Markov Chain Mixing Times And Applications III: Conductance and Canonical Paths

Ivona Bezáková

(Rochester Institute of Technology)

Simons Institute for the Theory of Computing Counting Complexity and Phase Transitions Bootcamp

January 27th, 2016

Outline

Other techniques for bounding the mixing time:

- conductance
- canonical paths
- canonical flows

Thanks to:

Bhatnagar, Diaconis, Dyer, Jerrum, Lawler, Müller, Randall, Sinclair, Sokal, Štefankovič, Stroock, Vazirani, Vigoda, ...

Outline

Recall:

- Ergodic MC (Ω ,P) => unique stationary distribution π
- Mixing time: $t_{mix}(\epsilon)$ = minimum t such that for every start state x, after t steps within ϵ of π

An ergodic reversible Markov chain (Ω ,P):

Outline

Recall:

- Ergodic MC (Ω ,P) => unique stationary distribution π
- Mixing time: $t_{mix}(\epsilon)$ = minimum t such that for every start state x, after t steps within ϵ of π

An ergodic reversible Markov chain (Ω ,P):

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$

Example: suppose π is uniform:

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$

Example: suppose π is uniform:

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$

Example: suppose π is uniform:

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \underbrace{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}_{\pi(S)}$$

Example: suppose π is uniform: $\Phi_s = \frac{\frac{1}{11} 0.1 + \frac{1}{11} 0.3 + \frac{1}{11} 0.1 + \frac{1}{11} 0.4}{\frac{3}{11}} = 0.3$

$$\frac{3}{11}$$

 $\pi(S) = 3/11 \le 1/2$

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$
$$\Phi^{2}/2 \le \text{spectral gap} \le 2\Phi$$

<u>Thm</u>: $\Phi^2/2 \leq spectral gap \leq 2\Phi$

Recall:

<u>Thm</u>: For an ergodic MC, let λ_2 be the 2nd largest eigenvalue of P and $\pi_{\min} := \min_x \pi(x)$. Then

$$\frac{|\lambda_2|}{spectral\ gap} \log\left(\frac{1}{2\varepsilon}\right) \le t_{mix}(\varepsilon) \le \frac{1}{spectral\ gap} \log\left(\frac{1}{\varepsilon\pi_{\min}}\right)$$

[Jerrum-Sinclair, Diaconis-Stroock, Lawler-Sokal]

<u>Def</u>: For an ergodic reversible MC (Ω ,P), its <u>conductance</u> is defined as:

$$\Phi = \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}$$

Thm: $\Phi^2/2 \le spectral gap \le 2\Phi$

<u>Thm</u>: For a lazy ergodic MC, where $\pi_{\min} := \min_{x} \pi(x)$:

$$\frac{1}{2} \left(\frac{1}{2\Phi} - 1 \right) \log \left(\frac{1}{2\varepsilon} \right) \le t_{mix}(\varepsilon) \le \frac{2}{\Phi^2} \log \left(\frac{1}{\varepsilon \pi_{\min}} \right)$$

[Jerrum-Sinclair, Diaconis-Stroock, Lawler-Sokal]

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F:

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, take any S:

$$\pi(S)\pi(\overline{S}) = \sum_{I \in S, F \notin S} \pi(I)\pi(F)$$

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, take any S:

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, take any S:

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, let S be the "smallest cut":

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, let S be the "smallest cut":

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, let S be the "smallest cut":

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)

2Ф

- Then, for some u in S, v not in S:

$$\leq \frac{\sum_{\substack{(I,F): I \in S, F \notin S, \\ (u,v) \text{ on } I \to F \text{ path}}}{\pi(u)P(u,v)}$$

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)
- Then, for some u in S, v not in S:

V

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)

Def: Congestion

$$\rho \coloneqq \max_{u,v} \frac{1}{\pi(u)P(u,v)} \sum_{\substack{I \to F \text{ path} \\ through (u,v)}} \pi(I)\pi(F)(\text{length of } I \to F \text{ path})$$

Bounding the conductance:

- Find a path in the transition graph from every state I to every other state F ($|\Omega| \times |\Omega|$ paths)

Def: Congestion

$$\rho \coloneqq \max_{u,v} \frac{1}{\pi(u)P(u,v)} \sum_{\substack{I \to F \text{ path} \\ through (u,v)}} \pi(I)\pi(F)(\text{length of } I \to F \text{ path})$$

<u>Thm</u> [Sinclair]: For a lazy ergodic reversible MC:

$$t_{mix}(\varepsilon) \le 4\rho \ln\left(\frac{1}{\varepsilon \,\pi_{\min}}\right)$$

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

A matching

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

A perfect matching

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

Example:

A perfect matching

<u>Goal:</u>

An FPRAS for

- # matchings
- # perfect matchings

Given an undirected graph G=(V,E), a <u>matching</u> $M\subseteq E$ is a set of vertex disjoint edges. A matching is <u>perfect</u> if |M|=n/2, where n = # vertices (and m = # edges).

<u>Example:</u>

A perfect matching

<u>Goal:</u>

FPAUS (sampler)

An FPRAS for

- # matchings
- # perfect matchings

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

<u>Input</u>: a graph G

<u>State space Ω </u>: all matchings of G

<u>Markov chain</u> (slide chain): Let M be the current matching, we get the next state by choosing a random edge $e=(u,v) \in E$ and:

- \bullet if $e \in M,$ remove e from M
- if u,v are not covered by edges in M, add e to M
- \bullet if u is covered by edge $e' \in M$ and v is not covered by M, replace e' with e in M
- otherwise, stay in M

Technicality:

A lazy chain: with

probability 1/2 stay in M,

For any pair of matchings I,F, define a path from I to F in the transition graph:

[Jerrum-Sinclair]

For any pair of matchings I,F, define a path from I to F in the transition graph:

For any pair of matchings I,F, define a path from I to F in the transition graph:

Going from red to blue: • take I ⊕ F (sym. difference)

For any pair of matchings I,F, define a path from I to F in the transition graph:

- Going from red to blue:
- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths

For any pair of matchings I,F, define a path from I to F in the transition graph:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex

For any pair of matchings I,F, define a path from I to F in the transition graph:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching)

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if cycle:
 - remove lowest edge
 - slide the rest
 - add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge

For any pair of matchings I,F, define a path from I to F in the transition graph:

(dashed edges: not in the current matching) Going from red to blue:

- take $I \oplus F$ (sym. difference)
- components are alternating cycles or paths
- order the components by the lowest vertex
- process components in order
 -if path:

- slide the rest
- if needed, add the last edge
Bounding the Congestion

Congestion through transition M->M':

$$\frac{1}{\pi(M)P(M,M')} \sum_{I \rightarrow F \text{ path through } M \rightarrow M'} \pi(I)\pi(F) \text{ length}(I \rightarrow F)$$

Since $\pi(M)=\pi(I)=\pi(F)=1/|\Omega|$ and P(M,M')=1/(2m), and length(I->F) \leq n:

$$\leq rac{2\mathsf{m}}{|\Omega|} \sum_{\text{I->F path through M->M'}} \mathsf{n}$$

=
$$\frac{2mn}{|\Omega|}$$
 (# canonical paths through M->M')

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

<u>Legend:</u>purple: transition

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)] E = I ⊕ F - (M∪A <u>Is E an "encoding"?</u> (Given $M \rightarrow M'$ and E, can Legend: reconstruct **I**,**F**?) purple: transition • red: initial matching If yes, then # can.paths • blue: final matching through M->M' is $\leq |\Omega|$ orange: encoding

Reconstructing **I**,**F** from **E**,**M**->**M**':

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Reconstructing **I**,**F** from **E**,**M**->**M**':

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Reconstructing **I**,**F** from **E**,**M**->**M**':

<u>Legend:</u>

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Reconstructing **I**,**F** from **E**,**M**->**M**':

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Reconstructing **I**,**F** from **E**,**M**->**M**':

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Reconstructing **I**,**F** from **E**,**M**->**M**':

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Reconstructing **I**,**F** from **E**,**M**->**M**':

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- order of components
- currently working on 2nd
- 1st done, 3rd not yet
- current: done up to the transition

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Can "decode" E into I,F?

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Can "decode" E into I,F?

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition. How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

<u>Legend:</u>

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Can "decode" E into I,F?

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Can "decode" E into I,F?

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Can "decode" E into I,F?

- Is 2nd component a path?

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Legend:

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

Can "decode" E into I,F?

- Is 2nd component a path?

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- purple: transition
- red: initial matching
- blue: final matching
- orange: encoding

- Can "decode" E into I,F?
- Is 2nd component a path?
- Or a cycle?

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

Let M->M' be a transition.

How many canonical paths go through it ? [Want $\leq |\Omega|$ poly(n)]

- For the sliding transition: $\leq 2|\Omega|$
- Need to analyze the add and remove transitions

Bound on the congestion:

$$ho \leq \frac{2mn}{|\Omega|}$$
 (# can. paths through M->M') = $\frac{2mn}{|\Omega|}$ 2 $|\Omega|$ = 4mn

 $\begin{array}{ll} \underline{\text{Mixing time:}} & t_{\text{mix}}(\epsilon) = O(\text{mn log}(1/(\epsilon \pi_{\min}))) \\ & = O^*(\text{mn}^2) & [O^* - \text{ignore polylog}] \end{array}$

<u>FPRAS:</u> O(T(n,m, ϵ /(6m)) m²/ ϵ ²) = O*(m³n²/ ϵ ²)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

State space Ω : all perfect and near-perfect matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

<u>Input</u>: a graph G

Exactly 2 vertices not matched

<u>State space Ω </u>: all perfect and <u>near-perfect</u> matchings of G

Markov chain (slide chain):

- if M is perfect: remove w's edge
- if M is near-perfect with holes u,v:
 - if w=u or v, add (u,v) if can
 - else, randomly choose u or v, replace w's current edge by (u,w) or (v,w)

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last

Analysis of this MC:

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last
- for near to near:

go through a random perfect matching

(Instead of canonical paths, split into a flow.)

Analysis of this MC:

- canonical paths as before for perfect to perfect
- for near to perfect:
 exactly one alternating path process it last
- for near to near:

go through a random perfect matching

(Instead of canonical paths, split into a flow.)

<u>Mixing time</u>: $t_{mix}(\epsilon) = O^*(n^3 (\#nears/\#perfects))$

What if improve mixing time analysis?

<u>Mixing time</u>: $t_{mix}(\epsilon) = O^*(n^3 (\#nears/\#perfects))$

What if improve mixing time analysis?

Just one perfect matching...

<u>Mixing time</u>: $t_{mix}(\epsilon) = O^*(n^3 (\#nears/\#perfects))$

What if improve mixing time analysis?

Just one perfect matching... But exponentially many nears!

<u>Mixing time</u>: $t_{mix}(\epsilon) = O^*(n^3 (\#nears/\#perfects))$

What if improve mixing time analysis?

Just one perfect matching... But exponentially many nears!

This MC good only if #nears/#perfects polynomial...

<u>Mixing time</u>: $t_{mix}(\epsilon) = O^*(n^3 (\#nears/\#perfects))$

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

Input: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

Input: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Markov chain</u> (swap chain): Let M be the current matching, choose two random edges (u,v) and (x,y) in M, replace them with (u,y) and (v,x) if can.

Symmetric but state space disconnected...

<u>Input</u>: a graph G

<u>State space Ω </u>: all perfect matchings of G

<u>Markov chain</u> (swap chain): Let M be the current matching, choose two random edges (u,v) and (x,y) in M, replace them with (u,y) and (v,x) if can.

What if have an instance with connected state space:

Does it then mix rapidly?

Consider this instance (family of instances):

Consider this instance (family of instances):

From any matching can get to _____

Consider this instance (family of instances):

From any matching can get to _______

Consider this instance (family of instances):

From any matching can get to _______

Consider this instance (family of instances):

From any matching can get to ______

Consider this instance (family of instances):

From any matching can get to _______

Consider this instance (family of instances):

From any matching can get to —

-> State space is connected

Consider this instance (family of instances):

matchings that do not use the bottom edge: $\geq 2^{n/4-1}$

matchings that use the bottom edge: 1

Consider this instance (family of instances):

Consider this instance (family of instances):

Conductance:

$$\Phi \coloneqq \min_{S:S \subseteq \Omega, \pi(S) \le 1/2} \frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)} \le \frac{\frac{1}{|\Omega|} \frac{1}{2n(n-1)}}{1/2} \le \frac{1}{2^{n/2-1}n(n-1)}$$

Consider this instance (family of instances):

Consider this instance (family of instances):

Conductance:

$$t_{mix}(\varepsilon) \ge \frac{1}{2} \left(\frac{1}{2\Phi} - 1 \right) \log \left(\frac{1}{2\varepsilon} \right) \ge \left(2^{n/2 - 3} n(n-1) - \frac{1}{2} \right) \log \left(\frac{1}{2\varepsilon} \right)$$

Consider this instance (family of instances):

Conductance:

More on this chain: Dyer-Jerrum-Müller

$$t_{mix}(\varepsilon) \ge \frac{1}{2} \left(\frac{1}{2\Phi} - 1 \right) \log \left(\frac{1}{2\varepsilon} \right) \ge \left(2^{n/2 - 3} n(n-1) - \frac{1}{2} \right) \log \left(\frac{1}{2\varepsilon} \right)$$

<u>Idea</u> [Jerrum-Sinclair-Vigoda]:

Change the weights of the states (change stationary distribution).

<u>Idea</u> [Jerrum-Sinclair-Vigoda]:

Change the weights of the states (change stationary distribution).

Exponentially smaller!

Perfect matchings

U,V

<u>Idea</u> [Jerrum-Sinclair-Vigoda]:

Change the weights of the states (change stationary distribution).

n²+1 regions, each about the same weight

U,V

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

<u>Approximate:</u> start with an easy graph, gradually get to the target graph

target

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

How to compute ???

Ideal weights (for a matching with holes u,v):

(# perfects) / (# nears with holes u,v)

Edge weights:

- 1 for edge
- λ for non-edge

• Start with λ =1:

#perfect/#nears = n!/(n-1)!

Ideal weights (for a matching with holes u,v):

 λ (perfects) / λ (nears with holes u,v)

Edge weights:

- 1 for edge
- λ for non-edge

• Start with λ =1:

#perfect/#nears = n!/(n-1)!

• Repeat until $\lambda < 1/n!$:

<u>Thm</u> [Jerrum-Sinclair-Vigoda]: FPRAS for the permanent.

OPEN PROBLEM:

counting perfect matchings in non-bipartite graphs

 λ (perfects) / λ (nears with holes u,v)

