
Markov Chain Mixing Times And Applications III:

Conductance
and

Canonical Paths

Ivona Bezáková

(Rochester Institute of Technology)

Simons Institute for the Theory of Computing
Counting Complexity and Phase Transitions Bootcamp

January 27th, 2016

Outline

Other techniques for bounding the mixing time:

• conductance

• canonical paths

• canonical flows

Thanks to:

Bhatnagar, Diaconis, Dyer, Jerrum, Lawler, Müller, Randall,
Sinclair, Sokal, Štefankovič, Stroock, Vazirani, Vigoda, …

Outline

Recall:

• Ergodic MC (Ω,P) => unique stationary distribution ¼

• Mixing time: tmix(²) = minimum t such that for every start
 state x, after t steps within ² of ¼

An ergodic reversible Markov chain (Ω,P):

Outline

Recall:

• Ergodic MC (Ω,P) => unique stationary distribution ¼

• Mixing time: tmix(²) = minimum t such that for every start
 state x, after t steps within ² of ¼

An ergodic reversible Markov chain (Ω,P):

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

Example: suppose ¼ is uniform:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

Example: suppose ¼ is uniform:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

S
¼(S) = 3/11 · 1/2

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

Example: suppose ¼ is uniform:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

0.1

0.3

0.1 S
¼(S) = 3/11 · 1/2
 0.4

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

Example: suppose ¼ is uniform:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

0.1

0.3

0.1 S
¼(S) = 3/11 · 1/2

3.0

11
3

4.0
11
11.0

11
13.0

11
11.0

11
1

=
+++

=ΦS

0.4

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

Example: suppose ¼ is uniform:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

0.1

S

02.0

11
5

1.0
11
1

==ΦS

¼(S) = 5/11 · 1/2

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

Thm:

Recall:
Thm: For an ergodic MC, let ¸2 be the 2nd largest eigenvalue
of P and ¼min := minx ¼(x). Then









≤≤








min

2 1log1)(
2
1log||

επ
ε

ε
λ

gapspectral
t

gapspectral mix

Φ≤≤Φ 222 gapspectral

[Jerrum-Sinclair, Diaconis-Stroock, Lawler-Sokal]

Conductance

Def: For an ergodic reversible MC (Ω,P), its conductance
is defined as:

)(

),()(
min ,

2/1)(,: S

yxPx
SySx

SSS π

π
π

∑ ∉∈
≤Ω⊆=Φ

Thm:

Thm: For a lazy ergodic MC, where ¼min := minx ¼(x):

Φ≤≤Φ 222 gapspectral

[Jerrum-Sinclair, Diaconis-Stroock, Lawler-Sokal]









Φ

≤≤













 −

Φ min
2

1log2)(
2
1log1

2
1

2
1

επ
ε

ε mixt

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F:

I

F

[Jerrum-Sinclair]

Canonical Paths

I
F

[Jerrum-Sinclair]

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

I

F

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, take any S:

I

F

S

)()(SS ππ ∑
∉∈ SFSI

FI
,

)()(ππ=

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, take any S:

I

F

S

∑
∉∈ SySx

yxPx
,

),()(π

∑
∉∈ SFSI

FI
,

)()(ππ

=
∑

∉∈ SySx
yxPx

,
),()(π

)()(SS ππ

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, take any S:

I

F

S

∑
∉∈ SySx

yxPx
,

),()(π

∑
∉∈ SFSI

FI
,

)()(ππ

=
∑

∉∈ SySx
yxPx

,
),()(π∑

∉∈ SySx
yxPx

,
),()(π

2/)(Sπ
·

)()(SS ππ

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, let S be the “smallest cut”:

I

F

S

∑
∉∈ SySx

yxPx
,

),()(π

∑
∉∈ SFSI

FI
,

)()(ππ

=
∑

∉∈ SySx
yxPx

,
),()(π∑

∉∈ SySx
yxPx

,
),()(π

2/)(Sπ
·

Φ2
1 =

)()(SS ππ

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, let S be the “smallest cut”:

I

F

S

∑
∉∈ SySx

yxPx
,

),()(π

∑
∉∈ SFSI

FI
,

)()(ππ

=
∑

∉∈ SySx
yxPx

,
),()(π∑

∉∈ SySx
yxPx

,
),()(π

2/)(Sπ
·

Φ2
1 = ·

∑ ∑
∉∈

→
∉∈SySx

pathFIonyx
SFSIFI

FI
,

),(
,,:),(

)()(ππ

)()(SS ππ

[Jerrum-Sinclair]

∑
∉∈ SySx

yxPx
,

),()(π

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, let S be the “smallest cut”:

I

F

S

∑
∉∈ SySx

yxPx
,

),()(π

∑
∉∈ SFSI

FI
,

)()(ππ

=
∑

∉∈ SySx
yxPx

,
),()(π∑

∉∈ SySx
yxPx

,
),()(π

2/)(Sπ
·

Φ2
1 = ·

∑
→

∉∈
pathFIonvu
SFSIFI

FI
),(

,,:),(
)()(ππ

for some u in S,
v not in S.

),()(vuPuπ

)()(SS ππ

[Jerrum-Sinclair]

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, for some u in S, v not in S:

I

F

S

Φ2
1 ·

),()(vuPuπ

∑
→

∉∈
pathFIonvu
SFSIFI

FI
),(

,,:),(
)()(ππ

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

- Then, for some u in S, v not in S:

I

F

S

Φ2
1 ·

),()(vuPuπ

Congestion through
transition (u,v)

∑
→

∉∈
pathFIonvu
SFSIFI

FI
),(

,,:),(
)()(ππ

u
v

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

Def: Congestion

I

F

)()()(
),()(

1max:
),(

, pathFIoflengthFI
vuPu

vuthrough
pathFI

vu →= ∑
→

ππ
π

ρ

u v

Canonical Paths

Bounding the conductance:

- Find a path in the transition graph from every state I to
every other state F (|Ω|x|Ω| paths)

Def: Congestion

Thm [Sinclair]: For a lazy ergodic reversible MC:









≤

min

1ln4)(
πε

ρεmixt

)()()(
),()(

1max:
),(

, pathFIoflengthFI
vuPu

vuthrough
pathFI

vu →= ∑
→

ππ
π

ρ

Matchings Revisited

Given an undirected graph G=(V,E), a matching MµE is a set
of vertex disjoint edges. A matching is perfect if |M|=n/2,
where n = # vertices (and m = # edges).

Example:

Matchings Revisited

Given an undirected graph G=(V,E), a matching MµE is a set
of vertex disjoint edges. A matching is perfect if |M|=n/2,
where n = # vertices (and m = # edges).

Example:

A matching

Matchings Revisited

Given an undirected graph G=(V,E), a matching MµE is a set
of vertex disjoint edges. A matching is perfect if |M|=n/2,
where n = # vertices (and m = # edges).

Example:

A perfect matching

Matchings Revisited

Given an undirected graph G=(V,E), a matching MµE is a set
of vertex disjoint edges. A matching is perfect if |M|=n/2,
where n = # vertices (and m = # edges).

Example:

A perfect matching

Goal:

An FPRAS for
• # matchings
• # perfect matchings

Matchings Revisited

Given an undirected graph G=(V,E), a matching MµE is a set
of vertex disjoint edges. A matching is perfect if |M|=n/2,
where n = # vertices (and m = # edges).

Example:

A perfect matching

Goal:

An FPRAS for
• # matchings
• # perfect matchings

FPAUS (sampler)

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

e

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Input: a graph G

State space Ω: all matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by
choosing a random edge e=(u,v) 2 E and:

• if e 2 M, remove e from M

• if u,v are not covered by
edges in M, add e to M

• if u is covered by edge
e’ 2 M and v is not covered
by M, replace e’ with e in M

• otherwise, stay in M

A Markov Chain for Matchings

Technicality:
A lazy chain: with
probability 1/2 stay in M,
otherwise

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

?

I F

[Jerrum-Sinclair]

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

?

I F

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex

1st

2nd

3rd

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

1st

2nd

3rd

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if cycle:
- remove lowest edge
- slide the rest
- add the last edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

For any pair of matchings I,F, define a path from I to F in
the transition graph:

Canonical Paths

I -> F

Going from red to blue:
• take I © F (sym. difference)
• components are alternating
cycles or paths
• order the components by the
lowest vertex
• process components in order

-if path:
- if needed, remove
lower end edge
- slide the rest
- if needed, add the last
edge

1st

2nd

3rd

(dashed edges:
not in the current matching)

1

Congestion through transition M->M’:

Since ¼(M)=¼(I)=¼(F)=1/|Ω| and P(M,M’)=1/(2m), and
length(I->F)·n:

Bounding the Congestion

∑I->F path through M->M’ ¼(I)¼(F) length(I->F) 1
¼(M)P(M,M’)

∑I->F path through M->M’ n 2m
|Ω|

·

(# canonical paths through M->M’) 2mn
|Ω| =

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition

Bounding the Congestion: Encoding

An I -> F path
through M->M’

Legend:
• purple: transition
• red: initial matching
• blue: final matching

M -> M’

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

An I -> F path
through M->M’

Legend:
• purple: transition
• red: initial matching
• blue: final matching

M -> M’

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

An I -> F path
through M->M’

Legend:
• purple: transition
• red: initial matching
• blue: final matching

M -> M’

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

An I -> F path
through M->M’

Legend:
• purple: transition
• red: initial matching
• blue: final matching

M -> M’

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

An I -> F path
through M->M’

Legend:
• purple: transition
• red: initial matching
• blue: final matching

M -> M’

Observation:

I © F – (M[M’)
is a matching.

=> encoding E
(for I,F given M)

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

An I -> F path
through M->M’

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

Observation:

I © F – (M[M’)
is a matching.

=> encoding E
(for I,F given M)

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

Is E an “encoding”?
(Given M->M’ and E, can
reconstruct I,F?)
If yes, then # can.paths
through M->M’ is · |Ω|

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

Is E an “encoding”?
(Given M->M’ and E, can
reconstruct I,F?)
If yes, then # can.paths
through M->M’ is · |Ω|

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

Bounding the Congestion: Encoding

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

Bounding the Congestion: Encoding

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

1st

2nd

3rd

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Bounding the Congestion: Encoding

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

1st

2nd

3rd

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Bounding the Congestion: Encoding

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

1st

2nd

3rd

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Bounding the Congestion: Encoding

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

1st

2nd

3rd

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Bounding the Congestion: Encoding

Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’) E =

Reconstructing I,F from E,M->M’:

1st

2nd

3rd

Know:
• order of components
• currently working on 2nd
• 1st done, 3rd not yet
• current: done up to the transition

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I -> F

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

E =

I © F – (M[M’)

Not a matching…

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =
e

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =
e

Can “decode” E into I,F?

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =

Can “decode” E into I,F?

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =

Can “decode” E into I,F?

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =

Can “decode” E into I,F?

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

1st

2nd I -> F

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =

Can “decode” E into I,F?
- Is 2nd component a path?

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =
1st

2nd I -> F

Can “decode” E into I,F?
- Is 2nd component a path?

e

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =
1st

2nd I -> F

Can “decode” E into I,F?
- Is 2nd component a path?
- Or a cycle?

e

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

Bounding the Congestion: Encoding

M -> M’
Legend:
• purple: transition
• red: initial matching
• blue: final matching
• orange: encoding

I © F – (M[M’)
- {e}

Now a matching:
 E 2 Ω

E =

Can “decode” E into I,F?
- Is 2nd component a path?
- Or a cycle?

1st

2nd I -> F

Redefine
encoding:
E’ := (E,0)
E’ := (E,1)
2 Ω x {0,1}

Let M->M’ be a transition.
How many canonical paths go through it ? [Want · |Ω|poly(n)]

- For the sliding transition: · 2|Ω|

- Need to analyze the add and remove transitions

Bound on the congestion:

Mixing time: tmix(²) = O(mn log(1/(²¼min)))
 = O*(mn2) [O* - ignore polylog]

FPRAS: O(T(n,m,²/(6m)) m2/²²) = O*(m3n2/²²)

Bounding the Congestion: Encoding

(# can. paths through M->M’) = 2|Ω| = 4mn 2mn
|Ω|

½ · 2mn
|Ω|

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

w

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v

w

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v

w

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v

w

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

u

v w =

Input: a graph G

State space Ω: all perfect and near-perfect matchings of G

Markov chain (slide chain):
Let M be the current matching, we get the next state by choosing a
random vertex w and:

• if M is perfect: remove w’s edge

• if M is near-perfect with holes u,v:

• if w=u or v, add (u,v) if can

• else, randomly choose u or v,
replace w’s current edge by
(u,w) or (v,w)

A Markov Chain for Perfect Matchings

Exactly 2 vertices
not matched

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

A Markov Chain for Perfect Matchings

I -> F

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

A Markov Chain for Perfect Matchings

I -> F

1st

2nd

3rd

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

A Markov Chain for Perfect Matchings

I -> F

1st

2nd

3rd

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

A Markov Chain for Perfect Matchings

I -> F

1st

2nd

3rd

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

A Markov Chain for Perfect Matchings

I -> F

1st

2nd

3rd

Want to process
last, otherwise 4
holes -> not in Ω

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

• for near to near:
 go through a random perfect matching

(Instead of canonical paths, split into a flow.)

A Markov Chain for Perfect Matchings

Analysis of this MC:

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

• for near to near:
 go through a random perfect matching

(Instead of canonical paths, split into a flow.)

Mixing time: tmix(²) = O*(n3 (#nears/#perfects))

Polynomial if # near-perfect / # perfect matchings is polynomial…
E.g. for dense graphs: every vertex of degree > n/2.

A Markov Chain for Perfect Matchings

What if improve mixing time analysis?

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

• Just one perfect matching…to near:

Mixing time: tmix(²) = O*(n3 (#nears/#perfects))

Polynomial if # near-perfect / # perfect matchings is polynomial…
E.g. for dense graphs: every vertex of degree > n/2.

A Markov Chain for Perfect Matchings

What if improve mixing time analysis?

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

Just one perfect matching…to near:

Mixing time: tmix(²) = O*(n3 (#nears/#perfects))

Polynomial if # near-perfect / # perfect matchings is polynomial…
E.g. for dense graphs: every vertex of degree > n/2.

A Markov Chain for Perfect Matchings

What if improve mixing time analysis?

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

Just one perfect matching… But exponentially many nears!

Mixing time: tmix(²) = O*(n3 (#nears/#perfects))

Polynomial if # near-perfect / # perfect matchings is polynomial…
E.g. for dense graphs: every vertex of degree > n/2.

A Markov Chain for Perfect Matchings

What if improve mixing time analysis?

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

Just one perfect matching… But exponentially many nears!
F

Mixing time: tmix(²) = O*(n3 (#nears/#perfects))

Polynomial if # near-perfect / # perfect matchings is polynomial…
E.g. for dense graphs: every vertex of degree > n/2.

A Markov Chain for Perfect Matchings

This MC good only if #nears/#perfects polynomial…

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

u

v

y
x

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

u

v

y
x

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

u

v

y

x

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Another MC for Perfect Matchings

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

Symmetric but state space disconnected…

Another MC for Perfect Matchings

Input: a graph G

State space Ω: all perfect matchings of G

Markov chain (swap chain):
Let M be the current matching, choose two random edges
(u,v) and (x,y) in M, replace them
with (u,y) and (v,x) if can.

What if have an instance with
connected state space:

 Does it then mix rapidly?

Another MC for Perfect Matchings

Another MC for Perfect Matchings

Consider this instance (family of instances):

Consider this instance (family of instances):

From any matching can get to

Another MC for Perfect Matchings

Consider this instance (family of instances):

From any matching can get to

Another MC for Perfect Matchings

?

Consider this instance (family of instances):

From any matching can get to

Another MC for Perfect Matchings

?

Consider this instance (family of instances):

From any matching can get to

Another MC for Perfect Matchings

?

Consider this instance (family of instances):

From any matching can get to

Another MC for Perfect Matchings

?

Consider this instance (family of instances):

From any matching can get to

-> State space is connected

Another MC for Perfect Matchings

?

Consider this instance (family of instances):

Another MC for Perfect Matchings

matchings that use
the bottom edge: 1

matchings that do not use
the bottom edge: ¸ 2n/4-1

Consider this instance (family of instances):

Another MC for Perfect Matchings

Consider this instance (family of instances):

Conductance:

Another MC for Perfect Matchings

)1(2
1

2/1
)1(2

1
||

1

)(

),()(
min: 12/

,

2/1)(,: −
≤−Ω≤=Φ −

∉∈∑
≤Ω⊆ nn

nn
S

yxPx
n

SySx

SSS π

π

π

Consider this instance (family of instances):

Conductance:

Another MC for Perfect Matchings

)1(2
1

2/1
)1(2

1
||

1

)(

),()(
min: 12/

,

2/1)(,: −
≤−Ω≤=Φ −

∉∈∑
≤Ω⊆ nn

nn
S

yxPx
n

SySx

SSS π

π

π

S

Consider this instance (family of instances):

Conductance:

Another MC for Perfect Matchings

S















 −−≥














 −

Φ
≥ −

εε
ε

2
1log

2
1)1(2

2
1log1

2
1

2
1)(32/ nnt n

mix

Consider this instance (family of instances):

Conductance:

Another MC for Perfect Matchings

S















 −−≥














 −

Φ
≥ −

εε
ε

2
1log

2
1)1(2

2
1log1

2
1

2
1)(32/ nnt n

mix

More on this chain:
Dyer-Jerrum-Müller

What if improve mixing time analysis?

• canonical paths as before for perfect to perfect

• for near to perfect:
 exactly one alternating path – process it last

Just one perfect matching…

But exponentially many nears!

Back to the Sliding Chain: Permanent

Perfect matchings

State space

Exponentially smaller!

Counts perfect matchings in
bipartite graphs

Idea [Jerrum-Sinclair-Vigoda]:

Change the weights of the states
(change stationary distribution).

Perfect matchings

State space

Exponentially smaller!

Back to the Sliding Chain: Permanent

Idea [Jerrum-Sinclair-Vigoda]:

Change the weights of the states
(change stationary distribution).

Perfect matchings

Exponentially smaller!

Back to the Sliding Chain: Permanent

n2+1 regions,
very different
weight

u,v

Idea [Jerrum-Sinclair-Vigoda]:

Change the weights of the states
(change stationary distribution).

Back to the Sliding Chain: Permanent

u,v

n2+1 regions,
each about the
same weight

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

target

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

u,v

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

u,v

How to compute ???

Approximate:
start with an easy graph,
gradually get to the target graph

Back to the Sliding Chain: Permanent

Ideal weights
(for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

Edge weights:
• 1 for edge
• ¸ for non-edge

• Start with ¸=1:
 #perfect/#nears = n!/(n-1)!

λ and 4-apx
of weights

Back to the Sliding Chain: Permanent

Ideal weights
(for a matching with holes u,v):

¸(perfects) / ¸(nears with holes u,v)

Edge weights:
• 1 for edge
• ¸ for non-edge

• Start with ¸=1:
 #perfect/#nears = n!/(n-1)!

• Repeat until λ < 1/n!:

λ and 2-apx
of weights

2-apx = 4-apx
for new λ

Back to the Sliding Chain: Permanent

Thm [Jerrum-Sinclair-Vigoda]:

FPRAS for the permanent.

OPEN PROBLEM:

counting perfect matchings in non-bipartite graphs

u
u,v

¸(perfects) / ¸(nears with holes u,v)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	Slide Number 149
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159

