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Outline 

Other techniques for bounding the mixing time: 

• conductance 

• canonical paths 

• canonical flows 

Thanks to: 

Bhatnagar, Diaconis, Dyer, Jerrum, Lawler, Müller, Randall, 
Sinclair, Sokal, Štefankovič, Stroock, Vazirani, Vigoda, … 



Outline 

Recall: 

• Ergodic MC (Ω,P) => unique stationary distribution ¼ 

• Mixing time:  tmix(²) = minimum t such that for every start        
         state x, after t steps within ² of ¼ 

 

An ergodic reversible Markov chain (Ω,P): 
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Conductance 

Def: For an ergodic reversible MC (Ω,P), its conductance 
is defined as: 
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Conductance 

Def: For an ergodic reversible MC (Ω,P), its conductance 
is defined as: 
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Recall: 
Thm: For an ergodic MC, let ¸2 be the 2nd largest eigenvalue 
of P and ¼min := minx ¼(x). Then 
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Def: For an ergodic reversible MC (Ω,P), its conductance 
is defined as: 
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Thm: For a lazy ergodic MC, where ¼min := minx ¼(x): 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
every other state F: 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
every other state F (|Ω|x|Ω| paths) 

- Then, let S be the “smallest cut”: 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
every other state F (|Ω|x|Ω| paths) 

- Then, for some u in S, v not in S: 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
every other state F (|Ω|x|Ω| paths) 
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Canonical Paths 

Bounding the conductance: 

- Find a path in the transition graph from every state I to 
every other state F (|Ω|x|Ω| paths) 

Def: Congestion 

Thm [Sinclair]: For a lazy ergodic reversible MC:   
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Matchings Revisited 

Given an undirected graph G=(V,E), a matching MµE is a set 
of vertex disjoint edges. A matching is perfect if |M|=n/2, 
where n = # vertices (and m = # edges). 

 

Example: 
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•  # matchings 
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Goal: 

An FPRAS for 
•  # matchings 
•  # perfect matchings 

FPAUS (sampler) 



Input: a graph G 

State space Ω: all matchings of G 

Markov chain (slide chain):                                                
Let M be the current matching, we get the next state by 
choosing a random edge e=(u,v) 2 E and: 

• if e 2 M, remove e from M 

• if u,v are not covered by                                                  
edges in M, add e to M 

• if u is covered by edge                                                     
e’ 2 M and v is not covered                                                
by M, replace e’ with e in M 

• otherwise, stay in M 
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probability 1/2 stay in M, 
otherwise 
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Congestion through transition M->M’: 

 

 

Since ¼(M)=¼(I)=¼(F)=1/|Ω| and P(M,M’)=1/(2m), and 
length(I->F)·n: 

Bounding the Congestion 

∑I->F path through M->M’  ¼(I)¼(F) length(I->F) 1 
¼(M)P(M,M’) 

∑I->F path through M->M’  n 2m 
|Ω| 

· 

(# canonical paths through M->M’) 2mn 
|Ω| = 
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 E 2 Ω 
 

E = 

Can “decode” E into I,F? 
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Redefine 
encoding: 
E’ := (E,0) 
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2 Ω x {0,1} 



Let M->M’ be a transition.                                                    
How many canonical paths go through it ? [Want · |Ω|poly(n)] 

- For the sliding transition: · 2|Ω| 

- Need to analyze the add and remove transitions 
 

Bound on the congestion: 

 

 
 

Mixing time:  tmix(²) = O(mn log(1/(²¼min)))                                 
   = O*(mn2)                   [O* - ignore polylog] 
 

FPRAS:   O( T(n,m,²/(6m)) m2/²² ) = O*(m3n2/²²) 

Bounding the Congestion: Encoding 

(# can. paths through M->M’) =           2|Ω| = 4mn  2mn 
|Ω| 

½ · 2mn 
|Ω| 
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What if improve mixing time analysis? 

• canonical paths as before for perfect to perfect 

• for near to perfect:                                                     
 exactly one alternating path – process it last 

Just one perfect matching… But exponentially many nears!     
F  

 
 

Mixing time: tmix(²) = O*(n3 (#nears/#perfects)) 
 

Polynomial if # near-perfect / # perfect matchings is polynomial…            
E.g. for dense graphs: every vertex of degree > n/2. 

A Markov Chain for Perfect Matchings 

This MC good only if #nears/#perfects polynomial… 



Input: a graph G 

State space Ω: all perfect matchings of G 

Markov chain (swap chain):                                                 
Let M be the current matching, choose two random edges 
(u,v) and (x,y) in M, replace them                                         
with (u,y) and (v,x) if can. 
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Let M be the current matching, choose two random edges 
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Symmetric but state space disconnected… 
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Input: a graph G 

State space Ω: all perfect matchings of G 

Markov chain (swap chain):                                                 
Let M be the current matching, choose two random edges 
(u,v) and (x,y) in M, replace them                                         
with (u,y) and (v,x) if can. 

 

What if have an instance with                                      
connected state space: 

 Does it then mix rapidly? 

Another MC for Perfect Matchings 
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-> State space is connected 

Another MC for Perfect Matchings 

? 



Consider this instance (family of instances): 

 

 

 

 

 

 

Another MC for Perfect Matchings 

# matchings that use 
the bottom edge: 1 

# matchings that do not use 
the bottom edge: ¸ 2n/4-1 



Consider this instance (family of instances): 
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More on this chain: 
Dyer-Jerrum-Müller 



What if improve mixing time analysis? 

• canonical paths as before for perfect to perfect 

• for near to perfect:                                                     
 exactly one alternating path – process it last 

Just one perfect matching… 

But exponentially many nears!      

Back to the Sliding Chain: Permanent 

Perfect matchings 

State space 

Exponentially smaller! 

Counts perfect matchings in 
bipartite graphs 



Idea [Jerrum-Sinclair-Vigoda]: 

Change the weights of the states                                      
(change stationary distribution). 
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Idea [Jerrum-Sinclair-Vigoda]: 

Change the weights of the states                                      
(change stationary distribution). 
 

Back to the Sliding Chain: Permanent 

u,v 

n2+1 regions,                  
each about the 
same weight 

Ideal weights                         
(for a matching with holes u,v): 

(# perfects) / (# nears with holes u,v) 

u,v 
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How to compute ??? 
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start with an easy graph, 
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Back to the Sliding Chain: Permanent 

Ideal weights                         
(for a matching with holes u,v): 

(# perfects) / (# nears with holes u,v) 

Edge weights: 
• 1 for edge 
• ¸ for non-edge 

• Start with ¸=1: 
 #perfect/#nears = n!/(n-1)! 
 
 



λ and 4-apx 
of weights 

Back to the Sliding Chain: Permanent 

Ideal weights                         
(for a matching with holes u,v): 

¸(perfects) / ¸(nears with holes u,v) 

Edge weights: 
• 1 for edge 
• ¸ for non-edge 

• Start with ¸=1: 
 #perfect/#nears = n!/(n-1)! 
 
• Repeat until λ < 1/n!: 
 

λ and 2-apx 
of weights 

2-apx = 4-apx 
for new λ  



Back to the Sliding Chain: Permanent 

Thm [Jerrum-Sinclair-Vigoda]: 

FPRAS for the permanent. 

 

OPEN PROBLEM:  

counting perfect matchings in non-bipartite graphs                   

u 
u,v 

¸(perfects) / ¸(nears with holes u,v) 
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