
The coupling method - Simons Counting
Complexity Bootcamp, 2016

Nayantara Bhatnagar (University of Delaware)
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Techniques for bounding the mixing time

I Probabilistic techniques - coupling, martingales, strong
stationary times, coupling from the past.

I Eigenvalues and eigenfunctions.

I Functional, isoperimteric and geometric inequalities -
Cheeger’s inequality, conductance, Poincaré and Nash
inequalities, discrete curvature.

I (Levin-Peres-Wilmer 2009, Aldous-Fill 1999/2014) have
comprehensive accounts.



In this part of the tutorial

I Coupling distributions

I Coupling Markov chains

I Path Coupling

I Exact sampling - coupling from the past



Definition - Total variation distance

1− γ = α = β = ‖µ− ν‖tv

Let µ and ν be probability measures on the same measurable space
(Ω,F). The total variation distance between µ and ν is given by

‖µ− ν‖tv = sup
A∈F
|µ(A)− ν(A)|

Here Ω is finite and F = 2Ω

‖µ− ν‖tv = max
A⊂Ω
|µ(A)− ν(A)| =

1

2

∑
x∈Ω

|µ(x)− ν(x)|



Definition - Coupling of distributions

(Doeblin 1938)

Let µ and ν be probability measures on the same measurable space
(Ω,F). A coupling of µ and ν is a pair of random variables
(X ,Y ) on the probability space (Ω× Ω,F × F ,P) such that the
marginals coincide

P(X ∈ A) = µ(A), P(Y ∈ A) = ν(A), ∀A ∈ F .



Example - Biased coins

µ: Bernoulli(p), probability p of “heads” (= 1).
ν: Bernoulli(q), probability q > p of heads.

Hµ(n) = no. of heads in n tosses.
Hν(n) = no. of heads in n tosses.

Proposition 1. P(Hµ(n) > k) ≤ P(Hν(n) > k)

Proof.
For 1 ≤ i ≤ n, (Xi ,Yi ) a coupling of µ and ν. Indep. (Xi ,Yi ).

I Let Xi ∼ µ.

I If Xi = 1, set Yi = 1.

I If Xi = 0, set Yi = 1 w.p. q−p
1−p and 0 otherwise.

P(X1 + . . .+ Xn > k) ≤ P(Y1 + . . .+ Yn > k)
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Coupling and Total Variation Distance

Lemma 2. Let µ and ν be distributions on Ω. Then

‖µ− ν‖tv ≤ inf
couplings (X ,Y )

{P(X 6= Y )}

Proof.
For any coupling (X ,Y ) and A ⊂ Ω

µ(A)− ν(A) = P(X ∈ A)− P(Y ∈ A)

≤ P(X ∈ A,Y /∈ A)

≤ P(X 6= Y ).

Similarly, ν(A)− µ(A) ≤ P(X 6= Y ).

Therefore, ‖µ− ν‖tv ≤ P(X 6= Y ).



Maximal coupling

1− γ = α = β = ‖µ− ν‖tv

Lemma 3. Let µ and ν be distributions on Ω. Then

‖µ− ν‖tv = inf
couplings (X ,Y )

{P(X 6= Y )}



Coupling Markov chains

(Pitman 1974, Griffeath 1974/5, Aldous 1983)

A coupling of Markov chains with transition matrix P is a
process (Xt ,Yt)

∞
t=0 such that both (Xt) and (Yt) are Markov

chains with transition matrix P.

Applied to bounding the rate of convergence to stationarity of
MC’s for sampling tilings of lattice regions, particle processes, card
shuffling, random walks on lattices and other natural graphs, Ising
and Potts models, colorings, independent sets...

(Aldous-Diaconis 1986, Bayer-Diaconis 1992, Bubley-Dyer 1997,
Luby-Vigoda 1999, Luby-Randall-Sinclair 2001, Vigoda 2001,
Wilson 2004, ... )



Simple random walk on {0, 1 . . . , n}
SRW:

I Move up or down with probability 1
2 if possible.

I Do nothing if attempt to move outside interval.

Claim 4. If 0 ≤ x ≤ y ≤ n, Pt(y , 0) ≤ Pt(x , 0).

A coupling (Xt ,Yt) of Pt(x , ·) and Pt(y , ·):

I X0 = x , Y0 = y .

I Let b1, b2 . . . be i.i.d. {±1}-valued Bernoulli(1/2).

I At the ith step, attempt to add bi to both Xi−1 and Yi−1.
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Simple random walk on {0, 1 . . . , n}

For all t, Xt ≤ Yt . Therefore,

Pt(y , 0) = P(Yt = 0) ≤ P(Xt = 0) = Pt(x , 0).

Note: Can modify any coupling so that the chains stay together
after the first time they meet.

We’ll assume this to be the case.
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Distance to stationarity and the mixing time

Define

d(t) := max
x∈Ω
‖Pt(x , ·)− π‖tv , d(t) := max

x ,y∈Ω
‖Pt(x , ·)− Pt(y , ·)‖tv

By the triangle inequality, d(t) ≤ d(t) ≤ 2d(t).

The mixing time is

tmix(ε) := min{t : d(t) ≤ ε}

It’s standard to work with tmix := tmix(1/4) (any constant
ε < 1/2) because

tmix(ε) ≤ dlog2 ε
−1etmix .



Bound on the mixing time

Theorem 5. Let (Xt ,Yt) be a coupling with X0 = x and Y0 = y .
Let τ∗ be the first time they meet (and thereafter, coincide). Then

‖Pt(x , ·)− Pt(y , ·)‖tv ≤ Px ,y (τ∗ > t)

Proof.
By Lemma 2,

‖Pt(x , ·)− Pt(y , ·)‖tv ≤ P(Xt 6= Yt) = Px ,y (τ∗ > t)

Corollary 6. tmix ≤ 4 max
x ,y

Ex ,y (τ∗).

Proof.

d(t) ≤ d(t) ≤ max
x ,y

Px ,y (τ∗ > t) ≤ max
x ,y

Ex ,y (τ∗)

t
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Example - Card shuffling by random transpositions

Shuffling MC on Ω = Sn:

I Choose card Xt and an independent position Yt uniformly.

I Exchange Xt with σt(Yt) (the card at Yt).

Stationary distribution is uniform over permutations Sn.



Example - Card shuffling by random transpositions

Coupling of σt , σ
′
t :

I Choose card Xt and independent position Yt uniformly.

I Use Xt and Yt to update both σt and σ′t

Let Mt = number of cards at the same position in σ and σ′.

Case 1:

I Xt in same position

I Mt+1 = Mt .
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Example - Card shuffling by random transpositions

Mt+1 = Mt + 1 Mt+1 = Mt + 2

Mt+1 = Mt + 3

Case 3:

I Xt in different pos.

I σ(Yt) 6= σ′(Yt).

I Mt+1 > Mt .



Example - Card shuffling by random transpositions

Proposition 7 (Broder). Let τ∗ be the first time Mt = n. For
any x , y ,

Ex ,y (τ∗) <
π2

6
n2, tmix = O(n2).

Proof.
Let τi = steps to increase Mt from i − 1 to i so

τ∗ = τ1 + τ2 + · · ·+ τn.

P(Mt+1 > Mt | Mt = i) =
(n − i)2

n2
⇒ E(τi+1|Mt = i) =

n2

(n − i)2
.

Therefore, for any x , y

Ex ,y (τ∗) ≤ n2
n−1∑
i=0

1

(n − i)2
<
π2

6
n2.



In this part of the tutorial

I Coupling distributions

I Coupling Markov chains

I Coloring MC

I Path Coupling

I Exact sampling - coupling from the past



A few remarks on yesterday’s talk

I Shuffling by random transpositions has tmix ≤ O(n log n).
Strong stationary times - random times at which the MC is
guaranteed to be at stationarity.

I Maximal/optimal coupling

1− γ = α = β = ‖µ− ν‖tv

Lemma 3. Let µ and ν be distributions on Ω. Then

‖µ− ν‖tv = inf
couplings (X ,Y )

{P(X 6= Y )}



Sampling Colorings

Graph G = (V ,E ). Ω set of proper colorings of G .

Metropolis MC:

I Select v ∈ V and k ∈ [q] uniformly.

I If k is allowed at v , update.

Stationary distribution: uniform over colorings Ω (q > ∆ + 1).
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A coupling for colorings
Recall,

Theorem 8. Let (Xt ,Yt) be a coupling with X0 = x and Y0 = y .
Let τ∗ be the first time they meet (and thereafter, coincide). Then

d(t) ≤ max
x ,y

Px ,y (τ∗ > t).

Theorem 9. Let G have max. degree ∆. Let q > 4∆. Then,

tmix(ε) ≤
⌈

1

1− 4∆/q
n(log n + log(ε−1))

⌉
.

Coupling:

I Generate a vertex-color pair (v , k) uniformly.

I Update the colorings Xt and Yt by recoloring v with k if it is
allowed.



Case analysis

For colorings Xt ,Yt , let Dt := |{v | Xt(v) 6= Yt(v)}| .

Dt+1 = Dt − 1 w.p. ≥ Dt(q−2∆)
qn

Dt+1 = Dt + 1 w.p. ≤ Dt(2∆)
qn

E(Dt+1|Xt ,Yt) ≤ Dt − Dt(q−2∆)
qn + 2Dt∆

qn = Dt

(
1− q−4∆

qn

)
Iterating, E(Dt |X0,Y0) ≤ D0

(
1− q−4∆

qn

)t
≤ n

(
1− q−4∆

qn

)t
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Mixing time

We’ve shown

E(Dt |X0 = x ,Y0 = y) ≤ n

(
1− q − 4∆

qn

)t

≤ n exp

(
−q − 4∆

q

t

n

)
.

By Theorem 8,

d(t) ≤ max
x ,y

Px ,y (τ∗ > t) = max
x ,y

P(Dt > 1|X0 = x ,Y0 = y)

≤ max
x ,y

E(Dt |X0 = x ,Y0 = y)

Therefore,

tmix(ε) ≤
⌈

1

1− 4∆/q
n(log n + log(ε−1))

⌉
.



Fast mixing for q > 2∆

(Jerrum 1995, Salas-Sokal 1997)

Theorem 10. Let G have max. degree ∆. If q > 2∆, the mixing
time of the Metropolis chain on colorings is

tmix(ε) ≤
⌈(

q

q − 2∆

)
n(log n + log(ε−1))

⌉

I Use path metrics on Ω to couple only colorings with a single
difference and simplify the proof.

I Coupling colorings with just one difference in a smarter way.



Contraction in Dt

Recall, we showed contraction in one step: for some α > 0

E(Dt+1 | Xt ,Yt) ≤ Dte
−α ⇒ d(t) ≤ ne−αt

⇒ tmix(ε) ≤
⌈

log n + log ε−1

α

⌉



Contraction in Dt

Recall, we showed contraction in one step: for some α > 0

E(Dt+1 | Xt ,Yt) ≤ Dte
−α ⇒ d(t) ≤ ne−αt

⇒ tmix(ε) ≤
⌈

log n + log ε−1

α

⌉



Contraction in Dt

Recall, we showed contraction in one step: for some α > 0

E(Dt+1 | Xt ,Yt) ≤ Dte
−α ⇒ d(t) ≤ ne−αt

⇒ tmix(ε) ≤
⌈

log n + log ε−1

α

⌉



Path Coupling (Bubley-Dyer 1997)

Connected graph (Ω,E0) on Ω.

Length function ` : E0 → [1,∞).

A path from x0 to xr is ξ = (x0, x1, . . . , xr ), and (xi−1, xi ) ∈ E0.

Length of path ξ is `(ξ) :=
∑r

i=1 `((xi−1, xi ).

Path metric on Ω is

ρ(x , y) = min{`(ξ) | ξ is a path between x , y}



Path Coupling (Bubley-Dyer 1997)

Theorem 11 (Bubley-Dyer ’97). If for each (x , y) ∈ E0 there is
a coupling (X1,Y1) of P(x , ·) and P(y , ·) so for some α > 0,

Ex ,y (ρ(X1,Y1)) ≤ e−αρ(x , y),

then

tmix(ε) ≤
⌈

log(diam(Ω) + log(ε))

α

⌉
where diam(Ω) = maxx ,y ρ(x , y).



Metropolis chain on extended space

Graph G = (V ,E ). Ω̃ set of all colorings of G (including
improper).

Metropolis MC:

I Select v ∈ V and k ∈ [q] uniformly.

I If k is allowed at v , update.

Stationary distribution: uniform on Ω, proper colorings.
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Path coupling for colorings

Let x ∼ y in (Ω̃,E0) if their color differs at 1 vertex.

For (x , y) ∈ E0, let `(x , y) = 1.
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Coupling

Let v be the disagreeing vertex in colorings x and y .

I Pick a vertex u and color k uniformly at random.

I If u /∈ N(v) attempt to update u with k .
I If u ∈ N(v)

I If k /∈ {x(v), y(v)} attempt to update u with k.
I Otherwise, attempt to update u in x with k and in y with the

color in {x(v), y(v)} \ {k}.

Ex ,y (ρ(X1,Y1))− ρ(x , y) ≤ −q −∆

qn
+

∆

qn
= −q − 2∆

qn



Sampling colorings

I Conjecture: O(n log n) mixing for q ≥ ∆ + 2.

I (Vigoda 1999) O(n2 log n) mixing for q ≥ 11
6 ∆.

I (Hayes-Sinclair 2005) Ω(n log n) lower bound.

I Restricted cases - triangle free graphs, large max. degree.
Non-Markovian couplings. (Dyer, Flaxman, Frieze, Hayes,
Molloy, Vigoda)



Exact Sampling - Coupling from the past

(Propp-Wilson 1996)

Two copies of the chain are run until they meet. When the chains
meet, are they at stationarity?

No: π(a) = 1
3 , π(b) = 2

3 , but the chains never meet at a.

Coupling from the past (CFTP): If we “run the chain backwards/
from the past” from a time so that all trajectories meet,
guaranteed to be at stationarity.



Random function representation of a MC

Ergodic MC with transition matrix P. A distribution F over
functions f : Ω→ Ω is a random function representation (RFR)
iff

PF (f (x) = y) = P(x , y)

e.g. for the SRW on {0, 1 . . . , n} let

f (i) = min{i + 1, n}, f ′(i) = max{i − 1, 0}.

and F uniform on f and f ′.

Proposition 12. Every transition matrix has an RFR, not
necessarily unique.

F defines a coupling on Ω via

(x , y)
f∼F−→ (f (x), f (y))



Simulating forwards and backwards in time

Associate a random function ft ∼ F to each t ∈ {−∞, . . . ,∞}.

Forward simulation of the chain from x for t steps:

F t
0 (x) = ft−1 ◦ · · · ◦ f0(x), Pt(x , y) = P(F t

0 (x) = y).

Backward simulation of the chain from x for t steps:

F 0
−t(x) = f−1 ◦ · · · ◦ f−t(x).

Let S be time so that |F S
0 (Ω)| = 1. May not be stationary at S .

CFTP: Let S be such that |F 0
−S(Ω)| = 1. The chain is stationary!



Why does CFTP work?

lim
t→∞

P(F t
0 (x) = y) = π(y) = lim

t→∞
P(F 0

−t(x) = y)

Let S be such that |F 0
−S(Ω)| = 1 and t > S .

F 0
−t(x) = f−1 ◦ · · · ◦ f−t(x)

= F 0
−S ◦ f−S−1 ◦ · · · ◦ f−t(x)

= F 0
−S(y)

= F 0
−S(x).

Since t > S was arbitrary, F 0
−t has the same distribution as F 0

−∞.



Implementing CFTP

Issues/Benefits:
I Choosing F so E(S) is small.
I When Ω is large, detecting when |F 0

−S(Ω)| = 1.
I Exact samples even in absence of bounds on mixing time.

Monotone CFTP:
I Partial order � on states respected by the coupling with a

maximal state xmax and minimal state xmin.
I Run CFTP from xmax and xmin. All trajectories will have

converged when these coalesce.
I Ising Model, dimer configs. of hexagonal grid, bipartite

independent set.



Strong stationary times

A random variable τ is a stopping time for (Xt) if 1τ=t is a
function only of (X0, . . . ,Xt).

A strong stationary time (SST) for (Xt) with stationary dist π is
a randomized stopping time such that

Px(τ = t,Xτ = y) = Px(τ = t)π(y)

Theorem 13. If τ is an SST then

d(t) ≤ max
x

Px(τ > t).



Broder stopping time for random shuffling

MC on Sn:

I Choose Lt and Rt u.a.r. and transpose if different.

Stopping time: Mark Rt if both

I Rt is unmarked

I Either Lt is marked or Lt = Rt .

Time τ for all cards to be marked is an SST.

τ = τ0 + · · ·+ τn−1

where τk = number of transpositions after kth card is marked and
upto and including when k + 1st card is marked .

τk ∼ Geom

(
(k + 1)(n − k)

n2

)



Coupon collector estimate

(
n2

(k + 1)(n − k)

)
=

n2

n + 1

(
1

k + 1
+

1

n − k

)

E(τ) =
n−1∑
k=0

E(τk) = 2n(log n + O(1))

Can also calculate
Var(τ) = O(n2).

Let t0 = E(τ) + 2
√
Var(τ). By Chebyshev,

P(τ > t0) ≤ 1

4
.

tmix ≤ (2 + o(1))n log n.


