Constraints, Gadgets, and Invariants

Andrei A. Bulatov Simon Fraser University

Counting and Phase Transitions Boot Camp, Simons Institute, 2016

Relations and Functions

Let A be a finite set

Relation (k-ary): $R \subseteq A^k$, can be viewed as a function $R: A^k \to \{0,1\}$

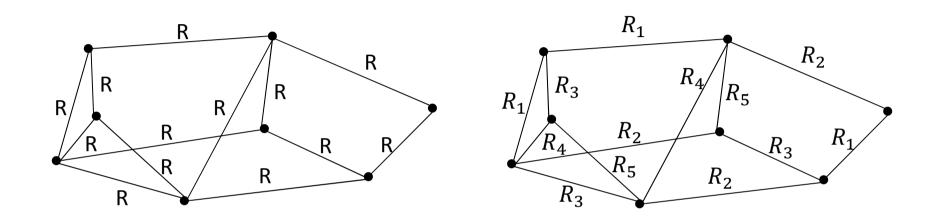
Function (k-ary): $R: A^k \to \mathbb{R}$ (for optimization) $R: A^k \to \mathbb{R}^+$ (for partition functions)

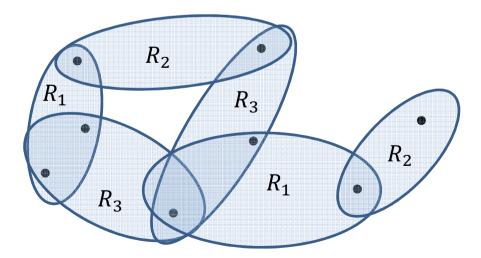
Constraint Problems

Constraint Problems

Instance: $(V;A;\mathcal{C})$ where $CSP(\Gamma)$ • V is a finite set of variables A is a set of values • C is a set of constraints $\{R_1(s_1), ..., R_q(s_q)\}$ R_1, \ldots, R_q can be relations on A, or (nonnegative, real/complex) functions on AOften assumed to be from a fixed set Γ

Constraint Problems II





Constraint Problems III

Instance: $(V;A;\mathcal{C})$ where CSP(Γ), \$CSP(Γ), #CSP(Γ)

- V is a finite set of variables
- *C* is a set of constraints $\{R_1(s_1), ..., R_q(s_q)\}$

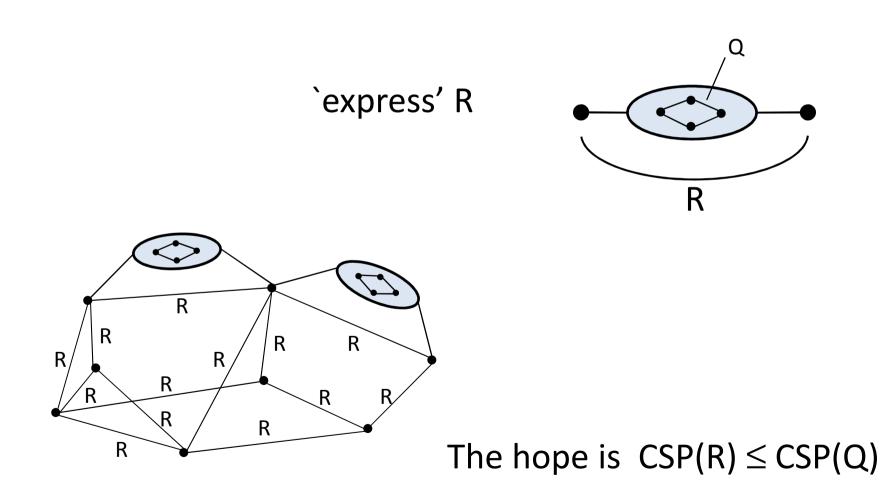
Objective (Decision): whether there is $h: V \to A$ such that, for any i, $R_i(h(s_i))$ is true Objective (Optimization): find h that maximizes $\sum_i R_i(h(s_i))$ Objective (Counting): find the number of such solutions h Objective (Partition function): find the number $\sum_h \prod_i R_i(h(s_i))$

Classification

The Classification Problem: Find the complexity of $CSP(\Gamma)$, $CSP(\Gamma)$, $CSP(\Gamma)$, $CSP(\Gamma)$, $CSP(\Gamma)$ for every constraint language Γ

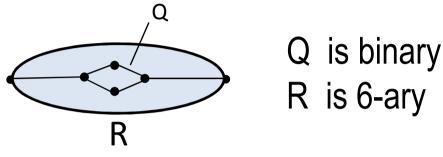
Gadgets and Reductions

Gadgets and Reductions



Gadgets and Reductions II

No auxiliary variables



Then $\text{CSP}(R) \leq \text{CSP}(Q)$ (in all possible meanings) More generally, if for every $R \in \Gamma$ there is an instance of $\text{CSP}(\Delta)$ with relations/functions $Q_1, \ldots, Q_n \in \Delta$ such that $R(\overline{x}) = Q_1(\overline{x}_1) \wedge \cdots \wedge Q_n(\overline{x}_n)$ then $\text{CSP}(\Gamma) \leq \text{CSP}(\Delta)$ $R(\overline{x}) = Q_1(\overline{x}_1) + \cdots + Q_n(\overline{x}_n)$ then $\text{SCSP}(\Gamma) \leq \text{SCSP}(\Delta)$

 $R(\overline{x}) = Q_1(\overline{x}_1) \times \cdots \times Q_n(\overline{x}_n) \text{ then } \# \mathsf{CSP}(\Gamma) \leq \# \mathsf{CSP}(\Delta)$

Small Example



Define relation R on A $R = \emptyset$ if |A| = 2R is AllDifferent otherwise The set of all functions/relations that can be expressed by an instance of CSP(Δ) is called the weak clone generated by Δ , and denoted $\langle \Delta \rangle$

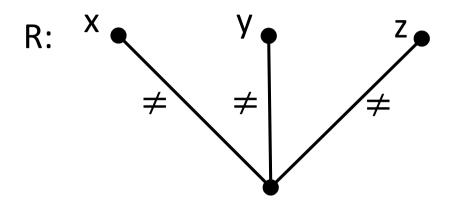
Quantification (Decision)

If for every $R \in \Gamma$ there is an instance of $CSP(\Delta)$ with relations $Q_1, \dots, Q_n \in \Delta$ such that $R(\overline{x}) = \exists \overline{y} \ Q_1(\overline{x}_1, \overline{y}_1) \land \dots \land Q_n(\overline{x}_n, \overline{y}_n)$ then $CSP(\Gamma) \leq CSP(\Delta)$

(Jeavons, et al., 1997)

The set of all functions/relations that can be expressed by an instance of $CSP(\Delta)$ + existential quantification is called the clone generated by Δ , and denoted $\langle \Delta \rangle_{\exists}$

Small Example II



Define relation R on A = {0,1,2} R is NotAllDifferent

Gadgets & Reductions: Optimization

Optimization (Maximization):

For a constraint language Δ by $\langle \Delta \rangle_{max}$ we denote the set of functions

$$R(\overline{x}) = \max_{\overline{y}} (Q_1(\overline{x}_1, \overline{y}_1) + \dots + Q_n(\overline{x}_n, \overline{y}_n)),$$

the max-clone.

If $\Gamma \subseteq \langle \Delta \rangle_{max}$, then $SCSP(\Gamma) \leq SCSP(\Delta)$.

Small Example III

$$0$$
1Ferrolsing 0 λ 1 1 1 λ

R:
$$\overset{FI}{\bullet}$$
 FI $\overset{FI}{\bullet}$ Y 00 $\max\{\lambda + \lambda, 1 + 1\}$
01 $\max\{1 + \lambda, \lambda + 1\}$

$$\begin{array}{c|c} \mathsf{R:} & 0 & 1 \\ \hline 0 & 2\lambda & 1+\lambda \\ 1 & 1+\lambda & 2\lambda \end{array}$$

$$1 < \frac{2\lambda}{1+\lambda} < \lambda$$

Counting:

For a constraint language $\Delta\,$ by $\,\langle\Delta\rangle_{\Sigma}\,$ we denote the set of

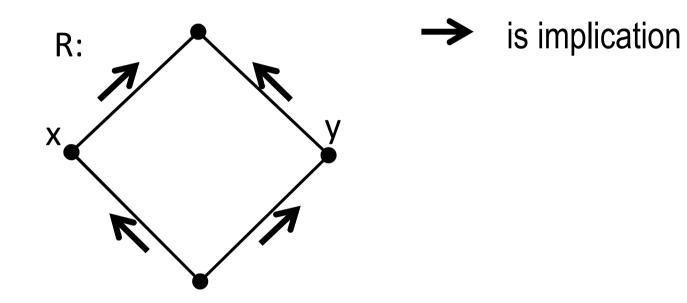
functions

$$R(\overline{x}) = \sum_{\overline{y}} Q_1(\overline{x}_1, \overline{y}_1) \times \cdots \times Q_n(\overline{x}_n, \overline{y}_n),$$

the Σ -clone
If $\Gamma \subseteq \langle \Delta \rangle_{\Sigma}$, then $\#$ CSP $(\Gamma) \leq \#$ CSP (Δ)

For relations: If $\Gamma \subseteq \langle \Delta \rangle_{\exists}$ then $\#CSP(\Gamma) \leq \#CSP(\Delta)$ (B.,Dalmau, 2003)

Small Example IV



Define relation R on A =
$$\{0,1\}$$
R: 0 1 R is Ferrolsing 0 2 1 1 1 2

Polymorphisms

Polymorphisms

Operation $f(x_1, ..., x_n)$ is a polymorphism of relation R if for any $\overline{a}_1, ..., \overline{a}_n \in R$, it holds $f(\overline{a}_1, ..., \overline{a}_n) \in R$ Pol(R), Pol(Γ) is the set of all polymorphisms of R, Γ

 $R \in \langle \Gamma \rangle_{\exists}$ if and only if $Pol(\Gamma) \subseteq Pol(R)$

If $Pol(\Gamma) \subseteq Pol(\Delta)$ then $CSP(\Delta) \le CSP(\Gamma)$ $\#CSP(\Delta) \le \#CSP(\Gamma)$ Let $R = \{(0,1), (1,2), (2,0)\}$ on $A = \{0,1,2\}$ and f(x,y,z) = x - y + z. f is a polymorphisms of R

$$f\begin{pmatrix} 0 & 2 & 1\\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2\\ 0 \end{pmatrix}, \quad f\begin{pmatrix} 0 & 2 & 0\\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}, \dots$$

f(x,y,z) is a majority operation, if f(x,x,y) = f(x,y,x) = f(y,x,x) = x. If relation R has a majority polymorphism, then $\overline{a} \in R$ if and only if every its binary projection belongs to the corresponding binary projection of R **Dichotomy Conjecture** for decision CSPs (~): CSP(Γ) is poly time if and only if Γ has a nontrivial polymorphism. Otherwise it is NP-complete

Exact counting: More complicated, but can be described through polymorphisms

A multimorphism is a collection of operations $m_1, ..., m_n$ on A. $m_1, ..., m_n$ is a multimorphism of function R on A if for any $\overline{a}_1, ..., \overline{a}_n$ $R(\overline{a}_1) + \cdots + R(\overline{a}_n)$ $\ge R(m_1(\overline{a}_1, ..., \overline{a}_n)) + R(m_n(\overline{a}_1, ..., \overline{a}_n))$

Submodularity: $m_1 = \wedge, m_2 = \vee$ $R(\bar{a}) + R(\bar{b}) \ge R(\bar{a} \wedge \bar{b}) + R(\bar{a} \vee \bar{b})$

Optimization: Fractional Polymorphisms

Fix a set A and let O^k denote the set of all k-ary operations $m: A^n \to A$. A probability distribution μ on O^k , $\mu: O^k \to [0,1]$ is called a fractional polymorphism of function $R: A^k \to \mathbb{R}$ if for any $\bar{x}_1, \dots, \bar{x}_n \in A^k$ $E_{m \sim \mu} \Big[R \Big(m(\bar{x}_1, \dots, \bar{x}_n) \Big) \Big] \leq avg \Big(R(\bar{x}_1), \dots, R(\bar{x}_n) \Big]$

Submodularity:

k = 2,
$$\mu(\Lambda) = \mu(\vee) = \frac{1}{2}$$
, that is,

$$\frac{1}{2} \left(R(\bar{x}_1 \land \bar{x}_2) + R(\bar{x}_1 \lor \bar{x}_2) \right) \le \frac{1}{2} \left(R(\bar{x}_1) + R(\bar{x}_2) \right)$$

Optimization: Results

FPol(R), FPol(Γ) denote the set of all fractional polymorphisms of function R or constraint language Γ

 $R \in \langle \Gamma \rangle_{max}$ iff $FPol(\Gamma) \subseteq FPol(R)$ (Zivny et al. 2009)

 $CSP(\Gamma)$ is polynomial time iff Γ has a `nontrivial' fractional polymorphism. Otherwise it is NP-hard. (Thapper, Zivny, 2013, Kolmogorov et al. 2015)

Approximation: Approximation Polymorphisms

Fix a set A and let O^k denote the set of all k-ary operations $m: A^k \to A$. A probability distribution μ on $O^k, \mu: O^k \to [0,1]$ is called an α -approximation polymorphism of function $R: A^k \to \mathbb{R}$ if for any $\bar{x}_1, \dots, \bar{x}_n \in A^k$ $\alpha \cdot E_{m \sim \mu} [R(m(\bar{x}_1, \dots, \bar{x}_n))] \ge avg(R(\bar{x}_1), \dots, R(\bar{x}_k))$

Let α_{Γ} be the greatest constant such that there is a `nontrivial' α_{Γ} -approximation polymorphism of Γ . Then (assuming the Unique Games Conjecture) α_{Γ} is the approximation threshold for $CSP(\Gamma)$. (Raghavendra, 2008)_{26/36}

Approximate Counting

Clones for approximate counting are $\langle \Gamma \rangle_{\Sigma} + \text{limits} = \langle \Gamma \rangle_{\omega}$, that is, $R \in \langle \Gamma \rangle_{\omega}$ iff there are $R_1, R_2, \ldots \in \langle \Gamma \rangle_{\Sigma}$ such that $\lim R_k = R$

If
$$\Gamma \subseteq \langle \Delta \rangle_{\omega}$$
 then $\# CSP(\Gamma) \leq_{AP} \# CSP(\Delta)$

Any `morphisms' for approximate counting?

Observation: For any constraint language Γ of rational-valued functions there is a constraint language Δ of relations (possibly on a different set) such that $\#CSP(\Gamma) \approx \#CSP(\Delta)$

Partial operation $f(x_1, ..., x_n)$ is a partial polymorphism of relation R if for any $\overline{a}_1, ..., \overline{a}_n \in R$, it holds $f(\overline{a}_1, ..., \overline{a}_n)$ belongs to R or does not exist PPol(R), PPol(Γ) is the set of all partial polymorphisms of R, Γ

 $R \in \langle \Gamma \rangle$ if and only if $PPol(\Gamma) \subseteq PPol(R)$

We need to find some sort of `morphisms' for $\langle \Gamma \rangle_{\Sigma}$ or/and $\langle \Gamma \rangle_{\omega}$

Nothing known yet, but there are options ...

CWDB? I

Option 1. Does one of the existing types of `morphisms' work?

Function $f: \{0,1\}^k \to \mathbb{R}^+$ is Log-Super-Modular (LSM) if for any $\bar{x}_1, \bar{x}_2 \in \{0,1\}^k$ $f(\bar{x}_1)f(\bar{x}_2) \leq f(\bar{x}_1 \land \bar{x}_2)f(\bar{x}_1 \lor \bar{x}_2)$

 $\mathsf{Ferrolsing} \in \mathsf{LSM}, \ \mathsf{AntiFerrolsing} \not\in \mathsf{LSM}$

LSM is closed under $\langle \cdot \rangle_{\Sigma}$ and $\langle \Gamma \rangle_{\omega}$

Not clear if it is true for other multimorphisms

Set of operations (constraint language) Γ on A is conservative if it contains all the unary operations on A

Almost complete complexity classification of conservative constraint languages (many people in different combinations, 2014, 2015)

CWDB? II

Option 2. Properties of Fourier coefficients?

Let $f: \{0,1\}^n \to \mathbb{R}^+$ be a function and $S = \{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$ Fourier coefficient $\hat{f}(S)$ is given by

$$\hat{f}(S) = \frac{1}{2^n} \sum_{x_1, \dots, x_n \in \{0,1\}^n} f(x_1, \dots, x_n) (-1)^{x_{i_1} + \dots + x_{i_k}}$$

Let PF denote the set of functions f such that $\hat{f}(S) \ge 0$ for all S. PF is closed under $\langle \cdot \rangle_{\Sigma}$ and $\langle \cdot \rangle_{\omega}$

Some interesting constraint languages from PF and LSM

Option 3. Looking for `morphisms' w.r.t. $\langle \cdot \rangle_{\omega}$ is wrong.

We may want to relax the closure operator

A probability distribution μ on O^k , $\mu: O^k \to [0,1]$ is called a log-approximation polymorphism of function $R: A^k \to \mathbb{R}^+$ if it is a 1-approximation polymorphism of log R, that is, $E_{m\sim\mu} [\log R(m(x_1, ..., x_k))]$ $\geq avg(\log R(x_1), ..., \log R(x_k))$

Log-Approximation Polymorphisms

If μ is a approximation polymorphism of Γ , it is a log-approximation polymorphism of any $R \in \langle \Gamma \rangle$

For any $\Gamma \quad \langle \Gamma \rangle \subseteq \langle \Gamma \rangle_{\omega}$ Thus $\# CSP(\Gamma) \leq_{AP} \# CSP(\Delta)$ whenever $\langle \Gamma \rangle \subseteq \langle \Delta \rangle$

Thank You!