has an alternating path from p_i to some p_j .

Planarity $\implies j$ has the opposite parity as *i*.

Now flipping edges along the alternating path, we get

$$M \Longrightarrow \widehat{M} \in \mathcal{M}^{\alpha \oplus e_{p_j}} \quad M' \Longrightarrow \widehat{M'} \in \mathcal{M}^{\beta \oplus e_{p_j}}$$

This sets up a bijective mapping

$$\bigcup_{\textit{ieven}} \left[\mathcal{M}^{\alpha + e_{p_i}} \times \mathcal{M}^{\beta + e_{p_i}} \right] \leftrightarrow \bigcup_{\textit{jodd}} \left[\mathcal{M}^{\alpha + e_{p_j}} \times \mathcal{M}^{\beta + e_{p_j}} \right]$$

maintaining weights.

Matchgate-Transformable

Let
$$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
.

Matchgate-Transformable

Let
$$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
. $H^{-1} = \frac{1}{2}H$.

Let
$$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
. $H^{-1} = \frac{1}{2}H$.
 $(=_k)H^{\otimes k} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\otimes k} + \begin{bmatrix} 1 & -1 \end{bmatrix}^{\otimes k} = 2[1, 0, 1, 0, \ldots] \in \mathscr{M}$.
Let $\widehat{\mathscr{M}} = H\mathscr{M}$.
Then for any $\mathcal{F} \subseteq \widehat{\mathscr{M}}$, PI-#CSP(\mathcal{F}) is tractable.

Heng Guo, Tyson Williams

Theorem

Let \mathcal{F} be any set of symmetric, complex-valued signatures in Boolean variables. Then PI-#CSP(\mathcal{F}) is #P-hard unless $\mathcal{F} \subseteq \mathscr{A}$, $\mathcal{F} \subseteq \mathscr{P}$, or $\mathcal{F} \subseteq \widehat{\mathscr{M}}$, in which case the problem is computable in polynomial time.

A set of signatures \mathcal{F} is called vanishing if the value $\operatorname{Holant}_{\Omega}(\mathcal{F})$ is zero for every signature grid Ω . A signature f is called vanishing if the singleton set $\{f\}$ is vanishing.

A set of signatures \mathcal{F} is called vanishing if the value $\operatorname{Holant}_{\Omega}(\mathcal{F})$ is zero for every signature grid Ω . A signature f is called vanishing if the singleton set $\{f\}$ is vanishing.

Definition

Let S_n be the symmetric group of degree n. Then for positive integers t and n with $t \leq n$ and unary signatures v, v_1, \ldots, v_{n-t} , we define

$$\operatorname{Sym}_{n}^{t}(v; v_{1}, \ldots, v_{n-t}) = \sum_{\pi \in S_{n}} u_{\pi(1)} \otimes u_{\pi(2)} \cdots \otimes u_{\pi(k)}, \quad (6)$$

where the ordered sequence $(u_1, u_2, \ldots, u_n) = (\underbrace{v, \ldots, v}_{t \text{ copies}}, v_1, \ldots, v_{n-t}).$

A nonzero symmetric signature f of arity n has positive vanishing degree $k \ge 1$, denoted by $vd^+(f) = k$, if $k \le n$ is the largest positive integer such that there exists n - k unary signatures v_1, \ldots, v_{n-k} satisfying

$$f = \operatorname{Sym}_{n}^{k}([1, \mathfrak{i}]; v_{1}, \ldots, v_{n-k}).$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$.
A nonzero symmetric signature f of arity n has positive vanishing degree $k \ge 1$, denoted by $vd^+(f) = k$, if $k \le n$ is the largest positive integer such that there exists n - k unary signatures v_1, \ldots, v_{n-k} satisfying

$$f = \operatorname{Sym}_{n}^{k}([1, \mathfrak{i}]; v_{1}, \ldots, v_{n-k}).$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$. We define negative vanishing degree vd^- similarly, using -i.

A nonzero symmetric signature f of arity n has positive vanishing degree $k \ge 1$, denoted by $vd^+(f) = k$, if $k \le n$ is the largest positive integer such that there exists n - k unary signatures v_1, \ldots, v_{n-k} satisfying

$$f = \operatorname{Sym}_{n}^{k}([1, \mathfrak{i}]; v_{1}, \ldots, v_{n-k}).$$

If f cannot be expressed as such a symmetrization form, we define $vd^+(f) = 0$. If f is the all zero signature, define $vd^+(f) = n + 1$. We define negative vanishing degree vd^- similarly, using -i.

Definition

For
$$\sigma \in \{+, -\}$$
, we define $\mathscr{V}^{\sigma} = \{f \mid 2 \operatorname{vd}^{\sigma}(f) > \operatorname{arity}(f)\}.$

An arity *n* symmetric signature of the form $f = [f_0, f_1, \ldots, f_n]$ is in \mathscr{R}_t^+ for a nonnegative integer $t \ge 0$ if t > n; or for any $0 \le k \le n - t$, f_k, \ldots, f_{k+t} satisfy the recurrence relation of order t

$$\binom{t}{t}i^{t}f_{k+t} + \binom{t}{t-1}i^{t-1}f_{k+t-1} + \dots + \binom{t}{0}i^{0}f_{k} = 0.$$
(7)

We define \mathscr{R}_t^- similarly but with -i in place of i in (7).

Theorem

Let \mathcal{F} be a set of symmetric signatures. Then \mathcal{F} is vanishing if and only if $\mathcal{F} \subseteq \mathscr{V}^+$ or $\mathcal{F} \subseteq \mathscr{V}^-$.

Theorem

Let \mathcal{F} be a set of symmetric signatures. Then \mathcal{F} is vanishing if and only if $\mathcal{F} \subseteq \mathscr{V}^+$ or $\mathcal{F} \subseteq \mathscr{V}^-$.

Let $Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$,

Theorem

Suppose f is a symmetric signature of arity n. Let $\hat{f} = (Z^{-1})^{\otimes n} f$. If $vd^+(f) = n - d$, then $\hat{f} = [\hat{f}_0, \hat{f}_1, \dots, \hat{f}_d, 0, \dots, 0]$ and $\hat{f}_d \neq 0$.

Note that $[1, 0, 1]Z^{\otimes 2} = [0, 1, 0]$.

Let G = (V, E) be an undirected graph, the Tutte polynomial of G is defined as

$$\mathsf{T}(G; x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}, \tag{8}$$

where k(A) denotes the number of connected components of the graph (V, A).

Jaeger, Vertigan and Welsh

Theorem

For $x, y \in \mathbb{C}$, evaluating the Tutte polynomial at (x, y) is #P-hard over graphs unless

$$(x-1)(y-1)=1$$

or

 $(x, y) \in \{(1, 1), (-1, -1), (0, -1), (-1, 0), (i, -i), (-i, i), (\omega, \omega^2), (\omega^2, \omega)\},\$ where $\omega = e^{2\pi i/3}$. In each exceptional case, the problem is in polynomial time.

Theorem

For $x, y \in \mathbb{C}$, evaluating the Tutte polynomial at (x, y) is #P-hard over planar graphs unless

 $(x-1)(y-1) \in \{1,2\}$ or $(x,y) \in \{(1,1), (-1,-1), (\omega,\omega^2), (\omega^2,\omega)\},$

where $\omega = e^{2\pi i/3}$. In each exceptional case, the problem is in polynomial time.

Given a connected plane graph G, its *medial graph* G_m has a vertex e' for each edge e of G, and vertices e'_1 and e'_2 in G_m are joined by an edge for each face of G in which their corresponding edges e_1 and e_2 in G occur consecutively.

Figure: A plane graph, its medial graph, and the two graphs superimposed.

Given a graph G, an orientation is an *Eulerian orientation* if for each vertex v of G, the number of incoming edges of v equals the number of outgoing edges of v.

Given a graph G, an orientation is an *Eulerian orientation* if for each vertex v of G, the number of incoming edges of v equals the number of outgoing edges of v.

Michel Las Vergnas

Theorem

Let G be a connected plane graph and let $\mathcal{O}(G_m)$ be the set of all Eulerian orientations in the medial graph G_m of G. Then

$$2 \cdot \mathsf{T}(G; 3, 3) = \sum_{O \in \mathscr{O}(G_m)} 2^{\beta(O)}, \tag{9}$$

where $\beta(O)$ is the number of saddle vertices in the orientation O, i.e. the number of vertices in which the edges are oriented "in, out, in, out" in cyclic order.

Theorem

#EULERIAN-ORIENTATIONS is #P-hard for planar 4-regular graphs.

Proof: 1. The Tutte Polynomial problem (right-hand side of (9)) is the bipartite planar Holant problem PI-Holant ($\neq_2 \mid f$), where the signature matrix of f is

$$M_f = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

2. By $Z = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$, the Tutte Polynomial problem becomes

$$\begin{aligned} \mathsf{Pl}\text{-}\mathsf{Holant}\left(\neq_{2}\mid f\right) &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}\left([0,1,0](Z^{-1})^{\otimes 2}\mid Z^{\otimes 4}f\right) \\ &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}\left([1,0,1]\mid \hat{f}\right) \\ &\equiv_{\mathcal{T}} \mathsf{Pl}\text{-}\mathsf{Holant}(\hat{f}), \end{aligned}$$

where the signature matrix of \hat{f} is

$$M_{\hat{f}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.$$

3. On the other side, the Eulerian Orientation problem is

$$\begin{aligned} &\mathsf{PI-Holant} \left(\neq_2 \mid [0, 0, 1, 0, 0] \right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant} \left([0, 1, 0] (Z^{-1})^{\otimes 2} \mid Z^{\otimes 4} [0, 0, 1, 0, 0] \right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant} \left([1, 0, 1] \mid \frac{1}{2} [3, 0, 1, 0, 3] \right) \\ &\equiv_{\mathcal{T}} \mathsf{PI-Holant} ([3, 0, 1, 0, 3]). \end{aligned}$$

4. Moreover, by assigning the transformed Eulerian Orientation signature [3,0,1,0,3] at every vertex

Figure: The planar tetrahedron gadget. Each vertex is assigned [3, 0, 1, 0, 3].

Eulerian Orientation

We have

$\mathsf{Pl}\operatorname{-Holant}(\hat{g}) \leq_{\mathcal{T}} \mathsf{Pl}\operatorname{-Holant}([3,0,1,0,3])$

with

$$M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.$$

Eulerian Orientation

We have

$\mathsf{Pl}\operatorname{-Holant}(\hat{g}) \leq_{\mathcal{T}} \mathsf{Pl}\operatorname{-Holant}([3,0,1,0,3])$

with

$$M_{\hat{g}} = rac{1}{2} egin{bmatrix} 19 & 0 & 0 & 7 \ 0 & 7 & 5 & 0 \ 0 & 5 & 7 & 0 \ 7 & 0 & 0 & 19 \end{bmatrix}.$$

5. Finally, we finish the proof by reducing the Tutte Polynomial problem \hat{f} to the Eulerian Orientation problem via \hat{g} :

Interpolate \hat{f} using \hat{g} .

$$M_{\hat{f}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.$$

Eulerian Orientation

We have

$\mathsf{Pl}\operatorname{-Holant}(\hat{g}) \leq_T \mathsf{Pl}\operatorname{-Holant}([3,0,1,0,3])$

with

$$M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.$$

5. Finally, we finish the proof by reducing the Tutte Polynomial problem \hat{f} to the Eulerian Orientation problem via \hat{g} :

Interpolate \hat{f} using \hat{g} .

$$M_{\hat{f}} = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \qquad M_{\hat{g}} = \frac{1}{2} \begin{bmatrix} 19 & 0 & 0 & 7 \\ 0 & 7 & 5 & 0 \\ 0 & 5 & 7 & 0 \\ 7 & 0 & 0 & 19 \end{bmatrix}.$$

Now we show how to reduce $Pl-Holant(\hat{f})$ (TUTTE) to $Pl-Holant(\hat{g})$ (#EO) by interpolation.

Let Ω be an instance of PI-Holant (\hat{f}) , \hat{f} appears *n* times.

We construct from Ω a sequence of instances Ω_s of Holant (\hat{g}) indexed by $s \ge 1$.

We obtain Ω_s from Ω by replacing each occurrence of \hat{f} with the gadget N_s with \hat{g} assigned to all vertices.

Notice that \hat{f} and \hat{g} are rotationally symmetric.

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$.

Interpolation

To obtain Ω_s from Ω , we effectively replace $M_{\hat{f}}$ with $M_{N_s} = (M_{\hat{g}})^s$. Let

$$T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$
$$\Lambda_{\hat{f}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

Then

$$M_{\hat{f}} = T \Lambda_{\hat{f}} T^{-1}$$
 and $M_{\hat{g}} = T \Lambda_{\hat{g}} T^{-1}$

We can view our construction of Ω_s as first replacing each $M_{\hat{f}}$ by $T\Lambda_{\hat{f}}T^{-1}$ to obtain a signature grid Ω' , which does not change the Holant value,

We can view our construction of Ω_s as first replacing each $M_{\hat{f}}$ by $T\Lambda_{\hat{f}}T^{-1}$ to obtain a signature grid Ω' , which does not change the Holant value, and then replacing each $\Lambda_{\hat{f}}$ with $\Lambda_{\hat{g}}^s$.

We can view our construction of Ω_s as first replacing each $M_{\hat{f}}$ by $T\Lambda_{\hat{f}}T^{-1}$ to obtain a signature grid Ω' , which does not change the Holant value, and then replacing each $\Lambda_{\hat{f}}$ with $\Lambda_{\hat{x}}^s$.

We stratify the assignments in Ω' based on the assignment to $\Lambda_{\hat{f}}$. Recall that the rows of $\Lambda_{\hat{f}}$ and $\Lambda_{\hat{g}}$ are indexed by 00,01,10,11 and the columns are indexed by 00, 10, 01, 11, in their respective orders.

Interpolation

$$\Lambda_{\hat{f}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

$$\Lambda_{\hat{f}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad \text{and} \qquad \Lambda_{\hat{g}} = \begin{bmatrix} 13 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

We only need to consider the assignments to $\Lambda_{\hat{r}}$ that assign

- (00,00) *j* many times,
- (01, 10) or (11, 11) k many times, and
- (10,01) ℓ many times,

where $j + k + \ell = n$, the total number of occurrences of $\Lambda_{\hat{f}}$ in Ω' .

Let $c_{jk\ell}$ be the sum over all such assignments of the products of evaluations from T and T^{-1} but excluding $\Lambda_{\hat{f}}$ on Ω' . Then

$$\mathsf{Pl-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}$$

Let $c_{jk\ell}$ be the sum over all such assignments of the products of evaluations from T and T^{-1} but excluding $\Lambda_{\hat{f}}$ on Ω' . Then

$$\mathsf{Pl-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}$$

and the value of the Holant on Ω_s , for $s \ge 1$, is

$$\mathsf{Pl-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}. \tag{10}$$

Let $c_{jk\ell}$ be the sum over all such assignments of the products of evaluations from T and T^{-1} but excluding $\Lambda_{\hat{f}}$ on Ω' . Then

$$\mathsf{Pl-Holant}_{\Omega} = \sum_{j+k+\ell=n} 3^j c_{jk\ell}$$

and the value of the Holant on Ω_s , for $s \ge 1$, is

$$\mathsf{PI-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}. \tag{10}$$

This is a linear equation system with unknowns $c_{jk\ell}$, and a coefficient matrix whose rows are indexed by s and columns are indexed by (j, k), where $0 \le j, k$ and $j + k \le n$.

$$\mathsf{PI-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}. \tag{11}$$

We take $1 \leq s \leq \binom{n+2}{2}.$ Then the coefficient matrix in the linear system is Vandermonde

$$\mathsf{PI-Holant}_{\Omega_s} = \sum_{j+k+\ell=n} (13^j 6^k)^s c_{jk\ell}. \tag{11}$$

We take $1 \le s \le \binom{n+2}{2}$. Then the coefficient matrix in the linear system is Vandermonde and has full rank since for any $j, k, j', k' \ge 0$, if $(j, k) \ne (j', k')$ then $13^{j}6^{k} \ne 13^{j'}6^{k'}$.

Therefore, after obtaining the values of $\text{Pl-Holant}_{\Omega_s}$ by oracle calls to #EO, for $1 \leq s \leq \binom{n+2}{2}$, we can solve the linear system for the unknown $c_{ik\ell}$'s and obtain the value of $\text{Pl-Holant}_{\Omega}$ (TUTTE).

http://www.cs.wisc.edu/~jyc/dichotomy-book.pdf

Some papers can be found on my web site
http://www.cs.wisc.edu/~jyc

THANK YOU!